CN103630592A - 一种实时检测水环境中微量铅的印迹选择性的电极方法 - Google Patents
一种实时检测水环境中微量铅的印迹选择性的电极方法 Download PDFInfo
- Publication number
- CN103630592A CN103630592A CN201310583104.5A CN201310583104A CN103630592A CN 103630592 A CN103630592 A CN 103630592A CN 201310583104 A CN201310583104 A CN 201310583104A CN 103630592 A CN103630592 A CN 103630592A
- Authority
- CN
- China
- Prior art keywords
- ion
- lead
- lead ion
- solution
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
一种实时检测水环境中微量铅的印迹选择性的电极方法,涉及金属离子的环境监测方法,铅离子选择性电极由PVC管和插于之中的Ag/AgCl内参比电极组成,Ag/AgCl电极的顶端连接有导线,PVC管另一端粘有敏感膜;敏感膜由铅离子印迹硅胶材料、增塑剂和PVC组成按质量比0.5~10:30~80:20~60用四氢呋喃充分溶解混合并搅拌成均匀粘稠液体后,倾置于玻璃板上,在干燥的室温下晾干得到所需的敏感膜,粘覆于PVC管端;以KCl和铅离子标准混合溶液为内充液,即得到铅离子选择电极。本发明铅离子选择电极具有制备条件简单,易操作,稳定性好、灵敏度高、重现性好,抗环境其它常见离子干扰的能力强,而且传感器便于携带。本发明可实现水环境样中铅离子的高灵敏实时在线测定。
Description
技术领域
本发明涉及金属离子的环境监测方法,特别是涉及一种实时检测水环境中微量铅的印迹选择性的电极方法。
背景技术
重金属污染是对环境污染最严重和对人类危害最大的污染。重金属离子种类繁多、处理难度大、化学性质稳定、不容易被微生物降解,通过生物链富集,对动植物的毒性作用大。因此,对环境中重金属离子的监测具有重要意义。
铅是一种毒性极大的金属,过量铅进入人体会对神经系统、血液系统、骨骼系统等造成终身性伤害。尤其是对于儿童,研究表明,儿童发生铅中毒的机会是成年人的30多倍。儿童血铅达到或超过100μg/L时,会影响儿童的智力,包括说话能力、记忆力和注意力等。饮用含铅量高的水是人体内铅积累的重要因素之一,采矿、冶金、电镀等行业的污染以及使用含铅高的自来水管道,都可使饮用水中铅含量增高。因此,人们越来越关注环境水样品中痕量或超痕量铅的测定。目前检测铅的常规性方法有很多种,如原子吸收光谱法、原子发射光谱法、电化学分析法、电感耦合等离子质谱法和分光光度法等。其中离子选择电极具有方便测量、仪器设备简单、容易实现实时在线检测,且所需试样少等优点,得到广泛关注。
关于铅离子选择电极的研究已有一些报道,但大多具有线性范围较窄、检测下限高等缺点。因此,应用新型敏感材料一直是离子选择电极的研究热点。离子印迹聚合物(ion imprinted polymers,IIPs)是近年来出现的具有纳米孔径的新型聚合物材料。离子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,也被称为“塑料抗体”或“人工抗体”,在环境及生物医药等领域得到广泛应用。因此,离子印迹聚合物可成为一种比较理想的离子选择性电极的敏感载体,从而很大程度地提高铅离子选择性电极的灵敏度。
目前,还没有应用铅离子印迹聚合物制备铅离子选择性电极的研究报道。本发明公开的一种铅离子选择性电极能够实现在线、实时、灵敏及快速检测水环境样中的铅离子浓度。
发明内容
本发明的目的在于提供一种实时检测水环境中微量铅的印迹选择性的电极方法,该方法应用铅离子印迹聚合物对Pd( )的特异识别能力,制成对Pd()具有选择性响应的敏感膜,制备出铅离子选择性电极,用于水环境样中铅离子的在线、实时检测。
本发明的目的是通过以下技术方案实现的:
一种实时检测水环境中微量铅的印迹选择性的电极方法,所述方法包括:
(1)高性能铅离子选择性电极的制备方法:将铅离子印迹硅胶材料、增塑剂和PVC按质量组成比例用四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于玻璃板上,在干燥的室温下晾干得到所需的铅离子敏感膜。将铅离子敏感膜用PVC的四氢呋喃溶液粘于PVC管上,以Ag/AgCl作内参比电极,以KCl和铅离子标准混合溶液为内充液,即得到高性能铅离子选择电极;
(2) 将制备好的铅离子选择性电极在铅离子标准溶液中活化后作为工作电极,饱和甘汞电极为参比电极组成电池,并连接于便携式离子计;
(3) 制定铅离子检测工作曲线:将铅离子选择性电极插入一系列含铅的标准溶液中,以饱和甘汞电极为参比电极组成电池与离子计连接,搅拌300转/分钟10分钟,然后分别测定电位值,以电位信号和铅离子浓度关系绘制得到工作曲线;
(4) 水环境样品检测:将传感器放入盛有待测样品液的测量池中,采用与制定工作曲线相同的操作条件进行检测,将测量结果带入工作曲线获得待测样品的铅离子浓度。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述所述对铅离子印迹聚合物的合成方法,其中包括:含有氨基的硅烷和乙醛酸或丙酮酸或2-吡啶甲醛或2-噻吩甲醛按摩尔比1:1在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Pd()离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到具有一定粒度范围的Pd()离子印迹聚合物。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述铅离子印迹硅胶材料、增塑剂和PVC的一定质量组成比例,为0.5~10:30~80:20~60。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述增塑剂,包括邻苯二甲酸二丁酯、或邻苯二甲酸二壬酯、或癸二酸二异辛酯、或磷酸三丁酯和邻硝基苯辛醚。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述铅离子选择电极的内充液中KCl浓度范围为0.01~0.5mol /L,铅离子标准溶液浓度范围为0.001~0.1mol /L。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述制备好的电极在浓度范围为0.000001~0.1 mol/L的铅离子标准溶液中浸泡活化,活化时间从1小时到3天。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述环境体系,包括天然淡水、或天然矿化水、或污水、或饮用水、或回用水、或生物体内水、或沉积物、或土壤。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述PVC的分子量为:1000025000。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述氨基的硅烷,包括3-氨基乙基三甲氧基硅烷、或二乙烯三胺基丙基三甲氧基硅烷、或脲丙基三乙氧基硅烷、或N-氨乙基-γ-氨丙基三乙氧基硅、或N-氨乙基-γ-氨丙基三甲氧基硅。
所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,所述游离态Pd()有特异选择性结合的离子印迹材料的粒度范围,在1 -100 μm范围内。
本发明的优点与效果是:
本发明选择性好、灵敏度高。本发明采用铅离子印迹聚合物材料,其对铅离子具有良好的选择性吸附作用,同时能够提供一种三维多孔结构,扩大电极有效面积,提高灵敏度;另外离子印迹聚合物容易制作成膜,且膜非常稳定,能粘覆在电极表面形成稳定的敏感膜,提高传感器的稳定性。
本发明将铅离子印迹聚合物材料的强吸附性、三维多孔结构和对铅离子的选择性富集作用有机结合起来,实现了铅离子的高灵敏、高选择测定。利用敏感膜中的铅离子印迹聚合物材料可以选择性的将铅离子吸附到传感器的敏感膜表面,而对于其它干扰离子则被敏感膜所排斥,不能到达传感器表面,从而避免干扰。本发明成本低廉、エ艺简单,稳定性好,可以广泛应用于天然淡水、天然矿化水、污水、饮用水、回用水、生物体内水、沉积物、土壤中铅离子的检测。
具体实施方式
下面结合实施例,对本发明作进一步详述。
(a)含有氨基的硅烷和乙醛酸或丙酮酸或2-吡啶甲醛或2-噻吩甲醛按摩尔比1:1在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷;
(b)含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;
(d)产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到具有一定粒度范围的Pd()离子印迹材料。
(e) 后处理, 在室温下,进行真空干燥和研磨等成型加工。
本方法中对游离态Pd()离子具有特异选择性结合能力的物质是利用印迹技术制备的Pd()离子印迹材料。在印迹技术中, 当游离态Pd()离子与带官能团的功能硅烷接触时会形成多重作用点,聚合过程中这种作用就会被记忆下来,当游离态Pd()离子去除后,聚合物中就形成了与游离态Pd()离子印迹材料空间构型相匹配的具有多重作用位点的空穴,这样的空穴将对游离态Pd()离子具有选择识别特性。
(2) 制备基于铅离子印迹硅胶材料的敏感膜
将上述铅离子印迹硅胶材料、增塑剂和PVC按质量组成比例为(0.5~10):(30~80):(20~60)用四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于玻璃板上,在干燥的室温下晾干得到所需的铅离子敏感膜。
(3) 铅离子选择性电极的制备和应用
将铅离子PVC敏感膜用5wt.%PVC的四氢呋喃溶液粘于PVC管上,以Ag/AgCl作内参比电极,以0.01~0.5mol /LKCl和0.001~0.1mol /L铅离子标准混合溶液为内充液,即得到铅离子选择电极。
将制备好的电极在0.001~0.1mol/L的铅离子标准溶液中浸泡活化,活化时间可从1小时到3天。
电化学电池组成为:
Hg-Hg2Cl2|KCl(satd.)||待测溶液||PVC膜|KCl+PdCl2|AgCl-Ag
上述离子选择性电极用于环境水样品的铅离子检测。
实施例1
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻苯二甲酸二丁酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子PVC膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例2
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、癸二酸二异辛酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子PVC膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例3
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻苯二甲酸二壬酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子PVC膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例4
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、磷酸三丁酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例5
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、磷酸三丁酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例6
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例7
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例8
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例9
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、癸二酸二异辛酯330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例10
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物2.5mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例11取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物5mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例12
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物15mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例13
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物20mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例14
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物25mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例15
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物30mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例16
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚320mg、PVC170mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例17
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚310mg、PVC180mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例18
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚300mg、PVC190mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.01 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例19
取0.01 mol 3-氨基乙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Pd()离子印迹材料。
将上述铅离子印迹聚合物10mg、邻硝基苯辛醚330mg、PVC160mg用4mL四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于一片面积为2.5cm2的玻璃板上,在干燥的室温下晾干24h以上,即得到所需的铅离子敏感膜(厚度约为0.5mm)。切取一片直径10 mm的敏感膜用5wt.%PVC的四氢呋喃溶液粘于内径为8 mm,外径为10 mm,长为10 cm的PVC管上,以Ag/AgCl作内参比电极,内充液为0.1mol/LKCl和0.001 mol/L铅离子标准混合溶液,即得到铅离子选择电极。
实施例20
以本发明离子选择性电极测定实际水样中铅离子浓度为例:
将制备好的电极在0.1mol/L的铅离子标准溶液中浸泡活化,活化时间为24小时。对于实际的水样,可采用工作曲线法。具体步骤如下:将铅离子选择性电极插入一系列含铅的标准溶液中,以饱和甘汞电极为参比电极组成电池与离子计连接,搅拌(300转/分钟)10分钟,然后分别测定电位值。以电位信号和铅浓度关系绘制得到工作曲线;将离子选择性电极插入待测样品的测量池中,同样条件下,测定电池的电位值,通过对比工作曲线,可以得到待测样品中含铅浓度。
同时采用加标回收法检测离子选择性电极测定准确度,往上述待测样品中加入一系列1.0×10-6 mol/L铅的标准溶液,按上述方法检测得到相应的电位信号。通过对比工作曲线,即得到加标后待测样品中含铅浓度,测定其回收率。
实施例21
以本发明离子选择性电极测定实际水样中铅离子浓度为例:
将制备好的电极在0.01mol/L的铅离子标准溶液中浸泡活化,活化时间为24小时。对于实际的水样,可采用工作曲线法。具体步骤如下:将铅离子选择性电极插入一系列含铅的标准溶液中,以饱和甘汞电极为参比电极组成电池与离子计连接,搅拌(300转/分钟)10分钟,然后分别测定电位值。以电位信号和铅浓度关系绘制得到工作曲线;将离子选择性电极插入待测样品的测量池中,同样条件下,测定电池的电位值,通过对比工作曲线,可以得到待测样品中含铅浓度。
同时采用加标回收法检测离子选择性电极测定准确度,往上述待测样品中加入一系列1.0×10-6 mol/L铅的标准溶液,按上述方法检测得到相应的电位信号。通过对比工作曲线,即得到加标后待测样品中含铅浓度,测定其回收率。
Claims (10)
1.一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述方法包括:
(1)高性能铅离子选择性电极的制备方法:将铅离子印迹硅胶材料、增塑剂和PVC按质量组成比例用四氢呋喃充分溶解混合并搅拌成均匀粘稠液体,倾置于玻璃板上,在干燥的室温下晾干得到所需的铅离子敏感膜;将铅离子敏感膜用PVC的四氢呋喃溶液粘于PVC管上,以Ag/AgCl作内参比电极,以KCl和铅离子标准混合溶液为内充液,即得到高性能铅离子选择电极;
(2) 将制备好的铅离子选择性电极在铅离子标准溶液中活化后作为工作电极,饱和甘汞电极为参比电极组成电池,并连接于便携式离子计;
(3) 制定铅离子检测工作曲线:将铅离子选择性电极插入一系列含铅的标准溶液中,以饱和甘汞电极为参比电极组成电池与离子计连接,搅拌300转/分钟10分钟,然后分别测定电位值,以电位信号和铅离子浓度关系绘制得到工作曲线;
(4) 水环境样品检测:将传感器放入盛有待测样品液的测量池中,采用与制定工作曲线相同的操作条件进行检测,将测量结果带入工作曲线获得待测样品的铅离子浓度。
2.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述所述对铅离子印迹聚合物的合成方法,其中包括:含有氨基的硅烷和乙醛酸或丙酮酸或2-吡啶甲醛或2-噻吩甲醛按摩尔比1:1在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Pd(
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Pd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡后除去Pd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到具有一定粒度范围的Pd()离子印迹聚合物。
3.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述铅离子印迹硅胶材料、增塑剂和PVC的一定质量组成比例,为0.5~10:30~80:20~60。
4.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述增塑剂,包括邻苯二甲酸二丁酯、或邻苯二甲酸二壬酯、或癸二酸二异辛酯、或磷酸三丁酯和邻硝基苯辛醚。
5.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述铅离子选择电极的内充液中KCl浓度范围为0.01~0.5mol /L,铅离子标准溶液浓度范围为0.001~0.1mol /L。
6.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述制备好的电极在浓度范围为0.000001~0.1 mol/L的铅离子标准溶液中浸泡活化,活化时间从1小时到3天。
7.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述环境体系,包括天然淡水、或天然矿化水、或污水、或饮用水、或回用水、或生物体内水、或沉积物、或土壤。
8.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述PVC的分子量为:10000〜25000。
9.根据权利要求1所述的一种实时检测水环境中微量铅的印迹选择性的电极方法,其特征在于,所述氨基的硅烷,包括3-氨基乙基三甲氧基硅烷、或二乙烯三胺基丙基三甲氧基硅烷、或脲丙基三乙氧基硅烷、或N-氨乙基-γ-氨丙基三乙氧基硅、或N-氨乙基-γ-氨丙基三甲氧基硅。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310583104.5A CN103630592B (zh) | 2013-11-20 | 2013-11-20 | 一种实时检测水环境中微量铅的印迹选择性的电极方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310583104.5A CN103630592B (zh) | 2013-11-20 | 2013-11-20 | 一种实时检测水环境中微量铅的印迹选择性的电极方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103630592A true CN103630592A (zh) | 2014-03-12 |
CN103630592B CN103630592B (zh) | 2016-01-20 |
Family
ID=50211865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310583104.5A Active CN103630592B (zh) | 2013-11-20 | 2013-11-20 | 一种实时检测水环境中微量铅的印迹选择性的电极方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103630592B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104677965A (zh) * | 2015-03-19 | 2015-06-03 | 中北大学 | 一种农药电位型传感器的合成方法 |
CN104163921B (zh) * | 2014-07-24 | 2017-04-12 | 江苏科技大学 | 一种介孔硅复合铅离子印迹聚合物的制备方法及应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102680551A (zh) * | 2012-05-29 | 2012-09-19 | 叶健 | 有机多组分载体铅离子选择电极及其制备方法 |
-
2013
- 2013-11-20 CN CN201310583104.5A patent/CN103630592B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102680551A (zh) * | 2012-05-29 | 2012-09-19 | 叶健 | 有机多组分载体铅离子选择电极及其制备方法 |
Non-Patent Citations (4)
Title |
---|
HONG-TAO FAN,ET AL.: "Sol-gel derived ion-imprinted silica-supported organic-inorganic hybrid sorbent for selective removal of lead(II) from aqueous solution", 《J SOL-GEL SCI TECHNOL》, vol. 72, 4 July 2014 (2014-07-04), XP035378303, DOI: doi:10.1007/s10971-014-3436-z * |
XIANGBING ZHU,ET AL.: "Selective solid-phase extraction of lead(II) from biological and natural water samples using surface-grafted lead(II)-imprinted polymers", 《MICROCHIM ACTA》, vol. 164, 26 April 2008 (2008-04-26), XP019720872 * |
ZHIHUA WANG,ET AL.: "Preparation of electrochemical sensor for lead(II) based on molecularly imprinted film", 《APPLIED SURFACE SCIENCE》, vol. 258, 6 May 2011 (2011-05-06) * |
李成发 等: "铅离子印迹聚合物的研究进展", 《广州化工》, vol. 41, no. 2, 31 January 2013 (2013-01-31) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104163921B (zh) * | 2014-07-24 | 2017-04-12 | 江苏科技大学 | 一种介孔硅复合铅离子印迹聚合物的制备方法及应用 |
CN104677965A (zh) * | 2015-03-19 | 2015-06-03 | 中北大学 | 一种农药电位型传感器的合成方法 |
CN104677965B (zh) * | 2015-03-19 | 2017-07-25 | 中北大学 | 一种农药电位型传感器的合成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103630592B (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101706471B (zh) | 一种测定水样重金属离子浓度的电化学传感器 | |
Alizadeh et al. | A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2, 4, 6-trinitrotoluene (TNT) in natural waters and soil samples | |
Huang et al. | Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer | |
Fan et al. | Use of polymer-bound Schiff base as a new liquid binding agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+ | |
Yan et al. | Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water | |
CN107576716B (zh) | 一种检测痕量重金属的针灸针基工作电极电化学传感器 | |
CN105738452B (zh) | 一种利用全固态氨氮传感器的检测氨氮的方法及其装置 | |
Arvand et al. | Sulfamethoxazole‐imprinted polymeric receptor as ionophore for potentiometric transduction | |
Arfin et al. | Review on detection of phenol in water | |
CN108982641B (zh) | 一种痕量铅离子检测的电化学传感的制备方法 | |
CN101750442B (zh) | 单分散性双金属Au/Pt纳米颗粒修饰的检测水中汞的电极及其应用方法 | |
CN108387632B (zh) | 一种Eu3+的选择性定量检测方法 | |
Wang et al. | Determination of cesium ions in environmental water samples with a magnetic multi-walled carbon nanotube imprinted potentiometric sensor | |
CN112326759B (zh) | 基于mof材料的镉离子选择性电极的制备方法及其应用 | |
CN103630592B (zh) | 一种实时检测水环境中微量铅的印迹选择性的电极方法 | |
Yan et al. | Microwave-assisted synthesis of carbon dots–zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol | |
CN104237361B (zh) | 基于L-半胱氨酸/石墨烯修饰电极同时检测Cd2+、Pb2+的电化学方法 | |
CN103630594B (zh) | 一种采用镉离子选择性电极实时监测水中微量镉的方法 | |
CN105289541B (zh) | 一种固定氟离子的吸附膜及其制备方法 | |
CN104007154A (zh) | 一种氧化还原水溶胶、用于水体生物毒性快速检测的一体化微生物电极的制备方法及应用 | |
CN106226369B (zh) | 一种妥曲珠利分子印迹电化学传感器的制备方法 | |
CN103969309B (zh) | 基于铂纳米粒子的表面分子印迹聚合物复合材料及其制备方法和应用 | |
KEMER et al. | Potentiometric Utility of the New Solid-State Sensor Based on Crowned Ionophore for the Determination of K^+ | |
CN109254067B (zh) | 一种基于罗丹明b/还原氧化石墨烯修饰的玻碳电极及其制备和应用 | |
CN114137048A (zh) | 一种以向日葵果胶为碳源的氮掺杂石墨烯量子点制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |