CN103681838A - 一种肖特基mos半导体装置及其制备方法 - Google Patents

一种肖特基mos半导体装置及其制备方法 Download PDF

Info

Publication number
CN103681838A
CN103681838A CN201210328183.0A CN201210328183A CN103681838A CN 103681838 A CN103681838 A CN 103681838A CN 201210328183 A CN201210328183 A CN 201210328183A CN 103681838 A CN103681838 A CN 103681838A
Authority
CN
China
Prior art keywords
layer
semi
semiconductor device
conduction type
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210328183.0A
Other languages
English (en)
Inventor
朱江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210328183.0A priority Critical patent/CN103681838A/zh
Publication of CN103681838A publication Critical patent/CN103681838A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提出一种肖特基MOS半导体装,将肖特基势垒结代替传统MOS器件的源区和体区,通过栅极偏压在漂移区形成高浓度的载流子区域,形成器件的沟道;同时本发明将电荷补偿结构引入到肖特基MOS结构中。本发明还提供一种肖特基MOS半导体装置的制备方法。

Description

一种肖特基MOS半导体装置及其制备方法
技术领域
本发明主要涉及到一种肖特基MOS半导体装置,本发明还涉及一种肖特基MOS半导体装置的制备工艺。
背景技术
 具有肖特基结构和超结结构的半导体器件,已成为器件发展的重要趋势。对于功率半导体器件,不断降低导通电阻和不断提高电流密度的要求成为器件发展的重要趋势。
传统MOS器件具有栅氧,栅氧表面设置有多晶硅,器件表面半导体材料依次设置有源区、体区和漏区,器件开通状态下的导通电阻主要受到漂移层电阻和沟导电阻的影响。
发明内容
本发明提出一种肖特基MOS半导体装置及其制备方法。
一种肖特基MOS半导体装置,其特征在于:包括:衬底层,为半导体材料;漂移层,为第一传导类型的半导体材料,位于衬底层之上;栅绝缘层,为绝缘材料,位于漂移层表面;栅电极,多晶半导体材料或金属,位于栅绝缘层上表面;肖特基势垒结,位于漂移层表面,与栅绝缘层交替排列;沟道区,为漂移层中临靠栅绝缘层和肖特基势垒结的第一传导类型的半导体材料。
一种肖特基MOS半导体装置的制备方法,其特征在于:包括如下步骤:在衬底层上通过外延生产形成第一传导类型的半导体材料漂移层;在表面形成绝缘层,淀积多晶半导体材料,光刻腐蚀去除部分多晶半导体材料,淀积绝缘材料;光刻腐蚀去除部分绝缘材料,淀积势垒金属,形成肖特基势垒结。
本发明的一种肖特基MOS半导体装置,将肖特基势垒结代替传统MOS器件的源区和体区,通过栅极偏压在漂移区形成高浓度的载流子区域,形成器件的沟道;同时本发明将电荷补偿结构引入到肖特基MOS结构中。
附图说明
图1为本发明一种肖特基MOS半导体装置剖面示意图;
图2为本发明第二种肖特基MOS半导体装置剖面示意图;
图3为本发明第三种肖特基MOS半导体装置剖面示意图;
图4为本发明第四种肖特基MOS半导体装置剖面示意图;
图5为本发明第五种肖特基MOS半导体装置剖面示意图。
其中,1、衬底层;2、漂移层;3、肖特基势垒结;4、沟道区;5、栅氧化层;6、P型单晶半导体材料;7、栅极N型多晶半导体材料;8、一氧化硅;9、三氧化二铝;10、掺氧多晶硅。
具体实施方式
实施例1
图1示出了本发明一种沟槽肖特基MOS半导体装置剖面示意图,下面结合图1详细说明通过本发明的一种沟槽肖特基MOS半导体装置。
一种沟槽肖特基MOS半导体装置包括:衬底层1,为N导电类型半导体硅材料,磷原子掺杂浓度为1E19cm-3;漂移层2,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子掺杂浓度为1E16cm-3,厚度为38um;肖特基势垒结3,位于漂移层2表面;沟道区4,临靠肖特基势垒结3;栅氧化层5,为硅材料的氧化物,位于漂移层2表面,厚度为0.2um;栅极N型多晶半导体材料7,位于栅氧化层5表面,为高浓度杂质掺杂的多晶半导体材料。
本实施例的工艺制造流程如下:
第一步,在衬底层1上通过外延生产形成漂移层2;
第二步,在表面热氧化形成栅氧化层5,淀积N型多晶半导体材料形成栅极N型多晶半导体材料7,进行光刻腐蚀,去除部分栅极N型多晶半导体材料7和栅氧化层5;
第三步,淀积势垒金属烧结形成肖特基势垒结3,如图1所示。
在此基础上淀积电极金属,光刻腐蚀工艺腐蚀去除部分电极金属,为器件引出肖特基上表面的源极和栅极N型多晶半导体材料7表面的栅极,然后在此基础上,通过背面金属化工艺为器件引出漏极。
实施例2
图2示出了本发明第二种肖特基MOS半导体装置剖面示意图,下面结合图2详细说明通过本发明的半导体装置。
一种肖特基MOS半导体装置包括:衬底层1,为N导电类型半导体硅材料,磷原子掺杂浓度为1E19cm-3;漂移层2,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子掺杂浓度为1E16cm-3,厚度为38um;肖特基势垒结3,位于漂移层2表面;沟道区4,临靠肖特基势垒结3;栅氧化层5,为硅材料的氧化物,位于漂移层2表面;栅极N型多晶半导体材料7,位于栅氧化层5表面,为高浓度杂质掺杂的多晶半导体材料;P型单晶半导体材料6,位于栅氧化层5下部,为P传导类型的半导体硅材料,硼原子掺杂浓度为1E16cm-3,厚度为33um。
本实施例的工艺制造流程如下:
第一步,在衬底层1上通过外延生产形成漂移层2;
第二步,在表面热氧化形成栅氧化层5,在待形成沟槽区域表面去除氧化层5;
第三步,进行干法刻蚀,去除半导体材料,形成沟槽;
第四步,淀积P型单晶半导体材料6,反刻蚀P型单晶半导体材料6;
第五步,进行热氧化,然后在沟槽内淀积形成栅极N型多晶半导体材料7;
第六步,光刻腐蚀,去除部分栅极N型多晶半导体材料7和栅氧化层5;
第七步,淀积势垒金属烧结形成肖特基势垒结3,如图2所示。
在此基础上淀积电极金属,光刻腐蚀工艺腐蚀去除部分电极金属,为器件引出肖特基上表面的源极和栅极N型多晶半导体材料7表面的栅极,然后在此基础上,通过背面金属化工艺为器件引出漏极。
图3实例,为在图2器件制造的基础上,将一氧化硅8材料设置在栅氧化层5底部。
图4实例,为在图2器件制造的基础上,将三氧化二铝9材料设置在栅氧化层5底部。
图5实例,为在图2器件制造的基础上,将掺氧多晶硅10材料设置在栅氧化层5底部。
通过上述实例阐述了本发明,同时也可以采用其它实例实现本发明,本发明不局限于上述具体实例,因此本发明由所附权利要求范围限定。

Claims (10)

1.一种肖特基MOS半导体装置,其特征在于:包括:
衬底层,为半导体材料;
漂移层,为第一传导类型的半导体材料,位于衬底层之上;
栅绝缘层,为绝缘材料,位于漂移层表面;
栅电极,多晶半导体材料或金属,位于栅绝缘层上表面;
肖特基势垒结,位于漂移层表面,与栅绝缘层交替排列;
沟道区,为漂移层中临靠栅绝缘层和肖特基势垒结的第一传导类型的半导体材料。
2.如权利要求1所述的半导体装置,其特征在于:所述的栅电极的多晶半导体材料可以为第一传导类型的多晶半导体材料,并且为高浓度杂质掺杂。
3.如权利要求1所述的半导体装置,其特征在于:所述的肖特基势垒结表面电极可以作为器件的源极。
4.如权利要求1所述的半导体装置,其特征在于:所述的栅绝缘层底部可以添加条状的第二传导类型的半导体材料,形成电荷补偿结构,当器件接反向偏压时,形成电荷补偿,从而实现电场相对均匀分布。
5.如权利要求1所述的半导体装置,其特征在于:所述的栅绝缘层底部可以添加条状的掺氧多晶硅材料,从而可以与漂移层中第一传导类型的半导体材料形成电荷补偿结构。
6.如权利要求1所述的半导体装置,其特征在于:所述的栅绝缘层底部可以添加条状的绝缘材料,同时绝缘材料界面具有较高的界面态,从而可以与漂移层中第一传导类型的半导体材料形成电荷补偿结构。
7.如权利要求1所述的半导体装置,其特征在于:所述的栅绝缘层底部可以添加条状的化学配比失配绝缘材料,其化合物元素配比为非饱和状态,从而可以与漂移层中第一传导类型的半导体材料形成电荷补偿结构。
8.如权利要求1所述的层结构,其特征在于:所述的沟槽底部绝缘层厚度可以大于沟槽侧壁的绝缘层厚度。
9.如权利要求1所述的层结构,其特征在于:所述的衬底层可以为较薄的第二传导类型的半导体材料。
10.如权利要求1所述的一种肖特基MOS半导体装置的制备方法,其特征在于:包括如下步骤:
1)在衬底层上通过外延生产形成第一传导类型的半导体材料漂移层;
2)在表面形成绝缘层,淀积多晶半导体材料,光刻腐蚀去除部分多晶半导体材料和绝缘材料;
3)淀积势垒金属,形成肖特基势垒结。
CN201210328183.0A 2012-09-06 2012-09-06 一种肖特基mos半导体装置及其制备方法 Pending CN103681838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210328183.0A CN103681838A (zh) 2012-09-06 2012-09-06 一种肖特基mos半导体装置及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210328183.0A CN103681838A (zh) 2012-09-06 2012-09-06 一种肖特基mos半导体装置及其制备方法

Publications (1)

Publication Number Publication Date
CN103681838A true CN103681838A (zh) 2014-03-26

Family

ID=50318788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210328183.0A Pending CN103681838A (zh) 2012-09-06 2012-09-06 一种肖特基mos半导体装置及其制备方法

Country Status (1)

Country Link
CN (1) CN103681838A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046744A1 (en) * 1999-01-13 2001-11-29 Brian S. Doyle Transistor with reduced series resistance junction regions
CN201038163Y (zh) * 2007-03-30 2008-03-19 东南大学 沟槽高压p型金属氧化物半导体管
CN101807597A (zh) * 2010-04-02 2010-08-18 中国电子科技集团公司第五十五研究所 一种自对准亚微米栅结构及其制作方法
CN102339867A (zh) * 2011-10-28 2012-02-01 上海宏力半导体制造有限公司 一种vdmos器件及其的形成方法
US20120181585A1 (en) * 2011-01-19 2012-07-19 Ru Huang Combined-source Mos Transistor with Comb-shaped Gate, and Method for Manufacturing the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046744A1 (en) * 1999-01-13 2001-11-29 Brian S. Doyle Transistor with reduced series resistance junction regions
CN201038163Y (zh) * 2007-03-30 2008-03-19 东南大学 沟槽高压p型金属氧化物半导体管
CN101807597A (zh) * 2010-04-02 2010-08-18 中国电子科技集团公司第五十五研究所 一种自对准亚微米栅结构及其制作方法
US20120181585A1 (en) * 2011-01-19 2012-07-19 Ru Huang Combined-source Mos Transistor with Comb-shaped Gate, and Method for Manufacturing the Same
CN102339867A (zh) * 2011-10-28 2012-02-01 上海宏力半导体制造有限公司 一种vdmos器件及其的形成方法

Similar Documents

Publication Publication Date Title
CN103137688B (zh) 一种沟槽mos结构半导体装置及其制造方法
CN206574721U (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件
CN103545381B (zh) 一种水平结构沟槽肖特基半导体装置及其制备方法
CN103137689B (zh) 一种具有超结沟槽mos结构的半导体装置及其制造方法
CN103378171A (zh) 一种沟槽肖特基半导体装置及其制备方法
CN106653610A (zh) 一种改良的沟槽超势垒整流器件及其制造方法
CN103367462A (zh) 一种具有绝缘层隔离超结结构肖特基半导体装置及其制备方法
CN103489895B (zh) 一种沟槽超结半导体装置
CN103579370B (zh) 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置
CN103681838A (zh) 一种肖特基mos半导体装置及其制备方法
CN103515449A (zh) 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103137711A (zh) 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103378177B (zh) 一种具有沟槽肖特基半导体装置及其制备方法
CN103383969B (zh) 一种肖特基器件及其制备方法
CN102931228A (zh) 逆导igbt器件及制造方法
CN103531628B (zh) 一种沟槽肖特基mos半导体装置
CN103378170A (zh) 一种具有超级结肖特基半导体装置及其制备方法
CN103367437B (zh) 一种沟槽mos半导体装置及其制造方法
CN103383953A (zh) 一种无源超结沟槽mos半导体装置及其制造方法
CN103367433B (zh) 一种沟槽超级结mos半导体装置及其制造方法
CN103367434B (zh) 一种超级结沟槽mos半导体装置
CN103367436B (zh) 一种沟槽肖特基mos半导体装置及其制造方法
CN103681778B (zh) 一种沟槽电荷补偿肖特基半导体装置及其制备方法
CN103579336A (zh) 一种浮空电荷补偿mos半导体装置及其制备方法
CN103594493A (zh) 一种沟槽结构电荷补偿肖特基半导体装置及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326

WD01 Invention patent application deemed withdrawn after publication