CN103681940A - 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法 - Google Patents

一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法 Download PDF

Info

Publication number
CN103681940A
CN103681940A CN201310580576.5A CN201310580576A CN103681940A CN 103681940 A CN103681940 A CN 103681940A CN 201310580576 A CN201310580576 A CN 201310580576A CN 103681940 A CN103681940 A CN 103681940A
Authority
CN
China
Prior art keywords
quantum dot
layer
field effect
zinc oxide
optotransistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310580576.5A
Other languages
English (en)
Inventor
林时胜
李文渊
张金石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310580576.5A priority Critical patent/CN103681940A/zh
Publication of CN103681940A publication Critical patent/CN103681940A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Weting (AREA)

Abstract

本发明公开的二硫化钼-氧化锌量子点混合场效应光晶体管自下而上依次有Si层和SiO2层的Si/SiO2复合晶片、n层二硫化钼层,n=1-4、两块在同一水平面上彼此相隔的金电极、在两块金电极之间有ZnO量子点层,ZnO量子点层中的ZnO量子点的直径为3-8nm。其制造步骤包括:将用胶带从二硫化钼晶体上剥离的二硫化钼层黏贴到清洗干净的Si/SiO2复合晶片上;在二硫化钼层上旋涂聚甲基丙烯酸甲酯,用电子束曝光法在涂层上刻蚀出金电极;用电子束蒸发方法在电极上依次沉积Ni和Au作为源极和漏极,制备ZnO量子点溶液;将ZnO量子点溶液涂覆到二块金电极之间的二硫化钼层上。本发明为场效应光晶体管提供了一种新品种。

Description

一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法
技术领域
本发明涉及一种场效应光晶体管及其制造方法,尤其是二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法。
背景技术
光晶体管是由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益,光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(CaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。
目前,在光探测领域最新的研究成果是基于量子点调控的光晶体管。这种光晶体管可以提供比较高的光增益,并且有比较小的暗电流。据报道,有铝掺杂的氧化锌(AZO)和PbS量子点的光晶体管混合结构对红外光的吸收强烈,可以用于红外波段光电探测器的制作;基于石墨烯-PbS量子点混合而得到的光电MOS管,具有108电子/光子的量子效率和107A/W的高灵敏度,最低可探测10-15 W的光强;而单壁碳纳米管与量子点的混合光晶体管结构增强了光的斯塔效应。对量子点混合结构光晶体管的研究具有重要意义。
发明内容
本发明的目的是为光探测领域提供一种使用半导体材料二硫化钼而构建的二硫化钼-氧化锌量子点混合场效应晶体管其制造方法,为场效应光晶体管提供一种新品种。
本发明的二硫化钼-氧化锌量子点混合场效应光晶体管,自下而上依次有Si层和SiO2层的Si/SiO2复合晶片、n层二硫化钼层,n=1-4、两块在同一水平面上彼此相隔的金电极、在两块金电极之间有ZnO量子点层,ZnO量子点层中的ZnO量子点的直径为3-8nm。
通常,Si/SiO2复合晶片的SiO2层的厚度为30-300nm,Si层厚度为200μm。ZnO量子点层的厚度为10-500nm。
本发明的二硫化钼-氧化锌量子点混合场效应光晶体管的制造方法,包括如下步骤:
1)使用微机械力方法,用胶带从二硫化钼晶体上剥离n层二硫化钼,n=1-4,再将二硫化钼黏贴到清洗干净的Si/SiO2复合晶片的SiO2层上;
2)在二硫化钼层上旋涂质量浓度1%-10%的聚甲基丙烯酸甲酯,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20-100nmAu,作为场效应光晶体管的源极和漏极;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入0.8-1.2g十二烷基苯磺酸钠和0.8-1.2ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法将步骤4)制得的ZnO量子点溶液涂覆到二块金电极之间的二硫化钼层上,得到二硫化钼-氧化锌量子点混合场效应光晶体管。
本发明制备过程中,清洗Si/SiO2复合晶片可以是先依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗。
上述步骤2)的电子束曝光刻蚀的曝光时间为1-2s、显影时间40s-1min。步骤3)的电子束蒸发过程中,气压控制在5×10-3Pa以下。
二硫化钼具有二维晶体结构,表面平整,是一种类似于石墨烯结构的半导体,其禁带宽度为1.87eV。利用二硫化钼和ZnO量子点混合,可以制造出二硫化钼-氧化锌量子点混合场效应晶体管结构。
本发明的二硫化钼-氧化锌量子点混合场效应光晶体管中二硫化钼层受到Si背栅电极的调控,利用光致激发ZnO量子点构建成场效应晶体管。本发明为场效应光晶体管提供了一种新品种。
附图说明
图1为二硫化钼-氧化锌量子点混合场效应光晶体管的结构示意图;
图2为二硫化钼-氧化锌量子点混合场效应光晶体管的俯视图;
图3为二硫化钼-氧化锌量子点混合场效应晶体管栅极电压与漏极电流的关系;
图4为二硫化钼-氧化锌量子点混合场效应晶体管在不同栅压下漏极电流与漏极电压的关系。
具体实施方式
以下结合附图进一步说明本发明。
参照图1、图2,本发明的二硫化钼-氧化锌量子点混合场效应光晶体管自下而上依次有Si层1和SiO2层2的Si/SiO2复合晶片、n层二硫化钼层3,n=1-4、两块在同一水平面上彼此相隔的金电极4、在两块金电极4之间有ZnO量子点层5,ZnO量子点层5中的ZnO量子点的直径为3-8nm。
实施例1:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从二硫化钼晶体上剥离单层二硫化钼黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度250nm;
2)在二硫化钼上旋涂质量浓度10%的聚甲基丙烯酸甲酯(PMMA),采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间40s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入0.8g十二烷基苯磺酸钠和1ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法将步骤4)制得的ZnO量子点层涂覆到二块金电极之间的单层二硫化钼上,ZnO量子点层涂覆厚433nm,得到二硫化钼-氧化锌量子点混合场效应光晶体管。
本例的氮化硼-氧化锌量子点混合场效应晶体管在紫外可调谐激光器(波长设定380nm)功率2uw的绿色激光激发下栅极电压与漏极电流的关系见图3。不同栅压下漏极电流与漏极电压的关系见图4。
实施例2:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从二硫化钼晶体上剥离四层二硫化钼黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度300nm;
2)在三层二硫化钼上旋涂质量浓度1%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为1s、显影时间1min;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和80nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入1g十二烷基苯磺酸钠和1ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法将步骤4)制得的ZnO量子点层涂覆在二块金电极之间的四层二硫化钼上,ZnO量子点层涂覆厚235nm,得到二硫化钼-氧化锌量子点混合场效应光晶体管。
实施例3:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从二硫化钼晶体上剥离2层二硫化钼黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度280nm;
2)在二硫化钼层上旋涂质量浓度5%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间50s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和40nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入1.2g十二烷基苯磺酸钠和1.2ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法步骤4)制得的ZnO量子点层涂覆在二块金电极之间的2层二硫化钼上,ZnO量子点层涂覆厚330nm,得到二硫化钼-氧化锌量子点混合场效应光晶体管。
实施例4:
1)将Si/SiO2复合晶片依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗;用胶带从二硫化钼晶体上剥离单层二硫化钼黏贴到清洗干净的Si/SiO2晶片的SiO2层上,其中SiO2层厚度250nm;
2)在二硫化钼上旋涂质量浓度10%的PMMA,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形,电子束曝光刻蚀的曝光时间为2s、显影时间40s;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20nmAu,电子束蒸发过程中,气压控制在5×10-3Pa;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入0.9g十二烷基苯磺酸钠和0.9ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法将步骤4)制得的ZnO量子点层涂覆到二块金电极之间的单层二硫化钼上,ZnO量子点层涂覆厚140nm,得到二硫化钼-氧化锌量子点混合场效应光晶体管。

Claims (7)

1.一种二硫化钼-氧化锌量子点混合场效应光晶体管,其特征在于自下而上依次有Si层(1)和SiO2层(2)的Si/SiO2复合晶片、n层二硫化钼层(3),n=1-4、两块在同一水平面上彼此相隔的金电极(4)、在两块金电极(4)之间有ZnO量子点层(5),ZnO量子点层(5)中的ZnO量子点的直径为3-8nm。
2.根据权利要求1所述的二硫化钼-氧化锌量子点混合场效应光晶体管,其特征在于Si/SiO2复合晶片的SiO2层(2)的厚度为30-300nm,Si层(1)厚度为200μm。
3.根据权利要求1所述的二硫化钼-氧化锌量子点混合场效应光晶体管,其特征在于ZnO量子点层(5)的厚度为10-500nm。
4.制造权利要求1所述的二硫化钼-氧化锌量子点混合场效应光晶体管的方法,其特征在于包括如下步骤:
1)使用微机械力方法,用胶带从二硫化钼晶体上剥离n层二硫化钼,n=1-4,再将二硫化钼黏贴到清洗干净的Si/SiO2复合晶片的SiO2层上;
2)在二硫化钼层上旋涂质量浓度1%-10%的聚甲基丙烯酸甲酯,采用电子束曝光法在聚甲基丙烯酸甲酯涂层上刻蚀出金电极图形;
3)采用电子束蒸发方法,在刻蚀的金电极图形上依次沉积5nmNi和20-100nmAu,作为场效应光晶体管的源极和漏极;
4)将4.83g ZnSO4溶于去离子水中,配成浓度为0.12mol/L的ZnSO4水溶液;然后加入0.8-1.2g十二烷基苯磺酸钠和0.8-1.2ml正己烷配置成混合溶液,把配制的混合溶液放置超声器中,在超声状态下将浓度为10%的氨水滴入上述混合溶液中,直到溶液中的Zn离子完全沉淀下来,过滤,依次用去离子水和乙醇清洗,取沉淀,烘干,然后在700℃下加热3小时,自然冷却至常温,将所得产物溶于水中,得到分散有ZnO量子点的水溶液;
5)采用旋涂的方法将步骤4)制得的ZnO量子点溶液涂覆到二块金电极之间的二硫化钼层上,得到二硫化钼-氧化锌量子点混合场效应光晶体管。
5.根据权利要求4所述的二硫化钼-氧化锌量子点混合场效应光晶体管的制造方法,其特征在于所述的清洗Si/SiO2复合晶片是先依次用去离子水、丙酮和异丙醇清洗,然后再用O2:Ar=1:1的混合等离子气体清洗。
6.根据权利要求1所述的二硫化钼-氧化锌量子点混合场效应光晶体管的制造方法,其特征在于步骤2)的电子束曝光刻蚀的曝光时间为1-2s、显影时间40s-1min。
7.根据权利要求1所述的二硫化钼-氧化锌量子点混合场效应光晶体管的制造方法,其特征在于步骤3)的电子束蒸发过程中,气压控制在5×10-3Pa以下。
CN201310580576.5A 2013-11-19 2013-11-19 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法 Pending CN103681940A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310580576.5A CN103681940A (zh) 2013-11-19 2013-11-19 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310580576.5A CN103681940A (zh) 2013-11-19 2013-11-19 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN103681940A true CN103681940A (zh) 2014-03-26

Family

ID=50318857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310580576.5A Pending CN103681940A (zh) 2013-11-19 2013-11-19 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN103681940A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211186A (zh) * 2020-01-17 2020-05-29 长春理工大学 一种提高光电探测性能的MoS2光电晶体管及其制备方法
CN111554770A (zh) * 2020-05-14 2020-08-18 中国科学院宁波材料技术与工程研究所 三端型薄膜晶体管、其制备方法以及光敏神经突触器件
CN112768566A (zh) * 2021-02-01 2021-05-07 上海理工大学 一种基于二硫化钼为载体的光电池制备方法
WO2021235851A1 (ko) * 2020-05-20 2021-11-25 국방과학연구소 몰리브데넘, 니켈 및 황을 포함하는 양자점 및 그 제조방법
CN114300575A (zh) * 2021-12-24 2022-04-08 江南大学 一种宽光谱硅基-硫化钼异质结光电探测器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252148A (zh) * 2007-02-23 2008-08-27 高丽大学校产学协力团 非易失性电子存储器件及其制作方法
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN102206486A (zh) * 2011-04-11 2011-10-05 北京理工大学 一种ZnO量子点的制备方法
WO2013017605A1 (en) * 2011-08-02 2013-02-07 Fundació Institut De Ciències Fotòniques Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform
US20130049738A1 (en) * 2011-08-28 2013-02-28 Edward Hartley Sargent Quantum dot photo-field-effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252148A (zh) * 2007-02-23 2008-08-27 高丽大学校产学协力团 非易失性电子存储器件及其制作方法
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN102206486A (zh) * 2011-04-11 2011-10-05 北京理工大学 一种ZnO量子点的制备方法
WO2013017605A1 (en) * 2011-08-02 2013-02-07 Fundació Institut De Ciències Fotòniques Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform
US20130049738A1 (en) * 2011-08-28 2013-02-28 Edward Hartley Sargent Quantum dot photo-field-effect transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOPEZ-SANCHEZ ORIOL,LEMBKE DOMINIK,KAYCI METIN: ""Ultrasensitive photodetectors based on monolayer MoS2"", 《NATURE NANOTECHNOLOGY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211186A (zh) * 2020-01-17 2020-05-29 长春理工大学 一种提高光电探测性能的MoS2光电晶体管及其制备方法
CN111554770A (zh) * 2020-05-14 2020-08-18 中国科学院宁波材料技术与工程研究所 三端型薄膜晶体管、其制备方法以及光敏神经突触器件
WO2021235851A1 (ko) * 2020-05-20 2021-11-25 국방과학연구소 몰리브데넘, 니켈 및 황을 포함하는 양자점 및 그 제조방법
US11912917B2 (en) 2020-05-20 2024-02-27 Agency For Defense Development Quantum dots containing molybdenum, nickel, and sulfur and method for manufacturing same
CN112768566A (zh) * 2021-02-01 2021-05-07 上海理工大学 一种基于二硫化钼为载体的光电池制备方法
CN114300575A (zh) * 2021-12-24 2022-04-08 江南大学 一种宽光谱硅基-硫化钼异质结光电探测器的制备方法

Similar Documents

Publication Publication Date Title
CN103682102A (zh) 一种石墨烯场效应光晶体管及其制造方法
CN103681837A (zh) 一种二硫化钼-硒化镉量子点混合场效应光晶体管及其制造方法
Zheng et al. Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector
CN103681940A (zh) 一种二硫化钼-氧化锌量子点混合场效应光晶体管及其制造方法
CN105742394A (zh) 一种基于黑磷/石墨烯异质结构的紫外探测器及其制备方法
CN105552131B (zh) 基于量子点掺杂栅绝缘层的光调制薄膜晶体管
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN103681938A (zh) 一种氮化硼-氧化锌量子点混合场效应光晶体管及其制造方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
CN103702930B (zh) 用于将光子能转换为电能的方法和装置
CN103199100B (zh) 一种单芯片集成用硅基复合增强型光电探测器的制作方法
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
CN104300027A (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN105489694A (zh) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
EP3912196A1 (en) Deep ultra-violet devices using ultra-violet nanoparticles with p-type conductivity
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN207977318U (zh) 一种多功能器件
Chang et al. A $\hbox {TiO} _ {2} $ Nanowire MIS Photodetector With Polymer Insulator
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
CN110350041B (zh) 基于上下非对称栅状电极的光电导型光电探测器
CN103681939A (zh) 一种氮化硼-硒化镉量子点混合场效应光晶体管及其制造方法
Wang et al. Fabrication of nanocone forests with high optical absorption based on a plasma repolymerization technique
CN108281496A (zh) 一种硅基PiN紫外光电二极管及其制备方法
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326