CN103590097B - 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法 - Google Patents

用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法 Download PDF

Info

Publication number
CN103590097B
CN103590097B CN201310574484.6A CN201310574484A CN103590097B CN 103590097 B CN103590097 B CN 103590097B CN 201310574484 A CN201310574484 A CN 201310574484A CN 103590097 B CN103590097 B CN 103590097B
Authority
CN
China
Prior art keywords
minutes
thermofin
ingot
measurement point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310574484.6A
Other languages
English (en)
Other versions
CN103590097A (zh
Inventor
潘家明
何广川
陈艳涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingli Group Co Ltd
Original Assignee
Yingli Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingli Group Co Ltd filed Critical Yingli Group Co Ltd
Priority to CN201310574484.6A priority Critical patent/CN103590097B/zh
Publication of CN103590097A publication Critical patent/CN103590097A/zh
Application granted granted Critical
Publication of CN103590097B publication Critical patent/CN103590097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种用于生产类单晶硅锭的铸锭炉及类单晶的铸锭方法。其中,该铸锭炉包括:侧部隔热层;底部隔热层,与侧部隔热层共同围成一个腔体;坩埚,设置在腔体内;侧部加热器,设置在侧部隔热层与坩埚之间,顶部测温点,设置在侧部隔热层与坩埚之间,且位于侧部加热器的上方;底部隔热层为一层,在侧部隔热层中部,朝向坩埚设置有一圈中部隔热层。应用本发明的技术方案,通过调整铸锭炉内部热场结构,去掉一层底部隔热层,在侧部隔热层内壁添加一圈保温隔热石墨硬毡,将铸锭炉内部热场分为顶部高温区和底部低温区,从而保证籽晶在坩埚内不完全熔化,硅液在结晶段沿籽晶内的原子排列方向进行结晶生长,铸锭类单晶硅锭,便于类单晶批量推广。

Description

用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法
技术领域
本发明涉及类单晶硅制造领域,具体而言,涉及一种用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法。
背景技术
目前,光伏行业发展迅速,类单晶作为多晶铸锭的替代品在光伏电池光电转换效率方面存在很大优势,成为目前光伏行业的热门产品。
其中,晶粒是指结晶物质在生长过程中,由于受到外界空间的限制,未能发育成具有规则形态的晶体,而只是结晶成颗粒状,即晶向一致的单体,称晶粒。类单晶,又称准单晶,通过铸锭的方式形成晶硅材料,在一定尺寸的硅片上表现为同一晶向的晶粒面积大于硅片总面积的50%,通过铸锭技术形成类单晶,其晶硅质量接近直拉单晶硅,简单的说,这种技术就是使用多晶铸锭炉生产单晶硅。籽晶是指类单晶铸锭中,用于铺设在坩埚底部,熔化后期保证籽晶不完全熔化,硅液在籽晶基础上逐步结晶生长,形成类单晶硅锭。
目前所有铸锭炉制造厂家相继推出适应于铸锭类单晶硅锭的新型铸锭炉。以美国GTsolar公司的GT450型铸锭炉为例,如图1所示,包括:散热台10,石墨材质,具有良好的热传导性,用于承载硅料、装载硅料的坩埚50以及石墨侧面护板20和石墨底板30,硅液结晶时通过散热台10将热量辐射到底部的水冷炉腔内壁上;底部隔热层60,由多块石墨硬毡材质保温板拼接组装,用于热场内保温;顶部加热器40和侧部加热器70分别位于坩埚50的上方和侧部,另外,位于坩埚50的周围,还设置有与底部隔热层60向接的侧部隔热层80。
类单晶铸锭过程中,其核心技术点集中在硅料熔化后期保证籽晶不完全熔化,从而为硅液的结晶提供基础面,使硅液沿籽晶原子排列方向进行结晶生长。如图2所示,籽晶面100铺设在坩埚50底面,籽晶面100有多个晶向单一方向一致的小单晶块组成。目前各类单晶生产厂家为降低类单晶成本,籽晶厚度一再缩小,其厚度已经有初期的40mm缩小为20mm左右,这样就给保证类单晶铸锭的成功率造成很大困难。
目前GT450型铸锭炉铸锭类单晶硅锭,430kg类单晶,熔化段工艺如下表1:
表1
熔化工艺 时间(分钟) 测温点温度 隔热层位置
第一步 90 1150℃ 0
第二步 210 1500℃ 0
第三步 30 1525℃ 0
第四步 240 1525℃ 0
第五步 30 1525℃ 4
第六步 400 1525℃ 4
第一步:90分钟,维持顶部测温点温度1150℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零(即与底部隔热层60相抵接)。
第二步:210分钟,210分钟内顶部测温点温度快速升至1500℃,侧部隔热层80位置为零。
第三步:30分钟,30分钟内顶部测温点温度缓慢升至1525℃,侧部隔热层80位置为零。
第四步:300分钟,维持顶部测温点温度1525℃,侧部隔热层80位置为零,为硅料加热,整体硅料温度上升,顶部硅料开始融化。
第五步:30分钟,维持顶部测温点温度1525℃,侧部隔热层80高度由零点匀速升至4厘米高,底部散热窗口打开,散热台热量通过散热窗口辐射到热场外部,坩埚底部开始降温,保证籽晶不化,如图3所示。
第六步:400分钟,维持顶部测温点温度1525℃,侧部隔热层80维持4厘米高度不变。当顶部测试籽晶上表面开始出现液体时,熔化段结束,程序进入长晶阶段,硅液开始在籽晶表面结晶,生长类单晶硅锭。
但是,上述工艺在类单晶批量推广时存在很大难度。
发明内容
本发明旨在提供一种用于生产类单晶硅锭的铸锭炉及类单晶的铸锭方法,以解决便于类单晶批量推广。
为了实现上述目的,根据本发明的一个方面,提供了一种用于生产类单晶硅锭的铸锭炉。该铸锭炉包括:侧部隔热层;底部隔热层,与侧部隔热层共同围成一个腔体;坩埚,设置在腔体内;侧部加热器,设置在侧部隔热层与坩埚之间,顶部测温点,设置在侧部隔热层与坩埚之间,且位于侧部加热器的上方;底部隔热层为一层,在侧部隔热层中部,朝向坩埚设置有一圈中部隔热层。
进一步地,中部隔热层为石墨硬毡。
进一步地,石墨硬毡的厚度为10mm~70mm,宽度为30mm~95mm。
进一步地,中部隔热层距离侧部加热器的距离为160mm~350mm。
根据本发明的另一个方面,提供一种类单晶硅锭的铸锭方法。该铸锭方法使用上述任一种铸锭炉进行铸锭。
进一步地,铸锭方法包括以下步骤:第一步:维持顶部测温点的温度为1135~1185℃,时间为90~120分钟;第二步:顶部测温点的温度升至1490~1510℃,时间为210~270分钟;第三步:在15~45分钟内,顶部测温点的温度升至1520~1530℃;第四步:维持顶部测温点的温度为1520~1530℃,时间为170~230分钟;第五步:在15~45分钟内,顶部测温点的温度降至1490~1510℃,时间为15~45分钟;以及第六步:维持顶部测温点的温度为1490~1510℃直至完成结晶。
进一步地,包括以下步骤:第一步:维持顶部测温点的温度为1150~1160℃,时间为90~120分钟;第二步:顶部测温点的温度升至1495~1505℃,时间为225~255分钟;第三步:在20~40分钟内,顶部测温点的温度升至1520~1530℃;第四步:维持顶部测温点的温度为1520~1530℃,时间为185~215分钟;第五步:在20~40分钟内,顶部测温点的温度降至1495~1505℃,时间为20~40分钟;以及第六步:维持顶部测温点的温度为1495~1505℃直至完成结晶。进一步地,包括以下步骤:第一步:维持顶部测温点的温度为1150℃,时间为90分钟;第二步:顶部测温点的温度升至1500℃,时间为210分钟;第三步:在30分钟内,维持顶部测温点的温度升至1525℃;第四步:维持顶部测温点的温度为1525℃,时间为200分钟;第五步:在30分钟内,维持顶部测温点的温度降至1500℃,时间为30分钟;以及第六步:维持顶部测温点的温度为1500℃直至完成结晶。
进一步地,底部隔热层一直处于与侧部隔热层相抵接的状态。
应用本发明的技术方案,通过调整美国GTsolar公司的GT450型铸锭炉内部热场结构,去掉一层底部隔热层,在侧部隔热层内壁添加一圈保温隔热石墨硬毡,将铸锭炉内部热场分为顶部高温区和底部低温区,从而保证籽晶在坩埚内不完全熔化,硅液在结晶段沿籽晶内的原子排列方向进行结晶生长,铸锭类单晶硅锭,便于类单晶批量推广。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了GT450型铸锭炉热场结构示意图;
图2示出了籽晶面在GT450型铸锭炉内位置的局部结构示意图;
图3示出了现有技术中GT450型铸锭炉底部隔热层打开时的局部结构示意图;以及
图4示出了根据本发明实施例的应用GT450型铸锭炉时热场结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本发明的发明人发现,现有GT450型铸锭炉铸锭类单晶熔化段工艺,通过熔化后期打开热场底部的散热窗口来降低坩埚底部温度,从而保证籽晶面处于低温状态不完全熔化,硅料从顶部开始熔化,在硅料中上部形成隔固液交界面,随着顶部硅液接受顶部加热器热量不断升温,固液面不断下移,当固液面熔化至籽晶面时,熔化结束,开始大角度打开散热窗口,降低加热器功率,硅液以籽晶面为基础结晶生长。
由于硅料熔化需要大量热量,熔化段长时间加热导致硅液熔化后内部存在大量潜热,这样就给熔化后期保证籽晶不化带来很大困难,即便是熔化后期打开了底部散热窗口,也很难控制硅料熔化速度,造成保籽晶不化失败。且在保证籽晶过程中,由于硅料内固液面高度很难确定,因此第四步设定时间也成为工艺的关键点,批量生产类单晶时,由于铸锭炉设备之间存在很大差异,加热器电阻值大小、测温点在热场内的精确位置都造成工艺时间的波动,工艺第四步工艺时间的不确定造成熔化后期散热窗口打开或早或晚,均无法结晶出类单晶硅锭,类单晶批量推广也存在很大难度。
同时,由于GT450型铸锭采用顶部侧部同时加热的加热方式,熔化段坩埚侧壁收热场侧面加热器影响温度上升迅速,导致坩埚底部四周位置硅料升温迅速,熔化速度较快,这样就造成了坩埚底部四周位置籽晶温度上升较快,易于熔化,最后打开底部散热口后虽然可以保留一部分籽晶不完全熔化,但是边缘位置籽晶存在很大熔化的风险,造成籽晶面剩余量小,集中于坩埚底部中间位置,结晶生长出的类单晶硅锭也只有中间少量部分为单晶,边缘位置还是多晶区域。
在熔化后期保证籽晶不化阶段,热场内底部散热窗口打开,通过散失坩埚底部热量的方式来保证籽晶不化,这样就极大的造成热量损耗,这也是类单晶能耗高的主要原因。同时,由于熔化后期热场内温度为高温状态,石英坩埚温度处于1400度以上,此时打开散热窗口石英坩埚温度聚变体积缩小,加上坩埚内部固体硅料体积随温度变化而变化,两者热膨胀系数不同,降温过程中两者之间产生作用力,容易造成坩埚涨裂,产生危险。
根据本发明一种典型的实施方式,提供了一种用于生产类单晶硅锭的铸锭炉。该该铸锭炉是在美国GTsolar公司生产的GT450型铸锭炉进行改进得到的,其中,如图4所示,该铸锭炉包括侧部隔热层80,与侧部隔热层80共同围成一个腔体的两层底部隔热层60,坩埚50设置在上述腔体中,侧部加热器70)设置在侧部隔热层80与坩埚50之间,顶部测温点设置在侧部隔热层80与坩埚50之间,且位于侧部加热器70的上方;在采用铸锭炉进行单晶铸锭前,包括去除一层底部隔热层60,在侧部隔热层80中部,朝向坩埚50设置一圈中部隔热层90。
应用本发明的技术方案,通过调整美国GTsolar公司的GT450型铸锭炉内部热场结构,去掉一层底部隔热层,在侧部隔热层内壁添加一圈保温隔热石墨硬毡,将铸锭炉内部热场分为顶部高温区和底部低温区,从而保证籽晶在坩埚内不完全熔化,硅液在结晶段沿籽晶内的原子排列方向进行结晶生长,铸锭类单晶硅锭,便于类单晶批量推广。
中部隔热层90采用保温材料制成,优选的,中部隔热层90为石墨硬毡,石墨硬毡的隔热性能良好。该中部隔热层90应该能够使铸锭炉内部热场分为顶部高温区和底部低温区,优选的,石墨硬毡的厚度为10mm~70mm,宽度为30mm~95mm,中部隔热层90距离侧部加热器70的距离为160mm~350mm。在此种尺寸下,能够更好的控制晶体的生长。
根据本发明一种典型的实施方式,提供一种类单晶硅锭的铸锭方法。该方法使用上述铸锭炉进行铸锭。具体包括以下步骤:第一步:维持所述顶部测温点的温度为1135~1185℃,时间为90~120分钟;第二步:所述顶部测温点的温度升至1490~1510℃,时间为210~270分钟;第三步:在15~45分钟内,所述顶部测温点的温度升至1520~1530℃;第四步:维持所述顶部测温点的温度为1520~1530℃,时间为170~230分钟;第五步:在15~45分钟内,所述顶部测温点的温度降至1490~1510℃,时间为15~45分钟;以及第六步:维持所述顶部测温点的温度为1490~1510℃直至完成结晶。其中,第二步中温度的变化为快速的变化(尽量快),变化时间可以不计。
优选的,第一步:维持所述顶部测温点的温度为1150~1160℃,时间为90~120分钟;第二步:所述顶部测温点的温度升至1495~1505℃,时间为225~255分钟;第三步:在20~40分钟内,所述顶部测温点的温度升至1520~1530℃;第四步:维持所述顶部测温点的温度为1520~1530℃,时间为185~215分钟;第五步:在20~40分钟内,所述顶部测温点的温度降至1495~1505℃,时间为20~40分钟;以及第六步:维持所述顶部测温点的温度为1495~1505℃直至完成结晶。
进一步优选的,第一步:维持所述顶部测温点的温度为1150℃,时间为90分钟;第二步:所述顶部测温点的温度升至1500℃,时间为210分钟;第三步:在30分钟内,维持所述顶部测温点的温度升至1525℃;第四步:维持所述顶部测温点的温度为1525℃,时间为200分钟;第五步:在30分钟内,维持所述顶部测温点的温度降至1500℃,时间为30分钟;以及第六步:维持所述顶部测温点的温度为1500℃直至完成结晶。
根据本发明一种典型的实施方式,在上述具体操作步骤中底部隔热层60一直处于与侧部隔热层80相抵接的状态。本发明方法用于控制GT450型铸锭炉类单晶铸锭过程中熔化后期籽晶不完全熔化,通过去掉一层底部保温层,在上部隔热层内部中部位置添加一圈隔热石墨硬毡,硬毡添加位置如图4所示,石墨硬毡要求厚度为10mm至70mm,宽度为30mm至95mm,其在上部隔热层的位置距离侧部加热器底部距离控制在160mm至350mm,固定方式不限。
添加的石墨隔热毡将热场分为顶部高温区和底部低温区,降低熔化后期坩埚底部温度,减小熔化段固液面向下熔化速度,增加熔化后期可控制时间,增加类单晶成功率。同时整个熔化过程热场均呈现封闭状态,避免了熔化段加热能耗的损耗。
下面将结合实施例进一步说明本发明的有益效果。
实施例1
在侧部隔热层80中部,朝向坩埚50设置一圈石墨硬毡,石墨硬毡的厚度为70mm,宽度为30mm,距离侧部加热器70的距离为160mm。
第一步:120分钟,维持顶部测温点温度1185℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零。
第二步:270分钟,内顶部测温点温度快速升至1510℃,侧部隔热层80位置为零。
第三步:45分钟,内顶部测温点温度缓慢升至1530℃,侧部隔热层80位置为零。
第四步:230分钟,维持第三步最终状态不变,为硅料加热,顶部硅料开始熔化,固液面向下缓慢移动。
第五步:45分钟,测温点温度从第四步最终温度降低至1510℃,侧部隔热层80高度不变,通过温度的降低来减小坩埚顶部硅液熔化速度。
第六步:保证第五步最终状态,当测试籽晶开始熔化时,程序跳入结晶段开始结晶生长,熔化段结束。
最终测试硅料熔化速率为20mm/小时,最终籽晶剩余10mm高,满足籽晶剩余要求。
实施例2
在侧部隔热层80中部,朝向坩埚50设置一圈石墨硬毡,石墨硬毡的厚度为10mm,宽度为30mm,距离侧部加热器70的距离为350mm。
第一步:90分钟,维持顶部测温点温度1135℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零。
第二步:210分钟,内顶部测温点温度快速升至1490℃,侧部隔热层80位置为零。
第三步:15分钟,内顶部测温点温度缓慢升至1520℃,侧部隔热层80位置为零。
第四步:170分钟,维持第三步最终状态不变,为硅料加热,顶部硅料开始熔化,固液面向下缓慢移动;
第五步:15分钟,测温点温度从第四步最终温度降低至1490℃,隔热层高度不变,通过温度的降低来减小坩埚顶部硅液熔化速度。
第六步:保证第五步最终状态,当测试籽晶开始熔化时,程序跳入结晶段开始结晶生长,熔化段结束。
最终测试硅料熔化速率为13mm/小时,最终籽晶剩余16mm高,满足籽晶剩余要求。
实施例3
在侧部隔热层80中部,朝向坩埚50设置一圈石墨硬毡,石墨硬毡的厚度为50mm,宽度为95mm,距离侧部加热器70的距离为200mm。
第一步:120分钟,维持顶部测温点温度1160℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零。
第二步:255分钟,内顶部测温点温度快速升至1505℃,侧部隔热层80位置为零。
第三步:40分钟,内顶部测温点温度缓慢升至1530℃,侧部隔热层80位置为零。
第四步:215分钟,维持第三步最终状态不变,为硅料加热,顶部硅料开始熔化,固液面向下缓慢移动。
第五步:40分钟,测温点温度从第四步最终温度降低至1505℃,侧部隔热层80高度不变,通过温度的降低来减小坩埚顶部硅液熔化速度。
第六步:保证第五步最终状态,当测试籽晶开始熔化时,程序跳入结晶段开始结晶生长,熔化段结束。
最终测试硅料熔化速率为17mm/小时,最终籽晶剩余14mm高,满足籽晶剩余要求。
实施例4
在侧部隔热层80中部,朝向坩埚50设置一圈石墨硬毡,石墨硬毡的厚度为50mm,宽度为50mm,距离侧部加热器70的距离为200mm。
第一步:90分钟,维持顶部测温点温度1150℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零。
第二步:225分钟,内顶部测温点温度快速升至1495℃,侧部隔热层80位置为零。
第三步:20分钟,内顶部测温点温度缓慢升至1520℃,侧部隔热层80位置为零。
第四步:185分钟,维持第三步最终状态不变,为硅料加热,顶部硅料开始熔化,固液面向下缓慢移动。
第五步:20分钟,测温点温度从第四步最终温度降低至1495℃,侧部隔热层80高度不变,通过温度的降低来减小坩埚顶部硅液熔化速度。
第六步:保证第五步最终状态,当测试籽晶开始熔化时,程序跳入结晶段开始结晶生长,熔化段结束。
最终测试硅料熔化速率为14mm/小时,最终籽晶剩余16mm高,满足籽晶剩余要求。
实施例5
在侧部隔热层80中部,朝向坩埚50设置一圈石墨硬毡,石墨硬毡的厚度为50mm,宽度为95mm,距离侧部加热器70的距离为200mm。
具体参数见表2
第一步:90分钟,维持顶部测温点温度1150℃,硅料表面杂质挥发,通过铸锭炉真空泵排出,保证硅料纯度,侧部隔热层80高度为零。
第二步:210分钟,内顶部测温点温度快速升至1500℃,侧部隔热层80位置为零。
第三步:30分钟,内顶部测温点温度缓慢升至1525℃,侧部隔热层80位置为零。
第四步:200分钟,维持第三步最终状态不变,为硅料加热,顶部硅料开始融化,固液面向下缓慢移动;
第五步:30分钟,测温点温度从1525℃降低至1500℃,隔热层高度不变,通过温度的降低来减小坩埚顶部硅液熔化速度。
第六步:保证第五步最终状态,当测试籽晶开始熔化时,程序跳入结晶段开始结晶生长,熔化段结束。
表2
熔化工艺 时间(分钟) 测温点温度 隔热层位置
第一步 90 1150℃ 0
第二步 210 1500℃ 0
第三步 30 1525℃ 0
第四步 200 1525℃ 0
第五步 30 1500℃ 0
第六步 400 1500℃ 0
最终测试硅料熔化速率为14mm/小时,最终籽晶剩余15mm高,满足籽晶剩余要求。从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1.本发明的技术方案通过将合理利用热场部件,在热场上部隔热层内壁中部位置添加一圈隔热石墨硬毡,硬毡将热场分为顶部高温区和底部低温区两个热区,同时将底部隔热层两层隔热板去掉顶部一层,保留底部一层隔热板,这样在整个熔化过程中,底部会一直处于一个少量散热的状态,也保证了底部热区的低温特性,籽晶处于两个热区交界位置,保证熔化后期籽晶不完全熔化,本方法实现简单,易于操作,新工艺熔化段热场处于完全封闭状态,避免了高温状态开启上部隔热层带来的坩埚底部温度剧烈变化,安全方面系数得到很大提升。
2.通过在热场内部隔热层内壁上添加隔热石墨硬毡,加大顶部高温区温度,减小底部低温区温度,保证籽晶不完全熔化无须在熔化后期打开散热窗口,因此可以大大提高加热器功率利用率,缩小了类单晶铸锭的热量损耗。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种用于生产类单晶硅锭的铸锭炉,包括:
侧部隔热层(80);
底部隔热层(60),与所述侧部隔热层(80)共同围成一个腔体;
坩埚(50),设置在所述腔体内;
侧部加热器(70),设置在所述侧部隔热层(80)与所述坩埚(50)之间,
顶部测温点,设置在所述侧部隔热层(80)与所述坩埚(50)之间,且位于所述侧部加热器(70)的上方;
其特征在于,所述底部隔热层(60)为一层,在所述侧部隔热层(80)中部,朝向所述坩埚(50)设置有一圈中部隔热层(90);
所述中部隔热层(90)为石墨硬毡。
2.根据权利要求1所述的铸锭炉,其特征在于,所述石墨硬毡的厚度为10mm~70mm,宽度为30mm~95mm。
3.根据权利要求1所述的铸锭炉,其特征在于,所述中部隔热层(90)距离侧部加热器(70)的距离为160mm~350mm。
4.一种类单晶硅锭的铸锭方法,其特征在于,使用根据权利要求1至3中任一项所述的铸锭炉进行铸锭。
5.根据权利要求4所述的铸锭方法,其特征在于,所述铸锭方法包括以下步骤:
第一步:维持所述顶部测温点的温度为1135~1185℃,时间为90~120分钟;
第二步:所述顶部测温点的温度升至1490~1510℃,时间为210~270分钟;
第三步:在15~45分钟内,所述顶部测温点的温度升至1520~1530℃;
第四步:维持所述顶部测温点的温度为1520~1530℃,时间为170~230分钟;
第五步:在15~45分钟内,所述顶部测温点的温度降至1490~1510℃,时间为15~45分钟;以及
第六步:维持所述顶部测温点的温度为1490~1510℃直至完成结晶。
6.根据权利要求5所述的方法,其特征在于,包括以下步骤:
第一步:维持所述顶部测温点的温度为1150~1160℃,时间为90~120分钟;
第二步:所述顶部测温点的温度升至1495~1505℃,时间为225~255分钟;
第三步:在20~40分钟内,所述顶部测温点的温度升至1520~1530℃;
第四步:维持所述顶部测温点的温度为1520~1530℃,时间为185~215分钟;
第五步:在20~40分钟内,所述顶部测温点的温度降至1495~1505℃,时间为20~40分钟;以及
第六步:维持所述顶部测温点的温度为1495~1505℃直至完成结晶。
7.根据权利要求6所述的方法,其特征在于,包括以下步骤:
第一步:维持所述顶部测温点的温度为1150℃,时间为90分钟;
第二步:所述顶部测温点的温度升至1500℃,时间为210分钟;
第三步:在30分钟内,维持所述顶部测温点的温度升至1525℃;
第四步:维持所述顶部测温点的温度为1525℃,时间为200分钟;
第五步:在30分钟内,维持所述顶部测温点的温度降至1500℃,时间为30分钟;以及
第六步:维持所述顶部测温点的温度为1500℃直至完成结晶。
8.根据权利要求5至7中任一项所述的方法,其特征在于,所述底部隔热层(60)一直处于与所述侧部隔热层(80)相抵接的状态。
CN201310574484.6A 2013-11-15 2013-11-15 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法 Active CN103590097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310574484.6A CN103590097B (zh) 2013-11-15 2013-11-15 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310574484.6A CN103590097B (zh) 2013-11-15 2013-11-15 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法

Publications (2)

Publication Number Publication Date
CN103590097A CN103590097A (zh) 2014-02-19
CN103590097B true CN103590097B (zh) 2015-12-30

Family

ID=50080404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310574484.6A Active CN103590097B (zh) 2013-11-15 2013-11-15 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法

Country Status (1)

Country Link
CN (1) CN103590097B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164488B (zh) * 2021-12-06 2022-09-23 晶科能源股份有限公司 单晶炉及应用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242392B (zh) * 2011-06-15 2014-03-12 安阳市凤凰光伏科技有限公司 铸造法生产类似单晶硅锭炉内融化后晶种稳定于炉底的方法
CN102330143B (zh) * 2011-09-22 2013-10-02 浙江精功新能源有限公司 单晶硅铸锭的制造工艺和铸锭炉热场结构

Also Published As

Publication number Publication date
CN103590097A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN103215633B (zh) 一种多晶硅的铸锭方法
CN102877117B (zh) 基于多加热器的铸锭炉热场结构及运行方法
CN103088406B (zh) 一种籽晶的制备方法及类单晶硅锭的铸造方法
CN202208779U (zh) 一种铸锭炉
CN110396715A (zh) 一种直拉单晶多次复投工艺
Zhang et al. Nucleation and bulk growth control for high efficiency silicon ingot casting
CN106591937B (zh) 一种凹陷式类单晶籽晶铸锭熔化结晶工艺
CN103343387B (zh) 一种多晶硅铸锭炉及其铸锭方法
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN102242392B (zh) 铸造法生产类似单晶硅锭炉内融化后晶种稳定于炉底的方法
CN104131339A (zh) 一种多晶硅片的制备方法
CN103924293B (zh) 一种底部增强冷却装置及其冷却方法
CN103132142B (zh) 多晶硅锭及其制造方法
CN103966657A (zh) 一种多晶硅和准单晶硅铸锭炉及其使用方法
CN105002560B (zh) 近化学计量比铌酸锂晶体的组分可控定向结晶制备方法
CN103590097B (zh) 用于生产类单晶硅锭的铸锭炉及类单晶硅锭的铸锭方法
CN103590096B (zh) 铸锭炉及控制类单晶铸造过程中籽晶保留高度的方法
CN104746134A (zh) 采用补偿硅料的n型单晶硅拉制方法
CN104480527A (zh) 一种多晶硅铸锭炉全功率控制铸锭工艺
CN104562191B (zh) 一种提纯固态半导体多晶材料的设备及方法
CN104294358B (zh) 一种多晶硅锭的制备方法及多晶硅锭
CN102912417B (zh) 多晶硅铸锭炉固液界面检测装置
CN108823638A (zh) 太阳能电池用大尺寸硅锭的制备方法
CN103603032B (zh) 控制硅锭铸造中结晶速度的方法
CN104357904A (zh) 一种大尺寸钛宝石晶体生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant