CN106803528A - 基于石墨烯的位置灵敏光探测器 - Google Patents

基于石墨烯的位置灵敏光探测器 Download PDF

Info

Publication number
CN106803528A
CN106803528A CN201611234302.0A CN201611234302A CN106803528A CN 106803528 A CN106803528 A CN 106803528A CN 201611234302 A CN201611234302 A CN 201611234302A CN 106803528 A CN106803528 A CN 106803528A
Authority
CN
China
Prior art keywords
graphene
position sensitive
sio
substrate
detector based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611234302.0A
Other languages
English (en)
Inventor
梁铮
倪振华
王文辉
丁荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Frestech Photoelectric Co Ltd
TAIZHOU SUNANO ENERGY CO Ltd
Original Assignee
Taizhou Frestech Photoelectric Co Ltd
TAIZHOU SUNANO ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Frestech Photoelectric Co Ltd, TAIZHOU SUNANO ENERGY CO Ltd filed Critical Taizhou Frestech Photoelectric Co Ltd
Priority to CN201611234302.0A priority Critical patent/CN106803528A/zh
Publication of CN106803528A publication Critical patent/CN106803528A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种基于石墨烯的位置灵敏探测器,所述的探测器器包括Si/SiO2衬底、设在Si/SiO2衬底上的石墨烯和设在石墨烯上的金属电极;所述的Si/SiO2衬底由底部的Si和Si上方的SiO2组成;所述的Si是轻掺杂Si衬底,其掺杂浓度范围为1014‑1016 cm‑3,电阻率为1‑100Ωcm;所述的SiO2的厚度为50‑500nm;所述的石墨烯是单层、双层或3‑10层的少层石墨烯;所述的金属电极为金、镍或铂。本发明的有益效果如下:基于本发明所获得的基于石墨烯的位置灵敏探测器,可以解决现有位置灵敏探测器探测微弱光的问题。

Description

基于石墨烯的位置灵敏光探测器
技术领域
本发明涉及一种基于石墨烯与硅协同作用的位置灵敏光探测器。本发明属光电子器件领域。
背景技术
位置灵敏探测器是基于横向光电效应的一种光学位置探测器,目前已广泛应用于工业,工程,航天和军工领域。现有的位置灵敏光探测器多是基于硅材料,具有良好的分辨率和响应时间,但是其响应度低,探测的光强通常在微瓦级别,不能实现纳瓦级别弱光位置灵敏探测,这在实际应用中受到严重的限制。在实际应用中,检测的光多为反射光,经过长距离的传输和散射,实际探测到的光可能十分微弱。比如在激光制导中,位置灵敏探测组件的最小探测功率(Pmin)直接决定了导引头系统的作用距离,Pmin越小,系统的作用距离就越远。因此,高精度的快速光学位置检测具有重要的应用前景。
石墨烯(graphene)是由碳原子构成的一种新型二维半导体材料,它的高迁移率和宽带吸收使他成为高速光电应用领域最有潜力的候选者。尽管石墨烯是单原子层结构,对光的吸收很弱,但是它可以借助其他光敏材料作为光吸收层,结合自身的高迁移率实现很高的光增益,使其在弱光下能够获得很高的光响应。
基于上述背景,本发明提出一种基于石墨烯与硅协同作用的位置灵敏探测器。
发明内容
本发明提出一种基于石墨烯与硅协同作用的位置灵敏光探测器。以解决现有位置灵敏探测器最小探测极限功率高的问题。
本发明的技术方案如下:
一种基于石墨烯的位置灵敏探测器,所述的探测器器包括Si/SiO2衬底、设在Si/SiO2衬底上的石墨烯和设在石墨烯上的金属电极;
所述的Si/SiO2衬底由底部的Si和Si上方的SiO2组成;
所述的Si是轻掺杂Si衬底,其电阻率为1-100Ωcm;
所述的SiO2的厚度为50-500nm;
所述的石墨烯是单层、双层或3-10层的少层石墨烯;
所述的金属电极为金、镍或铂。
一种基于石墨烯的位置灵敏探测器的制备方法,包括如下步骤:
1)在Si/SiO2衬底上通过微机械剥离法制备石墨烯;
2)通过电子束曝光和金属薄膜沉积技术在石墨烯上沉积两个电极。
本发明的基于石墨烯与硅协同作用的位置灵敏探测器的原理如图1所示,光穿透二氧化硅(SiO2)照在轻掺杂硅(Si)表面,使得硅中产生光生载流子,并在浓度梯度的作用下向四周扩散。若用恒定的光照射,光致载流子将在硅中形成稳定扩散分布,扩散到石墨烯器件区域下方的Si/SiO2界面处的载流子对石墨烯具有电场调制作用,并引起石墨烯沟道电流的变化,即光致电流。由于石墨烯具有很高的迁移率,载流子在两个电极之间的传输时间极短,导致了石墨烯探测器具有很高的增益,即使在弱光下也可以获得可观的光电流。另外,光电流的大小主要是与扩散至石墨烯下方的载流子的浓度或数量有关。根据非平衡载流子扩散理论,扩散至某处的载流子数量与光斑到石墨烯器件的距离是负相关的,这说明在恒定的光照下,光电流与光斑中心到石墨烯器件的距离存在负相关对应关系。所以,该探测器对弱光具有良好的位置灵敏性。
有益效果:基于本发明所获得的基于石墨烯的位置灵敏探测器,可以解决现有位置灵敏探测器探测微弱光的问题。
附图说明
图1是本发明的结构与原理示意图。石墨烯两边是电极。
图2为本发明石墨烯器件的光学显微图片。
图3为本发明400nW,532nm光照下的光电流和光斑到石墨烯器件距离的对应关系图。
图4为本发明400nW,532nm光照下获得的二维位置灵敏性光探测图(石墨烯器件位于坐标原点)。
具体实施方式
本发明中:Si/SiO2衬底制备方法属于常规技术,请参考以下文献:
陈涛,席珍强,杨德仁等,快速热氧化制备二氧化硅薄膜的红外研究,材料处理学报,28,1(2007)
J, T, Wright et al. Thermal oxidation of silicon in a residual oxygenatmosphere—the RESOX process—for self-limiting growth of thin silicondioxide films, Semiconductor Science and Technology, 31 (2016).
本发明中“轻掺杂Si衬底”是指杂质浓度比较低的Si衬底,对应电阻率为1-100Ωcm,其掺杂浓度范围为1014-1016 cm-3
本发明中:“微机械剥离法”“电子束曝光”和“金属薄膜沉积技术”属于本领域常规技术,请参考以下文献:
F, Xia et al. Ultrafast graphene photodetector, Nature Nanotechnology 4,839 (2009).
实施例1
本实施例的基于石墨烯的位置灵敏光探测器,制备过程如下:
1)在带有轻掺杂Si的Si/SiO2衬底上通过微机械剥离法制备单层石墨烯,Si衬底电阻率为10Ωcm,SiO2厚度为300nm。
2)通过电子束曝光和金属薄膜沉积技术在石墨烯上沉积两个50 nm厚的金电极(图2)。
3)在衬底不同位置光照射得到光电流,对比石墨烯够到处获得的光电流大小,得到光斑的位置信息(图3和图4)。
图3 表示的在400nW光照下,随着光照入射点与石墨烯的距离增加,在石墨烯中检测的光电流越来越小,这说明光电流与距离是相关的,因此我们可以根据测量得到的光电流算出入射点与石墨烯的距离,实现光斑位置的一维探测。
图4表示的是将石墨烯器件固定在原点处,入射点在第一象限内的引起的光响应,这说明该探测器可以用作二维位置探测。
实施例2
本实施例的基于石墨烯的位置灵敏光探测器,制备过程如下:
1)在带有轻掺杂Si的Si/SiO2衬底上通过微机械剥离法制备双层石墨烯,Si衬底电阻率为100Ωcm,SiO2厚度为50nm。
2)通过电子束曝光和金属薄膜沉积技术在石墨烯上沉积两个50 nm厚的金电极。
3)在衬底不同位置光照射得到光电流,对比石墨烯够到处获得的光电流大小,得到光斑的位置信息。
当光照在衬底的不同位置,石墨烯器件的电流会随光照的强度增加而增加,也会随光斑离石墨烯器件距离的增加而减少。利用该原理可以实现衬底上光斑位置的传感。
实施例3
本实施例的基于石墨烯的位置灵敏光探测器,制备过程如下:
1)在带有轻掺杂Si的Si/SiO2衬底上通过微机械剥离法制备3层的石墨烯,Si衬底电阻率为1 Ωcm,SiO2厚度为500nm。
2)通过电子束曝光和金属薄膜沉积技术在石墨烯上沉积两个50 nm厚的金电极。
3)在衬底不同位置光照射得到光电流,对比石墨烯够到处获得的光电流大小,得到光斑的位置信息。
当光照在衬底的不同位置,石墨烯器件的电流会随光照的强度增加而增加,也会随光斑离石墨烯器件距离的增加而减少。利用该原理可以实现衬底上光斑位置的传感。
本发明的基于石墨烯的位置灵敏探测器对纳瓦级别的弱光具有位置灵敏性。本发明所提出的基于石墨烯的位置灵敏探测器,可以实现nW级别的微弱光位置探测。

Claims (2)

1.一种基于石墨烯的位置灵敏探测器,其特征在于,所述的探测器器包括Si/SiO2衬底、设在Si/SiO2衬底上的石墨烯和设在石墨烯上的金属电极;
所述的Si/SiO2衬底由底部的Si和Si上方的SiO2组成;
所述的Si是轻掺杂Si衬底,其电阻率为1-100Ωcm;
所述的SiO2的厚度为50-500nm;
所述的石墨烯是单层、双层或3-10层的少层石墨烯;
所述的金属电极为金、镍或铂。
2.根据权利要求1所述的基于石墨烯的位置灵敏探测器的制备方法,其特征在于,包括如下步骤:
1)在Si/SiO2衬底上通过微机械剥离法制备石墨烯;
2)通过电子束曝光和金属薄膜沉积技术在石墨烯上沉积两个电极。
CN201611234302.0A 2016-12-28 2016-12-28 基于石墨烯的位置灵敏光探测器 Pending CN106803528A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611234302.0A CN106803528A (zh) 2016-12-28 2016-12-28 基于石墨烯的位置灵敏光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611234302.0A CN106803528A (zh) 2016-12-28 2016-12-28 基于石墨烯的位置灵敏光探测器

Publications (1)

Publication Number Publication Date
CN106803528A true CN106803528A (zh) 2017-06-06

Family

ID=58985196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611234302.0A Pending CN106803528A (zh) 2016-12-28 2016-12-28 基于石墨烯的位置灵敏光探测器

Country Status (1)

Country Link
CN (1) CN106803528A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256899A (zh) * 2017-06-28 2017-10-17 泰州巨纳新能源有限公司 基于石墨烯‑硅异质结的无源位置灵敏探测器
CN107490730A (zh) * 2017-07-21 2017-12-19 泰州巨纳新能源有限公司 基于石墨烯的探测器作为非接触式静电探测器的应用
CN111106200A (zh) * 2019-12-31 2020-05-05 中国科学技术大学 一种红外弱光探测器件、其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633183A (zh) * 2013-11-18 2014-03-12 西安电子科技大学 一种石墨烯中远红外探测器及其制备方法
CN103682102A (zh) * 2013-11-19 2014-03-26 浙江大学 一种石墨烯场效应光晶体管及其制造方法
CN103715291A (zh) * 2013-12-30 2014-04-09 中国科学院上海微系统与信息技术研究所 一种太赫兹光电探测器
CN105895729A (zh) * 2016-06-03 2016-08-24 泰州巨纳新能源有限公司 石墨烯光电探测器
US9508885B1 (en) * 2015-09-02 2016-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Graphene field effect transistor for radiation detection
WO2016204378A1 (ko) * 2015-06-16 2016-12-22 한국원자력연구원 방사선 검출기 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633183A (zh) * 2013-11-18 2014-03-12 西安电子科技大学 一种石墨烯中远红外探测器及其制备方法
CN103682102A (zh) * 2013-11-19 2014-03-26 浙江大学 一种石墨烯场效应光晶体管及其制造方法
CN103715291A (zh) * 2013-12-30 2014-04-09 中国科学院上海微系统与信息技术研究所 一种太赫兹光电探测器
WO2016204378A1 (ko) * 2015-06-16 2016-12-22 한국원자력연구원 방사선 검출기 및 그 제조 방법
US9508885B1 (en) * 2015-09-02 2016-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Graphene field effect transistor for radiation detection
CN105895729A (zh) * 2016-06-03 2016-08-24 泰州巨纳新能源有限公司 石墨烯光电探测器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256899A (zh) * 2017-06-28 2017-10-17 泰州巨纳新能源有限公司 基于石墨烯‑硅异质结的无源位置灵敏探测器
CN107256899B (zh) * 2017-06-28 2019-03-08 泰州巨纳新能源有限公司 无源位置灵敏探测器、其制备方法及其测量方法
CN107490730A (zh) * 2017-07-21 2017-12-19 泰州巨纳新能源有限公司 基于石墨烯的探测器作为非接触式静电探测器的应用
CN111106200A (zh) * 2019-12-31 2020-05-05 中国科学技术大学 一种红外弱光探测器件、其制备方法与应用
CN111106200B (zh) * 2019-12-31 2021-10-01 中国科学技术大学 一种红外弱光探测器件、其制备方法与应用

Similar Documents

Publication Publication Date Title
Lv et al. Review application of nanostructured black silicon
Luo et al. MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors
Ahn et al. Efficient visible light detection using individual germanium nanowire field effect transistors
CN107256899B (zh) 无源位置灵敏探测器、其制备方法及其测量方法
Lhuillier et al. Thermal properties of mid-infrared colloidal quantum dot detectors
Ajiki et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars
TWI220790B (en) Infrared photodetector
Ren et al. Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles
Klem et al. Mesa-isolated InGaAs photodetectors with low dark current
Javadi et al. Hybrid organic/inorganic position-sensitive detectors based on PEDOT: PSS/n-Si
CN106803528A (zh) 基于石墨烯的位置灵敏光探测器
Schuster et al. Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays
Wang et al. Ultrasensitive graphene‐Si position‐sensitive detector for motion tracking
US20170358694A1 (en) Photodetector structures and manufacturing the same
Guo et al. Temperature sensitive photoconductivity observed in InN layers
Zhang et al. Development of a high performance 1280× 1024 InGaAs SWIR FPA detector at room temperature
Liu et al. Triple layer heterojunction Ga2O3/NiO/SiC for ultrafast, high-response ultraviolet image sensing
Recht et al. Controlling dopant profiles in hyperdoped silicon by modifying dopant evaporation rates during pulsed laser melting
Chen et al. Demonstration of infrared nBn photodetectors based on the AlInAsSb digital alloy materials system
Surucu et al. A study on the dark and illuminated operation of Al/Si3N4/p-Si Schottky photodiodes: optoelectronic insights
Vest et al. Silicon sub-bandgap photon linear detection in two-photon experiments: A photo-assisted Shockley-Read-Hall mechanism
Lastras‐Martinez et al. Minority carrier diffusion length measurements in CdTe by a photocurrent technique
KR101037213B1 (ko) 감소된 암전류 광검출기
Härkönen et al. Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection
He et al. Quantitative analysis of edge breakdown effect of Geiger mode avalanche photo-diodes utilizing optical probe scanning method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170606