CN104576789B - 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法 - Google Patents

氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法 Download PDF

Info

Publication number
CN104576789B
CN104576789B CN201410842704.3A CN201410842704A CN104576789B CN 104576789 B CN104576789 B CN 104576789B CN 201410842704 A CN201410842704 A CN 201410842704A CN 104576789 B CN104576789 B CN 104576789B
Authority
CN
China
Prior art keywords
tio
thin film
layer
minutes
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410842704.3A
Other languages
English (en)
Other versions
CN104576789A (zh
Inventor
阮圣平
张德重
刘彩霞
周敬然
沈亮
郭文滨
温善鹏
董玮
张歆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201410842704.3A priority Critical patent/CN104576789B/zh
Publication of CN104576789A publication Critical patent/CN104576789A/zh
Application granted granted Critical
Publication of CN104576789B publication Critical patent/CN104576789B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于半导体紫外光电探测技术领域,具体涉及一种以纳米氧化石墨烯(GO)作为阻挡层及隧穿层、TiO2/GO复合薄膜为光电转换材料的高性能探测器。器件以石英片做衬底,表面旋涂制备TiO2和GO薄膜,并用磁控溅射制备金电极。利用光刻技术,将GO层制备成与电极具有相同形状的叉指结构,可以有效降低表面漏电流。器件工作时,GO层在黑暗中起到阻挡层作用,提高势垒阻止电子传输,有效降低器件暗电流;在310nm紫外光照射下,外加偏压使GO层发生隧穿效应,成为光生载流子的传导阶梯,促进光生电流传递,有效提高器件光电流。

Description

氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法
技术领域
本发明属于半导体紫外光电探测技术领域,具体涉及一种以石英片为衬底,以纳米GO(氧化石墨烯)薄膜作为阻挡层及隧穿层、TiO2/GO复合薄膜为光电转换材料、Au为金属叉指电极的高性能紫外探测器及其制备方法。
背景技术
紫外探测技术是继红外和激光探测技术之后,又一项迅速发展起来的军民两用光电探测技术。一直以来,紫外探测多采用光电倍增管或硅基光电二极管器件来实现,然而这些器件具有价格昂贵、工作电压高、体积大等明显缺点。随着宽禁带半导体材料的研究进展,人们开始研制新一代基于宽禁带半导体的紫外探测器,极具潜力的材料有GaN、ZnO、SiC、TiO2等。其中,TiO2价格低廉、性质稳定、光电性能良好,是应用于紫外探测技术的合适材料。但是通过研究发现,基于TiO2单一材料的紫外探测器性能不够优异,因受到材料本身的性质所局限,器件的光电流很难有所突破,暗电流也无法限制到更低。为了克服这些缺点,人们开始关注复合材料在紫外探测领域的应用。
GO是石墨烯或石墨粉的氧化物。经过氧化后,石墨材料中引入含氧官能团,碳原子中的电子流向含氧官能团,并被其所束缚,使GO材料具有类似于p型半导体的性质。因制备方法和实验条件等差异,GO的精确结构还无法得到确定,通常在GO单片上随机分布羟基和环氧基,而在单片的边缘存在着羧基和羰基。特殊的结构使得GO成为一种新兴的光敏材料,其薄膜在紫外及近紫外区域具有良好的吸收特性。目前,这种材料在紫外探测领域还少有应用,TiO2和GO二者的结合,也是光电材料领域的新探索。
制备TiO2/GO复合薄膜材料,可以在TiO2和GO两种材料优点的基础上,通过能级的匹配、膜厚的调整,激发出材料更大的潜能,表现出更优异的紫外探测能力,使器件的暗电流被限制得更小,光电流得到提升,性能得到全面改进,具有良好的应用前景。
发明内容
本发明目的是提供一种基于TiO2/GO复合薄膜材料的高性能紫外探测器及该探测器的制备方法。
本发明采用石英片作为衬底,以TiO2/GO复合薄膜作为感光材料制备紫外光探测器。器件光电流提高的同时,暗电流被有效限制,性能得到全面提升。
由于GO的导带底能级高于TiO2的导带底能级,在黑暗情况下,TiO2体内的电子很难越过GO层的高势垒,电子无法流向电极,而是被阻挡在TiO2内部,GO充当阻挡层,降低了暗电流。在紫外光照射下,TiO2体内受激产生光生电子-空穴对,TiO2的电导率发生变化,使得外加偏压更多的集中在TiO2和GO接触的异质结处,GO一侧的势垒尖峰变得更加陡峭,这为TiO2体内的电子隧穿通过GO势垒提供了条件。因此,在黑暗情况下,本器件中的GO材料充当阻挡层,阻止了TiO2体内非光激发载流子(主要为电子)的向外传导,使暗电流降低。在紫外光照射下,TiO2/GO复合材料形成的p-n结,促进了结区光生电子-空穴对的有效分离,减少了光生载流子的复合;GO层在一定偏压下不再起到阻挡电子的作用,而是发生隧穿效应,使光生电子顺利通过,同时,其价带充当了光生空穴流的传导阶梯,使光生载流子更容易被收集,进而增大光电流。
本发明采用的成膜方法为溶胶凝胶法,此方法简单易行,成膜优质。对于GO层,运用光刻的方法将其制作成具有叉指形状(与金电极形状相同)。这样可以有效避免表面漏电流的产生。
本发明所涉及的一种以石英片为衬底,以纳米GO(氧化石墨烯)薄膜作为阻挡层及隧穿层的紫外探测器按紫外光入射方向,从下至上依次由石英片衬底、采用溶胶凝胶法在石英片衬底上制备的纳米TiO2薄膜与纳米GO薄膜构成的TiO2/GO异质结复合感光薄膜、在TiO2/GO异质结复合感光薄膜上用磁控溅射法制备的Au叉指电极组成,GO薄膜具有与Au叉指电极相同的叉指结构。其中,石英片衬底的厚度为0.5~2mm,纳米TiO2薄膜的厚度为60~100nm,叉指GO薄膜的厚度为3~15nm,Au叉指电极的厚度为50~150nm,叉指GO薄膜和金叉指电极的指长度、指间距、指宽度分别为0.8~1.2mm、5~30μm、5~30μm。
本发明所述的基于TiO2/GO复合薄膜材料紫外探测器的制备步骤如下:
1)衬底的清洁处理
将石英片衬底依次置于丙酮、乙醇和去离子水中超声清洗10~15分钟,然后氮气吹干;
2)纳米TiO2薄膜的制备
采用溶胶-凝胶的成膜方法在石英衬底上制备TiO2薄膜。首先配制TiO2溶胶:在室温和搅拌下,将5~10mL钛酸四丁酯逐滴加入到60~100mL无水乙醇中,搅拌30~40分钟后向溶液中滴加5~10mL冰醋酸,为溶液提供酸性环境并催化后续水解反应的进行;继续搅拌30~60分钟后向溶液中加入5~10mL乙酰丙酮作为分散剂和稳定剂,防止水解反应进行过快;然后再搅拌30~60分钟后,加入5~10mL去离子水并继续搅拌60~90分钟,得到黄色透明胶体,将其静置陈化3~5小时后得到TiO2溶胶。
将配好的TiO2溶胶涂在清洁处理后的石英衬底上,形成纳米薄膜:用旋涂的方法在石英衬底表面形成溶胶薄膜,旋涂的转速1500~3000转/分钟,时间20~30秒,然后放入烘箱,80~120℃加热烘干10~15分钟;取出衬底并冷却后,重复旋涂和烘干的步骤3~5次,以达到所需要的薄膜厚度;最后将薄膜连同石英衬底在450~750℃下烧结1~3小时,最终在石英衬底上得到纳米晶体TiO2薄膜。
3)叉指形状光刻胶的制备
在制备好的TiO2薄膜表面旋涂0.5~1μm的正型BP212光刻胶,旋涂参数为:转速1500~2500转/分,时间15~30秒;在70~100℃下前烘10~20分钟后,选择与叉指电极结构互补的掩模板(即在叉指电极对应的位置为透光区域,而在其余区域为遮光区域),对光刻胶进行曝光40~60秒,再经30~40秒显影后去除掉曝光的光刻胶(显影液为BP212光刻胶显影液与去离子水1:1~2体积比混合而成),最后在100~120℃温度下坚膜10~20分钟,最终在TiO2薄膜表面得到具有与叉指电极结构相同镂空区域的光刻胶层,即在该光刻胶层上露出的TiO2薄膜具有与叉指电极相同的结构;叉指的长度为0.8~1.2mm,宽度为5~30μm,间距为5~30μm。
4)GO薄膜的制备
取5~10g石墨粉和2.5~5g硝酸钠加入到100~150mL、15~25M的浓硫酸中,保持温度为0~20℃,在搅拌下逐渐加入10~20g高锰酸钾,然后在30~50℃下氧化12~24小时;氧化反应完成后,向溶液中缓慢加入300~500mL去离子水,并将在70~90℃下搅拌15~30分钟;最后向溶液中滴加10~20mL、35%质量浓度的过氧化氢溶液,在室温下搅拌15~20分钟,将得到的GO溶液用去离子水清洗3~5遍;
将配好的GO溶液旋涂在前面步骤得到的光刻胶表面,转速3000~6000转/分,时间20~30秒;然后在80~120℃下烘干10~20分钟,得到厚度为3~15nm的GO纳米薄膜。
5)制备叉指形状GO薄膜和叉指形状Au电极
首先采用磁控溅射技术制备金属电极,将带有TiO2薄膜、具有与叉指电极结构相同镂空区域的光刻胶层、GO薄膜的石英衬底放入磁控溅射真空室内。靶材安装完成后,抽真空至5.0×10-3~7.0×10-3Pa,通入氩气,流量为20~30sccm(标准毫升/分钟);调整真空室气压在0.5~1.0Pa;施加偏压,选择合适的溅射功率(60~120W)和溅射时间(4~8分钟),完成金薄膜溅射;
将溅射好的石英片放入适量丙酮中超声10~30秒,未曝光的光刻胶连同其上层的GO层和金属层被剥离,从而留下叉指结构的GO层和金电极层。洗去丙酮并吹干,器件制作完成。
附图说明
图1:本发明所涉及器件的结构示意图;
图2:本发明所涉及器件(GO层厚度为0nm,即器件不含有GO层)的电流电压特性曲线。
图3:本发明所涉及器件(GO层厚度为5nm)的电流电压特性曲线。
图4:本发明所涉及器件(GO层厚度为10nm)的电流电压特性曲线。
如图1所示,波长为310nm紫外光(5)从石英片背面入射,照射到TiO2/GO复合材料层,产生光电流;各部件名称为:石英片衬底1、TiO2薄膜2、GO薄膜3、叉指金电极4;
如图2所示,曲线1是器件的光电流-电压特性曲线,曲线2是器件的暗电流-电压特性曲线。器件中GO层的厚度为0nm,即器件不含有GO层时,在5V偏压下,该器件的光电流为6.93μA,暗电流为3.32nA,光暗电流比为2.09×103
如图3所示,曲线1是器件的光电流-电压特性曲线,曲线2是器件的暗电流-电压特性曲线。器件中GO层的厚度为5nm时,在5V偏压下,该器件的光电流为10.59μA,暗电流为0.14nA,光暗电流比为7.56×104
如图4所示,曲线1是器件的光电流-电压特性曲线,曲线2是器件的暗电流-电压特性曲线。器件中GO层的厚度为10nm时,在5V偏压下,该器件的光电流为2.87μA,暗电流为0.11nA,光暗电流比为2.61×104
具体实施方式
实施例1:
采用超声清洗的方法,将1mm厚的石英片衬底依次置于适量的丙酮、乙醇和去离子水中进行超声清洗10分钟,最后用氮气枪将衬底吹干待用。
采用溶胶-凝胶的成膜方法在石英衬底上制备TiO2薄膜。首先配制TiO2溶胶:在室温条件下,先将60mL无水乙醇倒入锥形瓶中,在搅拌下逐滴加入8mL钛酸四丁酯,持续搅拌40分钟后,向溶液中滴加8mL冰醋酸。经过30分钟搅拌,再向溶液中加入8mL乙酰丙酮。搅拌30分钟后,最后加入8mL去离子水并继续搅拌60分钟,得到蛋黄色透明胶体,将其静置陈化5小时后待用。
采用旋涂的方法在石英衬底表面形成溶胶薄膜,旋涂参数为转速2800转/分钟,时间25秒,然后放入烘箱100℃加热烘干10分钟。取出衬底并冷却后,重复旋涂和烘干的步骤共5次。最后将薄膜连同石英衬底放入马弗炉中高温烧结,温度500℃,时间2小时,最终得到纳米晶体TiO2薄膜。
采用标准光刻法制备叉指形状光刻胶薄膜。在制备好的TiO2薄膜表面旋涂正型BP212光刻胶,旋涂参数为:转速2000转/分,时间20秒。在80℃的温度下前烘10分钟后,选择与叉指电极结构互补的掩模板对光刻胶进行曝光55秒。曝光处的光刻胶性质发生变化,经过40秒的显影(显影液为BP212光刻胶显影液与去离子水1:1体积比混合而成),最后在120℃温度下坚膜20分钟,最终在TiO2薄膜表面得到具有与叉指电极结构相同镂空区域的光刻胶层,叉指形状的参数为:长度1mm,宽度20μm,间距20μm。
采用磁控溅射技术制备金电极,将带有TiO2薄膜、叉指形状光刻胶的石英衬底放入磁控溅射真空室内。靶材安装完成后,抽真空至6.0×10-3Pa,通入氩气,流量为20sccm;调整真空室气压在1.0Pa。施加偏压,选择合适的溅射功率(90W)和溅射时间(5分钟),完成金薄膜溅射。将溅射好的石英片放入适量丙酮中超声15秒,光刻胶连同其上层的金属层被剥离,留下叉指形状的金电极层。洗去丙酮并吹干,器件制作完成。
无GO层的器件制作完成后,对该器件进行光电特性测试。在暗室中测量器件的暗电流,如图2可知器件在5V偏压下的暗电流为3.32nA。测试光电流时,使用30W紫外光源和单色仪分出光强为120μW/cm2的310nm紫外光照射到器件上,测得5V偏压下的光电流为6.93μA,器件在5V时的光暗电流比为2.09×103
实施例2:
采用超声清洗的方法,将1mm厚的石英片衬底依次置于适量的丙酮、乙醇和去离子水中进行超声清洗10分钟,最后用氮气枪将衬底吹干待用。
采用溶胶-凝胶的成膜方法在石英衬底上制备TiO2薄膜。首先配制TiO2溶胶:在室温条件下,先将60mL无水乙醇倒入锥形瓶中,在搅拌下逐滴加入8mL钛酸四丁酯,持续搅拌40分钟后,向溶液中滴加8mL冰醋酸。经过30分钟搅拌,再向溶液中加入8mL乙酰丙酮。搅拌30分钟后,最后加入8mL去离子水并继续搅拌60分钟,得到蛋黄色透明胶体,将其静置陈化5小时后待用。
采用旋涂的方法在石英衬底表面形成溶胶薄膜,旋涂参数为转速2800转/分钟,时间25秒,然后放入烘箱100℃加热烘干10分钟。取出衬底并冷却后,重复旋涂和烘干的步骤共5次。最后将薄膜连同石英衬底放入马弗炉中高温烧结,温度500℃,时间2小时,最终得到纳米晶体TiO2薄膜。
采用标准光刻法制备叉指形状光刻胶薄膜。在制备好的TiO2薄膜表面旋涂正型BP212光刻胶,旋涂参数为:转速2000转/分,时间20秒。在80℃的温度下前烘10分钟后,选择与叉指电极结构互补的掩模板对光刻胶进行曝光55秒。曝光处的光刻胶性质发生变化,经过40秒的显影(显影液为BP212光刻胶显影液与去离子水1:1体积比混合而成),最后在120℃温度下坚膜20分钟,最终在TiO2薄膜表面得到具有与叉指电极结构相同镂空区域的光刻胶层,叉指形状的参数为:长度1mm,宽度20μm,间距20μm。
采用旋涂法制备GO薄膜。首先配制GO水溶液,取6g石墨粉和3g硝酸钠加入到150mL,18M的浓硫酸中,保持温度为20℃,在搅拌下逐渐加入15g高锰酸钾。调整溶液温度至35℃,进行氧化12小时。氧化反应完成后,向溶液中缓慢加入500mL去离子水,并将温度升高至90℃搅拌15分钟。最后向溶液中滴加15mL,35%质量浓度的过氧化氢溶液,并保持在室温下搅拌20分钟。得到的GO溶液用去离子水清洗5遍。将配好的GO溶液旋涂在带有叉指形状的光刻胶表面,转速5500转/分,时间25秒。80℃烘干10分钟,得到5nm厚的GO薄膜。
采用磁控溅射技术制备金电极,将带有TiO2薄膜、叉指形状光刻胶、GO薄膜的石英衬底放入磁控溅射真空室内。靶材安装完成后,抽真空至6.0×10-3Pa,通入氩气,流量为20sccm;调整真空室气压在1.0Pa。施加偏压,选择合适的溅射功率(90W)和溅射时间(5分钟),完成金薄膜溅射。将溅射好的石英片放入适量丙酮中超声15秒,光刻胶连同其上层的GO层和金属层被剥离,留下叉指形状的GO层和金电极层。洗去丙酮并吹干,器件制作完成。器件结构如图1所示。
含有5nm厚GO薄膜的器件制作完成后,对该器件进行光电特性测试。在暗室中测量器件的暗电流,如图3,可知器件在5V偏压下的暗电流为0.14nA。测试光电流时,使用30W紫外光源和单色仪分出光强为120μW/cm2的310nm紫外光照射到器件上,测得5V偏压下的光电流为10.59μA,器件在5V时的光暗电流比为7.56×104。该器件的光电性能与无GO层器件相比有了大幅度的提升。
实施例3:
采用超声清洗的方法,将1nm厚的石英片衬底依次置于适量的丙酮、乙醇和去离子水中进行超声清洗10分钟,最后用氮气枪将衬底吹干待用。
采用溶胶-凝胶的成膜方法在石英衬底上制备TiO2薄膜。首先配制TiO2溶胶:在室温条件下,先将60mL无水乙醇倒入锥形瓶中,在搅拌下逐滴加入8mL钛酸四丁酯,持续搅拌40分钟后,向溶液中滴加8mL冰醋酸。经过30分钟搅拌,再向溶液中加入8mL乙酰丙酮。搅拌30分钟后,最后加入8mL去离子水并继续搅拌60分钟,得到蛋黄色透明胶体,将其静置陈化5小时后待用。
采用旋涂的方法在石英衬底表面形成溶胶薄膜,旋涂参数为转速2800转/分钟,时间25秒,然后放入烘箱100℃加热烘干10分钟。取出衬底并冷却后,重复旋涂和烘干的步骤共5次。最后将薄膜连同石英衬底放入马弗炉中高温烧结,温度500℃,时间2小时,最终得到纳米晶体TiO2薄膜。
采用标准光刻法制备叉指形状光刻胶薄膜。在制备好的TiO2薄膜表面旋涂正型BP212光刻胶,旋涂参数为:转速2000转/分,时间20秒。在80℃的温度下前烘10分钟后,选择与叉指电极结构互补的掩模板对光刻胶进行曝光55秒。曝光处的光刻胶性质发生变化,经过40秒的显影(显影液为BP212光刻胶显影液与去离子水1:1体积比混合而成),最后在120℃温度下坚膜20分钟,最终在TiO2薄膜表面得到具有与叉指电极结构相同镂空区域的光刻胶层,叉指形状的参数为:长度1mm,宽度20μm,间距20μm。
采用旋涂法制备GO薄膜。首先配制GO水溶液,取6g石墨粉和3g硝酸钠加入到150mL,18M的浓硫酸中,保持温度为20℃,在搅拌下逐渐加入15g高锰酸钾。调整溶液温度至35℃,进行氧化12小时。氧化反应完成后,向溶液中缓慢加入500mL去离子水,并将温度升高至90℃搅拌15分钟。最后向溶液中滴加15mL,35%质量浓度的过氧化氢溶液,并保持在室温下搅拌20分钟。得到的GO溶液用去离子水清洗5遍。将配好的GO溶液旋涂在带有叉指形状的光刻胶表面,转速4000转/分,时间25秒。80℃烘干10分钟,得到10nm厚的GO薄膜。
采用磁控溅射技术制备金电极,将带有TiO2薄膜、叉指形状光刻胶、GO薄膜的石英衬底放入磁控溅射真空室内。靶材安装完成后,抽真空至6.0×10-3Pa,通入氩气,流量为20sccm;调整真空室气压在1.0Pa。施加偏压,选择合适的溅射功率(90W)和溅射时间(5分钟),完成金薄膜溅射。将溅射好的石英片放入适量丙酮中超声15秒,光刻胶连同其上层的GO层和金属层被剥离,留下叉指形状的GO层和金电极层。洗去丙酮并吹干,器件制作完成。器件结构如图1所示。
含有10nm厚GO薄膜的器件制作完成后,对该器件进行光电特性测试。在暗室中测量器件的暗电流,如图4,可知器件在5V偏压下的暗电流为0.11nA。测试光电流时,使用30W紫外光源和单色仪分出光强为120μW/cm2的310nm紫外光照射到器件上,测得5V偏压下的光电流为2.87μA,器件在5V时的光暗电流比为2.61×104。该器件与无GO层器件相比,性能有所提升,但与含有5nm厚GO层器件相比,性能有所下降。由此可知,选择合适的GO层厚度,可以得到性能更优的器件。

Claims (6)

1.一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器,其特征在于:按光入射方向,从下至上依次由石英片衬底、纳米TiO2薄膜与纳米GO薄膜构成的TiO2/GO异质结复合感光薄膜、在TiO2/GO异质结复合感光薄膜上制备的Au叉指电极组成,且纳米GO薄膜具有与Au叉指电极相同的叉指结构,GO为氧化石墨烯。
2.如权利要求1所述的一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器,其特征在于:石英片衬底的厚度为0.5~2mm,纳米TiO2薄膜的厚度为60~100nm,纳米GO薄膜的厚度为3~15nm,叉指电极的厚度为50~150nm,叉指电极的指长度、指间距、指宽度分别为0.8~1.2mm、5~30μm和5~30μm。
3.如权利要求2所述的一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器的制备方法,其步骤如下:
1)衬底的清洁处理
将石英片衬底依次置于丙酮、乙醇和去离子水中超声清洗10~15分钟,然后氮气吹干;
2)纳米TiO2薄膜的制备
将TiO2溶胶涂在清洁处理后的石英衬底上,旋涂成膜,最后在450~750℃下烧结1~3小时,即在石英衬底上得到纳米晶体TiO2薄膜;
3)叉指形状光刻胶的制备
在制备好的TiO2薄膜表面旋涂0.5~1μm的正型BP212光刻胶,在70~100℃下前烘10~20分钟后,选择与叉指电极结构互补的掩模板,对光刻胶进行曝光40~60秒,再经30~40秒显影后去除掉曝光的光刻胶,最后在100~120℃温度下坚膜10~20分钟,从而在TiO2薄膜表面得到具有与叉指电极结构相同镂空区域的光刻胶层;
4)GO薄膜的制备
将GO溶液旋涂在前面步骤得到的光刻胶表面,然后在80~120℃下烘干10~20分钟,得到GO纳米薄膜;
5)制备叉指形状GO薄膜和叉指形状Au电极
将带有TiO2薄膜、具有与叉指电极结构相同镂空区域的光刻胶层、GO薄膜的石英衬底放入磁控溅射真空室内,抽真空至5.0×10-3~7.0×10-3Pa;然后通入氩气,流量为20~30sccm,再调整真空室气压在0.5~1.0Pa,在60~120W功率下溅射4~8分钟,从而完成Au薄膜溅射;
将溅射好的石英片放入丙酮中超声10~30秒,未曝光的光刻胶连同其上层的GO层和Au薄膜被剥离,从而留下叉指结构的GO层和Au电极层,洗去丙酮并吹干,从而器件制作完成。
4.如权利要求3所述的一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器的制备方法,其特征在于:步骤(2)中所述的TiO2溶胶是在室温和搅拌下,将5~10mL钛酸四丁酯逐滴加入到60~100mL无水乙醇中,搅拌30~40分钟后向溶液中滴加5~10mL冰醋酸,为溶液提供酸性环境并催化后续水解反应的进行;继续搅拌30~60分钟后向溶液中加入5~10mL乙酰丙酮作为分散剂和稳定剂,防止水解反应进行过快;然后再搅拌30~60分钟后,加入5~10mL去离子水并继续搅拌60~90分钟,得到黄色透明胶体,将其静置陈化3~5小时后得到TiO2溶胶。
5.如权利要求3所述的一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器的制备方法,其特征在于:步骤(2)中所述的旋涂成膜是用旋涂的方法在石英衬底表面形成TiO2溶胶薄膜,旋涂的转速1500~3000转/分钟,时间20~30秒,然后放入烘箱,80~120℃加热烘干10~15分钟;取出衬底并冷却后,重复旋涂和烘干的步骤3~5次,以达到所需要的薄膜厚度。
6.如权利要求3所述的一种以氧化石墨烯薄膜作为阻挡层及隧穿层的紫外探测器的制备方法,其特征在于:步骤(4)中所述的GO溶液是取5~10g石墨粉和2.5~5g硝酸钠加入到100~150mL、15~25M的浓硫酸中,保持温度为0~20℃,在搅拌下逐渐加入10~20g高锰酸钾,然后在30~50℃下氧化12~24小时;氧化反应完成后,向溶液中缓慢加入300~500mL去离子水,并将在70~90℃下搅拌15~30分钟;最后向溶液中滴加10~20mL、35%质量浓度的过氧化氢溶液,在室温下搅拌15~20分钟,将得到的GO溶液用去离子水清洗3~5遍。
CN201410842704.3A 2014-12-30 2014-12-30 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法 Expired - Fee Related CN104576789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410842704.3A CN104576789B (zh) 2014-12-30 2014-12-30 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410842704.3A CN104576789B (zh) 2014-12-30 2014-12-30 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN104576789A CN104576789A (zh) 2015-04-29
CN104576789B true CN104576789B (zh) 2016-08-24

Family

ID=53092423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410842704.3A Expired - Fee Related CN104576789B (zh) 2014-12-30 2014-12-30 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104576789B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810828B (zh) * 2016-04-06 2018-05-29 吉林大学 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
CN107768379B (zh) * 2017-09-01 2020-01-14 河北大学 一种基于石墨烯氧化物量子点的低功耗电荷俘获型存储器及其制备方法
CN112909119A (zh) * 2021-01-26 2021-06-04 电子科技大学 一种室温下长波柔性红外探测器及其制备方法
CN114695678B (zh) * 2022-02-28 2023-04-25 电子科技大学 一种有效抑制倒置结构的有机光电探测器内暗电流的方法
CN114597268B (zh) * 2022-03-07 2023-04-07 中国科学院半导体研究所 光电探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040797B (zh) * 2010-12-28 2012-03-21 哈尔滨工业大学 石墨烯/TiO2基抗近红外/紫外辐射高分子复合薄膜及其制备方法
CN102243100B (zh) * 2011-04-20 2013-05-29 东南大学 紫外线照射量的检测器及检测方法
DE102011075103B4 (de) * 2011-05-02 2014-04-10 Forschungsverbund Berlin E.V. Photodetektor

Also Published As

Publication number Publication date
CN104576789A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104576789B (zh) 氧化石墨烯作为阻挡层及隧穿层的探测器及其制备方法
Nasiri et al. Three-dimensional nano-heterojunction networks: A highly performing structure for fast visible-blind UV photodetectors
Ogomi et al. Control of charge dynamics through a charge‐separation interface for all‐solid perovskite‐sensitized solar cells
Huang et al. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells
Chen et al. High-performance self-powered UV detector based on SnO 2-TiO 2 nanomace arrays
CN106356421B (zh) 基于垂直导电方向的TiO2‑NiO异质P‑N结所形成光控传输沟道的紫外探测器及其制备方法
Ramadan et al. Hybrid porous silicon/silver nanostructures for the development of enhanced photovoltaic devices
Huang et al. High and fast response of a graphene–silicon photodetector coupled with 2D fractal platinum nanoparticles
Kim et al. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells
CN105810828B (zh) 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
Lin et al. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell
Ma et al. High-performance self-powered perovskite photodetector for visible light communication
Qi et al. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity
Huang et al. Plasmon-enhanced self-powered UV Photodetectors assembled by incorporating Ag@ SiO2 core–shell nanoparticles into TiO2 nanocube photoanodes
Riha et al. Photoexcited carrier dynamics of Cu2S thin films
CN104638066B (zh) ZnO/ZnS/FeS2核壳结构阵列薄膜及制备方法
Xing et al. High-throughput fabrication of photoconductors with high detectivity, photosensitivity, and bandwidth
CN103681837A (zh) 一种二硫化钼-硒化镉量子点混合场效应光晶体管及其制造方法
TWI509230B (zh) 石墨烯光電能量感測器及使用其之光電能量感測方法
Li et al. Hybrid photodetector based on CsPbBr3 perovskite nanocrystals and PC71BM fullerene derivative
Duan et al. High performance organic-nanostructured silicon hybrid solar cell with modified surface structure
CN107359217B (zh) 一种快速响应紫外光探测器及制备方法
Khan et al. Paraboloid structured silicon surface for enhanced light absorption: experimental and simulative investigations
CN109449242A (zh) 基于二维二硒化铂纳米薄膜与碲化镉晶体的异质结型近红外光电探测器及其制备方法
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20171230

CF01 Termination of patent right due to non-payment of annual fee