CN103570808A - α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途 - Google Patents

α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途 Download PDF

Info

Publication number
CN103570808A
CN103570808A CN201210277619.8A CN201210277619A CN103570808A CN 103570808 A CN103570808 A CN 103570808A CN 201210277619 A CN201210277619 A CN 201210277619A CN 103570808 A CN103570808 A CN 103570808A
Authority
CN
China
Prior art keywords
polypeptide
cysteine
txib
alpha
neuralgia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210277619.8A
Other languages
English (en)
Other versions
CN103570808B (zh
Inventor
罗素兰
长孙东亭
吴勇
朱晓鹏
胡远艳
J·迈克尔·麦金托什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201210277619.8A priority Critical patent/CN103570808B/zh
Priority to US14/419,584 priority patent/US9469674B2/en
Priority to PCT/CN2013/077363 priority patent/WO2014023129A1/zh
Priority to EP13828357.7A priority patent/EP2889307B1/en
Priority to JP2015525711A priority patent/JP6336979B2/ja
Publication of CN103570808A publication Critical patent/CN103570808A/zh
Application granted granted Critical
Publication of CN103570808B publication Critical patent/CN103570808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属于生物化学和分子生物学领域,涉及一种新α-芋螺毒素肽、其药物组合物、其制备方法及用途。本发明还涉及所述芋螺毒素肽的前肽、其核酸构建体、其表达载体和转化的细胞、以及其融合蛋白。本发明还涉及一种阻断乙酰胆碱受体的方法、以及所述芋螺毒素肽的制药用途。本发明的α-芋螺毒素肽能够特异地阻断乙酰胆碱受体(nAChRs)(例如α6/α3β2β3 nAChR),并且具有治疗成瘾、神经痛,帕金森症、痴呆、精神分裂症、抑郁、癌症等的活性,具有在制备戒烟戒毒与镇痛药物、有关精神疾病与癌症治疗药物、以及神经科学工具药等方面的良好应用前景。

Description

α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途
技术领域
本发明属于生物化学和分子生物学领域,涉及一种新的α-芋螺毒素肽Tx I B/Txd4、其药物组合物、其制备方法及用途。本发明还涉及所述芋螺毒素肽的前肽、其核酸构建体、其表达载体和转化的细胞、以及其融合蛋白。本发明还涉及一种阻断乙酰胆碱受体的方法、以及所述芋螺毒素肽的制药用途。
背景技术
烟碱乙酰胆碱受体(nAChRs)是动物界普遍存在的具有重要生理作用和临床研究意义的细胞膜蛋白,是人类最早发现的一类受体,可分为两类:肌肉型乙酰胆碱受体和神经型乙酰胆碱受体。nAChRs是细胞膜上的变构膜蛋白,介导众多中枢和外周神经系统的生理功能,包括学习、记忆、应答、镇痛和运动控制等。nAChRs激活多巴胺、去甲肾上腺素、五羟色胺、γ-氨基丁酸等多种神经递质的释放。已证实nAChRs是筛选诊断和治疗一大类重要疾病药物的关键靶点,这些疾病包括疼痛、烟酒和毒品成瘾、智障、痴呆、精神分裂症、中枢神经紊乱、癫痫症、帕金森病、精神病、神经肌肉阻滞、重症肌无力、抑郁症、高血压、心率不齐、哮喘、肌肉松弛、中风、乳腺癌和肺癌等。至今对于上述疾病还没有对症治疗的药物。常用的非选择性的nAChR激动剂如烟碱,虽然可以缓解上述神经疾病的症状,但它们对心脏和胃肠道产生强烈的副作用,且有成瘾性。因此,开发针对nAChRs各种亚型具有高选择性的配体药物是治疗上述疾病的关键所在(Livett BG,Sandall DW,Keays D,Down J,Gayler KR,Satkunanathan N,KhalilZ.Therapeutic applications of conotoxins that target theneuronal nicotinic acetylcholine receptor.Toxicon,2006,48(7):810-829;Taly A,Corringer PJ,Guedin D,Lestage P,Changeux JP.Nicotinic receptors:allosteric transitions andtherapeutic targets in the nervous system.Nat Rev Drug Discov.2009,8(9):733-50;Layla A,McIntosh JM.Alpha-conotoxins aspharmacological probes of nicotinic acetylcholine receptors[J].Acta Pharmacol Sin 2009 Jun;30(6):771–783.)。
然而,要开发这样的药物的前提是,要获得可以特异结合nAChRs各种亚型的选择性化合物,作为工具药来研究和鉴定各种亚型的精细组成和生理功能,或直接作为相关疾病的治疗药物。
nAChRs由不同的α和β亚基组装成很多种亚型,每种亚型都有截然不同的药理学特征。其中肌肉型乙酰胆碱受体由5个亚基构成,含2个α1亚基,1个β亚基,1个δ亚基和1个γ或ε亚基,γ或ε亚基取决于其是否为胎儿或成体的乙酰胆碱受体。哺乳动物神经型nAChRs亚型比肌肉型nAChRs复杂得多,至少有8种α亚基、3种β亚基,分别为α2-α7,α9,α10(在雏鸡中存在α8),以及β2-β4。其中α2,α3和α4可以分别同β2或者β4结合,形成功能性受体,比如α2β2,α3β2,α2β4等。此外,α7和α9可以形成同源多聚体。
目前,生活在热带海洋中的肉食性软体动物芋螺的毒液中产生的毒素(芋螺毒素,conopeptide,conotoxin,CTX)备受关注,已被用于系统地研究与开发nAChRs各种亚型的特异阻断剂。芋螺毒素通常含有10-46个氨基酸,富含二硫键,生物活性强,能特异地作用于动物细胞膜上的受体和离子通道。尤其是对电压门控或配体门控离子通道(包括少数G-蛋白相关受体等)具有较高的选择性。芋螺毒素按其前体蛋白的内质网信号肽序列的相似性,以及半胱氨酸模式,分为不同的基因家族,至今,所有已知的芋螺毒素可分为17个超家族,分别为A、C、D、S、M、I1、I2、I3、J、L、O1、O2、O3、P、T、V、Y(KaasQ,Yu R,Jin AH,Dutertre S and Craik DJ.ConoServer:updatedcontent,knowledge,and discovery tools in the conopeptidedatabase.Nucleic Acids Research(2012)[Ahead of print])。芋螺毒素按其受体靶位可分为α、ω、μ、δ等多种药理学家族。每个超家族根据受体靶类型,又可分为α、αA、κA(A-超家族),ω、δ、κ、μO(O-超家族),μ、φ、ΚM(M-超家族)等家族(亚型)。
其中,α-芋螺毒素是目前发现的、选择性最好的nAChRs亚型特异阻断剂。因此α-芋螺毒素及其作用靶点nAChRs在多种疾病机理的研究,以及药物研发方面具有极其重要的价值。α-芋螺毒素是人们最早发现的一类芋螺毒素,通常分子质量较小,一般由12~19个氨基酸残基组成,富含二硫键。α-芋螺毒素种类繁多,活性多样,结构变化复杂。通过其高度保守的信号肽序列、药理学活性及半胱氨酸模式可对α-芋螺毒素进行分类。α-芋螺毒素的半胱氨酸模式为CC-C-C,其中天然肽的二硫键连接方式为C1-C3与C2-C4,称为球形异构体(globular isomer),二硫键间形成2个loop环。含有4个半胱氨酸的α-芋螺毒素线性肽氧化折叠后往往产生3种异构体,除了C1-C3与C2-C4间的天然肽二硫键连接方式(球形异构体)外,另外两种异构体分别是带状异构体(ribbonisomer)与珠子状异构体(bead isomer)。带状异构体的二硫键连接方式为C1-C4与C2-C3;珠子状异构体的二硫键连接方式为C1-C2与C3-C4。球形异构体具有完全的生物活性,带状异构体有时通过不同的作用机制也发挥生物活性,珠子状异构体活性往往减小。根据二三及三四半胱氨酸间氨基酸数量不同,又可把α-芋螺毒素分为α3/5,α4/7,α4/6,α4/4和α4/3等多种亚家族,每个loop的特征和残基组成的不同是毒素作用于不同受体亚型的基础(Ulens C,Hogg RC,Celie PH,et al.Structural determinants of selective alpha-conotoxin binding to anicotinic acetylcholine receptor homolog AChBP[J].Proc Natl Acad SciUSA 2006;103:3615–20;Gehrmann J,Alewood PF,Craik DJ.Structuredetermination of the three disulfide bond isomers of alpha-conotoxin GI:amodel for the role of disulfide bonds in structural stability.J Mol Biol.1998,278(2):401-15;Grishin AA,Wang CI,Muttenthaler M,Alewood PF,LewisRJ,Adams DJ.Alpha-conotoxin AuIB isomers exhibit distinct inhibitorymechanisms and differential sensitivity to stoichiometry of alpha3beta4nicotinic acetylcholine receptors.J Biol Chem.2010,285(29):22254-63)。
长期研究表明,表达在多巴胺能(DA)神经元的nAChRs是治疗神经精神疾病,如烟碱、吗啡与可卡因等的成瘾、帕金森病、痴呆、精神分裂症、抑郁等的药物作用靶点(Larsson,A.;Jerlhag,E.;Svensson,L.;Soderpalm,B.;Engel,J.A.,Is an alpha-conotoxin MII-sensitivemechanism involved in the neurochemical,stimulatory,and rewardingeffects of ethanol?Alcohol 2004,34(2-3),239-50.Jerlhag,E.;Egecioglu,E.;Dickson,S.L.;Svensson,L.;Engel,J.A.,Alpha-conotoxinMII-sensitive nicotinic acetylcholine receptors are involved in mediatingthe ghrelin-induced locomotor stimulation and dopamine overflow innucleus accumbens.European neuropsychopharmacology,2008,18(7),508-18)。DA神经元中含有α6亚基的nAChRs表达量非常高,由于缺乏α6*nAChRs特异的药理学分子探针,α6nAChR在成瘾中所具有的重要作用的机制还不清楚。哺乳动物脑中纹状体上的α6β2*-nAChRs亚型被认为是治疗烟瘾和毒瘾的药物作用靶点(Exley,R.;Clements,M.A.;Hartung,H.;McIntosh,J.M.;Cragg,S.J.,Alpha6-containing nicotinicacetylcholine receptors dominate the nicotine control of dopamineneurotransmission in nucleus accumbens.Neuropsychopharmacology2008,33(9),2158-66)。α6亚基在脑中并不是广泛分布的,但却在中脑部分的多巴胺能神经元区域富集表达,这个区域是与愉快、奖赏与心情控制密切相关的区域,这意味着α6*nAChRs在药物引起的成瘾与情绪控制等的调控中起关键作用(Yang,K.C.,G.Z.Jin,et al.(2009).Mysterious alpha6-containing nAChRs:function,pharmacology,andpathophysiology.Acta Pharmacol Sin 30(6):740-751.Klink,R.;deKerchove d'Exaerde,A.;Zoli,M.;Changeux,J.P.,Molecular andphysiological diversity of nicotinic acetylcholine receptors in themidbrain dopaminergic nuclei.The Journal of neuroscience,2001,21(5),1452-63.Azam,L.;Winzer-Serhan,U.H.;Chen,Y.;Leslie,F.M.,Expression of neuronal nicotinic acetylcholine receptor subunit mRNAswithin midbrain dopamine neurons.The Journal of comparativeneurology 2002,444(3),260-74.Champtiaux,N.;Gotti,C.;Cordero-Erausquin,M.;David,D.J.;Przybylski,C.;Lena,C.;Clementi,F.;Moretti,M.;Rossi,F.M.;Le Novere,N.;McIntosh,J.M.;Gardier,A.M.;Changeux,J.P.,Subunit composition of functionalnicotinic receptors in dopaminergic neurons investigated withknock-out mice.The Journal of neuroscience,2003,23(21),7820-9.Pons,S.;Fattore,L.;Cossu,G.;Tolu,S.;Porcu,E.;McIntosh,J.M.;Changeux,J.P.;Maskos,U.;Fratta,W.,Crucial role of alpha4 andalpha6 nicotinic acetylcholine receptor subunits from ventral tegmentalarea in systemic nicotine self-administration.The Journal ofneuroscience,2008,28(47),12318-27)。α6*nAChRs也表达在儿茶酚胺能神经元与视网膜上(Le Novere,N.;Zoli,M.;Changeux,J.P.,Neuronal nicotinic receptor alpha 6 subunit mRNA is selectivelyconcentrated in catecholaminergic nuclei of the rat brain.The Europeanjournal of neuroscience 1996,8(11),2428-39.Vailati,S.;Hanke,W.;Bej an,A.;Barabino,B.;Longhi,R.;Balestra,B.;Moretti,M.;Clementi,F.;Gotti,C.,Functionalal pha6-containing nicotinic receptors arepresent in chick retina.Molecular pharmacology 1999,56(1),11-9.).α6β2*nAChRs表现出具有调控多巴胺释放的功能,在灵长类的1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine动物模型与人类帕金森症疾病模型上,α6β2*nAChRs的数量明显降低(Champtiaux,N.;Han,Z.Y.;Bessis,A.;Rossi,F.M.;Zoli,M.;Marubio,L.;McIntosh,J.M.;Changeux,J.P.,Distribution and pharmacology of alpha 6-containingnicotinic acetylcholine receptors analyzed with mutant mice.TheJournal of neuroscience,2002,22(4),1208-17.Quik,M.;Polonskaya,Y.;Kulak,J.M.;McIntosh,J.M.,Vulnerability of125I-alpha-conotoxin MII binding sites to nigrostriatal damage inmonkey.The Journal of neuroscience,2001,21(15),5494-500.Quik,M.;Bordia,T.;Forno,L.;McIntosh,J.M.,Loss of alpha-conotoxinMII-and A85380-sensitive nicotinic receptors in Parkinson's diseasestriatum.Journal of neurochemistry 2004,88(3),668-79).因而,α6/α3β2β3nAChR的特异阻断剂是研究解释不同组织中存在的α6*nAChRs生理功能的有价值的工具,以及与之有关的如成瘾等疾病的治疗药物。
药物成瘾既是医疗难题亦是严重的社会问题。烟瘾是由烟草中的烟碱(尼古丁)引起的,其体内受体就是烟碱乙酰胆碱受体(nAChRs)(Azam L,Mc Intosh JM.Alpha-conotoxins as pharmacologicalprobes of nicotinic acetylcholine receptors.Acta Pharmacol Sin.2009;30(6):771-783)。新近研究表明,阻断含有α6β2*的nAChRs可有效防止烟瘾、吗啡和可卡因毒瘾的发作,显著抑制吸烟和吸毒的欲望(Brunzell DH,Boschen KE,Hendrick ES,Beardsley PM,McIntoshJM.Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors inthe nucleus accumbens shell regulate progressive ratio respondingmaintained by nicotine.Neuropsychopharmacology.2010,35(3):665-73)。
帕金森病(Parkinson disease,PD)即震颤麻痹,是中、老年人的慢性神经系统变性疾病,是一种缓慢发生的选择性的中脑黑质多巴胺能神经元丧失和纹状体多巴胺含量显著减少,导致锥体外系的一系列症状,以运动减少、肌强直、震颤和姿势调节障碍为主要临床表现的复杂性疾病。
据调查,疼痛影响1/6的人群,包括关节炎、神经痛、肿痛。其中神经痛影响4-8%的人群,包括酒精中毒、坐骨神经痛、癌症与癌症化疗、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤等都会引起神经痛。
因此,亟需发现新的高特异性的nAChRs阻断剂。
发明内容
本发明人经过深入的研究和创造性地劳动,发现了一个新的α-芋螺毒素肽,其能够特异性地阻断乙酰胆碱受体,特别是对成瘾药物靶点α6/α3β2β3nAChR具有高选择性强阻断活性,具有在制备戒烟戒毒、镇痛药物、有关帕金森症、抑郁、痴呆、精神分裂症等,以及神经科学工具药等方面的良好应用前景。由此提供了下述发明:
本发明的一个方面涉及一种多肽,其为或者包含选自如下(1)至(3)中任一项所述的氨基酸序列:
(1)SEQ ID NO:1-5中的任一序列所示的氨基酸序列;
(2)与上述(1)所述的氨基酸序列至少80%、优选至少85%、更优选至少90%、尤其优选至少95%、最优选至少97%相同的氨基酸序列;或
(3)被1-5个、优选1-3个、更优选1-2个、最优选1个氨基酸残基的取代、缺失、插入和/或添加而与上述(1)或(2)所示序列有所不同的氨基酸序列。
为了本发明的一个目的,两个或更多个氨基酸序列之间的相同程度是通过BLAST2.0蛋白质数据库查询程序(Aaltschul等,1997,核酸研究25:3389-3402)并采用下列参数确定的:blastall–pblastp-a4-e10-E0-v500-b250-I[查询文档]-d prot_all,其中-p指程序名称,-a指将要用到的服务器数,-e指期望值,-E指延伸缺口的代价,-v指单线描述(one-line description)数,-b指将要显示的比对数,-I指查询文档,-d指用于查询的数据库。
同源多肽的氨基酸序列与SEQ ID NO:1-5中任一氨基酸序列不同之处可能在于取代、插入、添加和/或缺失了1或多个、优选1-5个、更优选1-3个、尤其优选1-2个、最优选1个氨基酸残基。优选地,氨基酸改变是性质改变较小的变化,即是不会显著影响蛋白质的折叠和/或活性的保守性氨基酸取代;小片段缺失,通常是1到大约5个、优选1-3个、更优选1个氨基酸的缺失;小的氨基或羧基末端延伸,如氨基端添加的甲硫氨酸残基;有多达大约20-25个残基的小连接肽;或可通过改变净电荷或者其它功能而有助于纯化的小延伸如多聚组氨酸片段、抗原表位或结合区。
保守性取代的例子是在碱性氨基酸(精氨酸、赖氨酸和组氨酸)、酸性氨基酸(谷氨酸和天冬氨酸)、极性氨基酸(谷氨酰胺和天冬酰胺)、疏水氨基酸(亮氨酸、异亮氨酸和缬氨酸)、芳香族氨基酸(苯丙氨酸、色氨酸和酪氨酸)和小氨基酸(甘氨酸、丙氨酸、丝氨酸、苏氨酸和甲硫氨酸)内进行的取代。通常不会改变特异活性的氨基酸取代是本领域已知的,并且由例如H.Neura t h和R.L.Hill,1979,在《蛋白质》一书,Academic Press,New York中描述过。最常见的替换是Ala/Ser,Val/Ile,Asp/Glu,Thr/Ser,Ala/Gly,Ala/Thr,Ser/Asn,Ala/Val,Ser/Gly,Tyr/Phe,Ala/Pro,Lys/Arg,Asp/Asn,Leu/Ile,Leu/Val,Ala/Glu和Asp/Gly以及反向进行的替换。
本发明还包括在本发明α-芋螺毒素肽的N-末端和/或C-末端融合了其它肽/多肽的融合多肽或可裂解的融合多肽。产生融合多肽的技术为本领域内已知,包括连接编码本发明肽的编码序列与编码所述其它肽/多肽的编码序列,使它们在同一读框中,并且融合多肽的表达受控于相同的启动子和终止子。
根据本发明任一项所述的多肽,其中,所述多肽的C末端是酰胺化的。所述酰胺化可以通过人工化学合成实现,也可以在细胞内或细胞外,通过酰胺化酶实现。
根据本发明任一项所述的多肽,其中,所述多肽的N末端的第一个半胱氨酸与第三个半胱氨酸形成二硫键,并且第二个半胱氨酸与第四个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第四个半胱氨酸形成二硫键,并且第二个半胱氨酸与第三个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第二个半胱氨酸形成二硫键,并且第三个半胱氨酸与第四个半胱氨酸形成二硫键。
本发明的上述多肽即为芋螺毒素肽;具体地,是α-芋螺毒素肽。
上述芋螺毒素肽可以从我国海南产的织锦芋螺(Conus textile)中提取。也可以化学合成氨基酸序列(例如参考实施例2中的方法);或者通过基因重组的手段表达其核苷酸(核苷酸序列的制备参考实施例1或者直接按照实施例1中的核苷酸序列人工合成),得到多肽。也可以参考下面的方法:
本发明的另一方面涉及本发明任一项所述的多肽的制备方法,包括下述步骤:
1)在ABI Prism 433a多肽合成仪上或者手工方法合成线性多肽,Fmoc氨基酸的侧链保护基为:Pmc(Arg)、Trt(Cys)、But(Thr、Ser、Tyr),OBut(Asp),Boc(Lys);半胱氨酸用Trt或Acm保护基团,分别在相应的半胱氨酸之间定点形成二硫键;
2)将步骤1)中得到的线性多肽从树脂上切割下来,并用冰乙醚沉淀和洗涤回收线性多肽粗品,用制备型反向HPLC C18柱(Vydac)纯化;
3)将步骤2)中得到的产物进行两步氧化折叠。
本发明的再一方面涉及一种多核苷酸,其编码本发明任一项所述多肽的氨基酸序列。
根据本发明任一项所述的多核苷酸,其为或者包含选自如下的(1)至(3)中任一项所述的核苷酸序列:
(1)SEQ ID NO:6-11中的任一序列所示的核苷酸序列;
(2)上面(1)中所述核苷酸序列的互补序列;
(3)在严谨条件下能够与上述(1)中所述的核苷酸序列杂交的核苷酸序列。
关于多核苷酸之间的杂交,在现有技术中有众多的文献可供参考,包括例如Sambrook等,分子克隆实验室手册,第二版,冷泉港实验室,冷泉港,1989。杂交中可以应用各种程度的严谨条件,例如中度、中度-高度,或者高度严谨条件。越严谨的条件,形成双螺旋要求的互补程度越高。可以通过温度、探针浓度、探针长度、离子强度、时间等等控制严谨程度。对于双链DNA基因探针,杂交于低于DNA杂合体熔解温度[melting temperature,Tm])20—25℃下在6X SSPE、5XDenhardt氏溶液、0.1%SDS、0.1mg/ml变性DNA中进行过夜。清洗通常如下进行:于Tm-20℃在0.2X SSPE、0.1%SDS中一次15分钟(中度严谨条件清洗)。
本发明的再一方面涉及一种核酸构建体,其包含本发明任一项所述的多核苷酸。
本发明的再一方面涉及一种表达载体,其包含本发明任一项所述的核酸构建体。
本发明的再一方面涉及一种转化的细胞,其包含本发明任一项所述的表达载体。
本发明的再一方面涉及一种融合蛋白,其包含本发明任一项所述的多肽。
本发明的再一方面涉及一种药物组合物,其包含本发明任一项所述的多肽,或者包含本发明的融合蛋白;可选地,其还包含药学上可接受的载体或辅料。
本发明的再一方面涉及一种阻断乙酰胆碱受体的方法,包括使用有效量的本发明任一项所述的多肽的步骤;具体地,所述乙酰胆碱受体是α6/α3β2β3乙酰胆碱受体。
本发明的再一方面涉及确定乙酰胆碱受体亚型的方法,该方法包括:将乙酰胆碱受体与本发明任一项所述的多肽进行接触的步骤。当多肽能够特异阻断乙酰胆碱受体时,则推断该乙酰胆碱受体是α6β2*亚型的乙酰胆碱受体(α6/α3β2β3乙酰胆碱受体)。
本发明的再一方面涉及本发明任一项所述的多肽用于阻断乙酰胆碱受体的用途;具体地,所述乙酰胆碱受体是α6/α3β2β3乙酰胆碱受体。
本发明的再一方面涉及本发明任一项所述的多肽在制备阻断乙酰胆碱受体的药物或试剂中的用途;具体地,所述乙酰胆碱受体是α6/α3β2β3乙酰胆碱受体。
本发明的再一方面涉及本发明任一项所述的多肽在制备治疗或预防神经系统疾病例如成瘾、神经痛、帕金森症、或痴呆等的药物,或者用于制备杀灭害虫、镇痛、戒烟、或戒毒的药物的用途;具体地,所述神经痛由如下原因导致:癌症与癌症化疗、酒精中毒、坐骨神经痛、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、淋巴神经痛、骨髓瘤、多点运动神经痛、慢性先天性感觉神经病、急性剧烈自发性神经痛、挤压神经痛、脉管炎、血管炎、局部缺血、尿毒症、儿童胆汁肝脏疾病、慢性呼吸障碍、复合神经痛、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎、过敏症等。
本发明的再一方面涉及一种治疗和/或预防神经系统疾病例如疼痛、烟酒和毒品成瘾、智障、痴呆、精神分裂症、中枢神经紊乱、癫痫症、帕金森病、精神病、神经肌肉阻滞、重症肌无力、抑郁症、高血压、心率不齐、哮喘、肌肉松弛、中风、乳腺癌和肺癌等的方法,或者一种杀灭害虫、镇痛、戒烟、或戒毒的方法,包括给予有效量的本发明的多肽(芋螺毒素肽或其前肽)或者本发明的药物组合物的步骤;具体地,所述成瘾由烟碱、吗啡、可卡因、酒精等能引起上瘾的物质;所述神经痛由如下原因导致:癌症与癌症化疗、酒精中毒、坐骨神经痛、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、淋巴神经痛、骨髓瘤、多点运动神经痛、慢性先天性感觉神经病、急性剧烈自发性神经痛、挤压神经痛、脉管炎、血管炎、局部缺血、尿毒症、儿童胆汁肝脏疾病、慢性呼吸障碍、复合神经痛、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎、过敏症等。
本发明的芋螺毒素肽可通过结合α6/α3β2β3乙酰胆碱受体(nAChR)发挥作用,具有戒除成瘾与镇痛的活性。可应用于研究、诊断和治疗成瘾、神经痛、帕金森病、痴呆、精神分裂症、抑郁等神经系统疾病、以及作为有用的分子探针用于研究等方面。不同的α-CTX对脊椎动物受体的亲和性不同,有时相差几个数量级。这种种系间的差异使得α-CTX可作为有用的探针用于研究脊椎动物nAChR的种系发生,可作为分子探针来确定nAchR的不同亚型。它们是新药开发的候选药物、先导药物和治疗药物。
下面给出了本发明涉及的术语的解释。
成瘾(addiction)
本发明所述多肽涉及到能治疗各种有依赖性物质引起的成瘾。成瘾是指反复使用精神活性物质者处于周期性或慢性中毒状态。精神活性物质指尼古丁、鸦片、海洛因、甲基苯丙胺(冰毒)、吗啡、大麻、可卡因以及国家规定管制的其他能够使人形成瘾癖的麻醉药品和精神药品等。成瘾与大脑中大量产生的多巴胺(Dopamine)有关。表现为不可遏制地应用偏爱的物质和难以自制或难以矫正使用行为,为获取精神活性物质达到感觉良好或避免戒断痛苦之目的,可以不择手段。典型情况是耐受性增高,并在物质使用中断后常出现戒断症状。成瘾者的生活可能完全由物质使用主宰,因而严重影响,甚至抛弃了其他重要活动和一切责任。因此,物质使用既给个人,也给社会带来损害。当用于酒精使用时,与慢性酒精中毒的概念等同。成瘾一词还涵盖躯体及心理两方面的内容。心理成瘾强调对饮酒、服药的自控力受损体验,而躯体成瘾指耐受和戒断症状。
神经痛
本发明所述多肽涉及到治疗各种神经痛的用途。神经痛是周围或中枢神经系统原发或继发性损害或功能障碍或短暂紊乱引起的疼痛,表现为自发性疼痛、痛觉超敏、痛觉过敏等。很多疾病都会引起神经痛,包括癌症与癌症化疗、酒精中毒、坐骨神经痛、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、淋巴神经痛、骨髓瘤、多点运动神经痛、慢性先天性感觉神经病、急性剧烈自发性神经痛、挤压神经痛、脉管炎(血管炎)/局部缺血、尿毒症、儿童胆汁肝脏疾病、慢性呼吸障碍、复合神经痛、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎、过敏症等。
核酸构建体
本发明还涉及包含本发明所述核酸序列及与之可操作连接的1或多个调控序列的核酸构建体,所述调控序列在其相容条件下能指导编码序列在合适的宿主细胞中进行表达。表达应理解为包括多肽生产中所涉及的任何步骤,包括,但不限于转录、转录后修饰、翻译、翻译后修饰和分泌。
“核酸构建体”在文中定义为单链或双链核酸分子,它们分离自天然基因,或者经修饰而含有以非天然方式组合和并列的核酸片段。当核酸构建体包含表达本发明所述编码序列必需的所有调控序列时,术语核酸构建体与表达盒同义。术语“编码序列”在文中定义为核酸序列中直接确定其蛋白产物的氨基酸序列的部分。编码序列的边界通常是由紧邻mRNA 5’端开放读码框上游的核糖体结合位点(对于原核细胞)和紧邻mRNA 3’端开放读码框下游的转录终止序列确定。编码序列可以包括,但不限于DNA、cDNA和重组核酸序列。
可以以多种方式操作编码本发明所述肽的分离的核酸序列,使其表达所述肽。可能期望或必须在插入载体之前对核酸序列进行加工,这取决于表达载体。应用重组DNA方法修饰核酸序列的技术为本领域所熟知。
本文中术语“调控序列”定义为包括表达本发明肽所必需或有利的所有组分。每个调控序列对于编码多肽的核酸序列可以是天然含有的或外来的。这些调控序列包括,但不限于,前导序列、多聚腺苷酸化序列、前肽序列、启动子、信号序列和转录终止子。最低限度,调控序列要包括启动子以及转录和翻译的终止信号。为了导入特定的限制位点以便将调控序列与编码多肽的核酸序列的编码区进行连接,可以提供带接头的调控序列。术语“可操作连接”在文中定义为这样一种构象,其中调控序列位于相对DNA序列之编码序列的适当位置,以使调控序列指导多肽的表达。
调控序列可以是合适的启动子序列,即可被表达核酸序列的宿主细胞识别的核酸序列。启动子序列含有介导多肽表达的转录调控序列。启动子可以是在所选宿主细胞中有转录活性的任何核酸序列,包括突变的、截短的和杂合的启动子,可以得自编码与宿主细胞同源或异源的胞外或胞内多肽的基因。
调控序列还可以是合适的转录终止序列,即能被宿主细胞识别从而终止转录的一段序列。终止序列可操作连接在编码多肽的核酸序列的3’末端。在所选宿主细胞中可发挥功能的任何终止子都可以用于本发明。
调控序列还可以是合适的前导序列,即对宿主细胞的翻译十分重要的mRNA非翻译区。前导序列可操作连接于编码多肽的核酸序列的5’末端。在所选宿主细胞中可发挥功能的任何前导序列均可用于本发明。
调控序列还可以是信号肽编码区,该区编码一段连在多肽氨基端的氨基酸序列,能引导编码多肽进入细胞分泌途径。核酸序列编码区的5’端可能天然含有翻译读框一致地与分泌多肽的编码区片段自然连接的信号肽编码区。或者,编码区的5’端可含有对编码序列是外来的信号肽编码区。当编码序列在正常情况下不含有信号肽编码区时,可能需要添加外来信号肽编码区。或者,可以用外来的信号肽编码区简单地替换天然的信号肽编码区以增强多肽分泌。但是,任何能引导表达后的多肽进入所用宿主细胞的分泌途径的信号肽编码区都可以用于本发明。
调控序列还可以是肽原编码区,该区编码位于多肽氨基末端的一段氨基酸序列。所得多肽被称为酶原或多肽原。多肽原通常没有活性,可以通过催化或自我催化而从多肽原切割肽原而转化为成熟的活性多肽。
在多肽的氨基末端即有信号肽又有肽原区时,肽原区紧邻多肽的氨基末端,而信号肽区则紧邻肽原区的氨基末端。
添加能根据宿主细胞的生长情况来调节多肽表达的调控序列可能也是需要的。调控系统的例子是那些能对化学或物理刺激物(包括在有调控化合物的情况下)作出反应,从而开放或关闭基因表达的系统。调控序列的其他例子是那些能使基因扩增的调控序列。在这些例子中,应将编码多肽的核酸序列与调控序列可操作连接在一起。
表达载体
本发明还涉及包含本发明核酸序列、启动子和转录及翻译终止信号的重组表达载体。可以将上述各种核酸和调控序列连接在一起来制备重组表达载体,该载体可以包括1或多个方便的限制位点,以便在这些位点插入或取代编码多肽的核酸序列。或者,可以通过将核酸序列或包含该序列的核酸构建体插入适当表达载体而表达本发明所述核酸序列。制备表达载体时,可使编码序列位于载体中以便与适当的表达调控序列可操作连接。
重组表达载体可以是任何便于进行重组DNA操作并表达核酸序列的载体(例如质粒或病毒)。载体的选择通常取决于载体与它将要导入的宿主细胞的相容性。载体可以是线性或闭环质粒。
载体可以是自主复制型载体(即存在于染色体外的完整结构,可独立于染色体进行复制),例如质粒、染色体外元件、微小染色体或人工染色体。载体可包含保证自我复制的任何机制。或者,载体是一个当导入宿主细胞时,将整合到基因组中并与所整合到的染色体一起复制的载体。此外,可应用单个载体或质粒,或总体包含将导入宿主细胞基因组的全部DNA的两个或多个载体或质粒,或转座子。
优选本发明所述载体含有1或多个便于选择转化细胞的选择标记。选择标记是这样一个基因,其产物赋予对杀生物剂或病毒的抗性、对重金属的抗性,或赋予营养缺陷体原养型等。细菌选择标记的例子如枯草芽孢杆菌或地衣芽孢杆菌的da l基因,或者抗生素如氨苄青霉素、卡那霉素、氯霉素或四环素的抗性标记。
优选本发明所述载体包含能使载体稳定整合到宿主细胞基因组中,或保证载体在细胞中独立于细胞基因组而进行自主复制的元件。
就进行自主复制的情况而言,载体还可以包含复制起点,使载体能在目标宿主细胞中自主地复制。复制起点可以带有使其在宿主细胞中成为温度敏感型的突变(参见例如,fEhrlich,1978,美国国家科学院学报75:1433)。
可以向宿主细胞插入1个以上拷贝的本发明核酸序列以提高该基因产物的产量。该核酸序列的拷贝数增加可以通过将该序列的至少1个附加拷贝插入宿主细胞基因组中,或者与该核酸序列一起插入一个可扩增的选择标记,通过在有合适选择试剂存在下培养细胞,挑选出含有扩增拷贝的选择性标记基因、从而含有附加拷贝核酸序列的细胞。
用于连接上述各元件来构建本发明所述重组表达载体的操作是本领域技术人员所熟知的(参见例如Sambrook等,分子克隆实验手册,第二版,冷泉港实验室出版社,冷泉港,纽约,1989)。
宿主细胞
本发明还涉及包含可用来重组生产多肽的本发明所述核酸序列的重组宿主细胞。可将包含本发明之核酸序列的载体导入宿主细胞,从而使该载体以上述染色体整合体或自我复制的染色体外载体形式得以维持。术语“宿主细胞”涵盖任何由于复制期间发生的突变而与亲本细胞不同的后代。宿主细胞的选择很大程度上取决于多肽编码基因及其来源。
宿主细胞可以是原核细胞或者真核细胞,例如细菌或酵母细胞。可以通过本领域技术人员熟知的技术将载体导入宿主细胞。
制备方法
本发明还涉及重组制备本发明肽的方法,该方法包括:(a)在适于产生所述肽的条件下,培养含有核酸构建体的宿主细胞,该核酸构建体包含编码所述肽的核酸序列;和(b)回收该肽。
在本发明所述制备方法中,用本领域已知方法在合适多肽产生的营养培养基中培养细胞。例如,可以在合适的培养基中,在允许多肽表达和/或分离的条件下,通过摇瓶培养、实验室或工业发酵罐中小规模或大规模发酵(包括连续、分批、分批加料或固态发酵)来培养细胞。在包含碳和氮源以及无机盐的合适的培养基中,采用本领域已知的步骤进行培养。合适的培养基可由供应商提供或者可以参照公开的组成(例如,美国典型培养物保藏中心的目录中所述)来制备。如果多肽被分泌到培养基中,则可以直接从培养基中回收多肽。如果多肽不分泌,可以从细胞裂解物中回收。
可以用本领域已知方法回收所产生的多肽。例如,可以通过常规操作(包括,但不限于离心、过滤、抽提、喷雾干燥、蒸发或沉淀)从培养基中回收多肽。
可以通过各种本领域已知的操作来纯化本发明所述多肽,这些操作包括,但不限于层析(例如,离子交换层析、亲和层析、疏水作用层析、层析聚焦、和大小排阻层析)、HPLC、电泳(例如,制备性等电点聚焦)、差示溶解度(例如硫酸铵沉淀)、SDS-PAGE或抽提(参见例如,蛋白质纯化,J.C.Jans on和La r s Ryden编,VCH Publis her s,New York,1989)。
转基因动物和植物
本发明还涉及转化了本发明的核酸序列的动物或植物细胞,优选小麦、玉米等植物细胞,赋予被转化宿主新的性状(如抗虫性)。这可以通过本领域技术人员熟知的技术,用此处公开的构建体转化动物或植物细胞而实现。
用于控制害虫的方法和制剂
可以通过本领域技术人员知道的多种方法,使用本发明的芋螺毒素肽或多核苷酸来实现控制害虫。这些方法包括例如将重组微生物应用于害虫(或它们的所在地)、和用编码本发明的芋螺毒素肽的基因转化植物。转化可以由本领域技术人员使用常规技术进行。此处公开了用于这些转化的必要物质,或者熟练的技术人员可以通过其它方法容易的获得。
可以将配制的含有芋螺毒素肽、或包含本发明所述多核苷酸的重组微生物的制剂应用于土壤。还可以将配制的产品作为种子覆料或根部处理或作物生长周期晚期的完整植株处理应用。制剂可以包括扩散-增稠佐剂、稳定剂、其它杀虫添加剂、或表面活性剂。液体制剂可以是基于水的或非水的,并以泡沫、凝胶、悬浮液、可乳化浓缩物等等形式使用。成分可以包括流变剂、表面活性剂、乳化剂、分散剂、或聚合物。
本领域技术人员可以理解,杀虫剂浓度将由于特殊制剂的本性广泛变化,特别是可作为浓缩物或直接使用。杀虫剂将以至少1%(重量计)存在,而且可能是100%(重量计)。干燥制剂通常有大约1-95%(重量计)的杀虫剂,而液体制剂将通常是液相中固体重量大约1-60%。含有细胞的制剂将通常含有大约102-大约104个细胞/mg。这些制剂将以每公顷大约50mg(液体的或干的)-1kg或更多的量使用。通过喷、撒、洒等等,可以将制剂应用于害虫环境,例如土壤和植物。
药物组合物
本发明还涉及含有本发明肽和药学可接受载体和/或赋形剂的药物组合物。所述药物组合物可用于研究、诊断、缓解或治疗与成瘾、神经痛、智障、疼痛、帕金森症、精神病、抑郁、重症肌无力、癌症等有关的疾病或病症。在一个实施方案中,含有治疗有效量的本发明肽的药物组合物以利于药用的方式配制和给药,并需考虑到个体病人的临床状况、运送位点、给药方法、给药日程安排和医生已知的其它因素。因此用于本文目的的“有效量”由这些方面的考虑决定。
含治疗有效量的本发明多肽的药物组合物非肠道给药、口服、脑池内给药、鞘内给药等。“药学可接受载体”指无毒的固体、半固体或液体填充物、稀释液、胶囊材料或任何类型的配方辅助物。本文所用术语“非肠道的”表示的给药方式包括静脉内、肌肉内、腹膜内、胸骨内、皮下、鞘内和关节内注射和输注。本发明多肽还可通过缓释系统恰当地给药。
本发明还涉及特异阻断nAChRs的药物组合物。
可应用本发明的芋螺毒素肽作为有用的探针来用于研究动物nAChR的种系发生;作为分子探针来确定nAChR的不同亚型;作为分子模型,设计新药;作为研究、诊断神经性疾病如成瘾、帕金森氏病、行动障碍、精神分裂症等的工具药和治疗药物;治疗乳腺癌、肺癌、小细胞肺癌等的侯选药物。作为多肽杀虫剂,开发为新型生物农药等。
发明的有益效果
本发明的α-芋螺毒素肽能够特异地阻断乙酰胆碱受体(nAChRs),并且具有戒除成瘾与镇痛活性,以及治疗帕金森症、痴呆、精神分裂症、抑郁等疾病的功效。
附图说明
图1:α-芋螺毒素TxIB/Txd4(TxIB)前肽基因序列及其编码产生的前肽与翻译后修饰产生的成熟肽。箭头所指为翻译后修饰的加工位点。推断的蛋白酶水解加工位点1(processing site 1)在碱性氨基酸精氨酸(R)的后面;C-末端酰胺化加工位点可能在箭头所指的两个甘氨酸的位置,用字符底纹表示,即processing site 2或processing site 3.成熟肽C-末端紧挨半胱氨酸(Cys)的第一或第二个甘氨酸残基往往是酰胺化翻译后修饰的加工位点,从processingsite 2进行酰胺化产生的成熟肽命名为TxIB/Txd4(或TxIB),序列为:GCCSDPPCRNKHPDLC#(#表示C-末端酰胺化);从processing site3进行酰胺化产生的成熟肽命名为TxIB/Txd4(G)(或TxIB(G)),序列为:GCCSDPPCRNKHPDLCG#(#表示C-末端酰胺化)。TxIB(G)的C-末端只比TxIB多一个甘氨酸(G),是TxIB的类似物。前肽区用斜体字表示,成熟肽用下划线表示,其中的半胱氨酸(C)用黑体字显示,终止密码子用*表示。
图2:显示的是α-TxIB/Txd4(图2A)以及TxIB(G)(图2B)的成熟肽序列及其二硫键连接方式I-III,II-IV。
图3:α-TxIB与TxIB(G)是α6/α3β2β3 nAChR的高选择性特异阻断剂。图3A显示的是1μMα-TxIB对α6/α3β2β3 nAChR的电流影响情况。图3A中“C”是指的对照电流,箭头所指的是1μMα-TxIB温育5分钟后,第一个Ach脉冲形成的电流轨迹(~0nA)。图3B显示的是α-TxIB与TxIB(G)对α6/α3β2β3 nAChR的浓度剂量反应曲线,图中横坐标为所用α-TxIB与TxIB(G)的摩尔浓度(M)的对数值(Log[TxIB and TxIB(G)]M);纵坐标为剂量反应百分数(% Response),是相应浓度的毒素作用下乙酰胆碱受体电流与对照电流的比值百分数。图3C显示的是α-TxIB对各种nAChRs亚型的浓度剂量反应曲线,α-TxIB特异阻断α6/α3β2β3 nAChR,其半阻断剂量(IC50)为28nM,在10μM毒素浓度下,TxIB对其他亚型没有阻断作用,其IC50>10μM。图中各个数值是取自3-5个非洲爪蟾卵母细胞的电流平均值。
图4:显示的是1μMα-TxIB对α6/α3β2β3 nAChR(图4A),以及10μMα-TxIB对其非常接近的α3β2(图4B),α6/α3β4(图4C),α3β4(图4D)nAChRs的电流影响情况。图中“C”是指的对照电流,紧接“C”后面的是α-TxIB的毒素浓度。箭头所指的是温育5分钟后,TxIB阻断相应受体亚型的第一个Ach脉冲形成的电流轨迹。1μMα-TxIB特异阻断α6/α3β2β3 nAChR(图4A),而10μM完全不阻断α3β2(图4B),α6/α3β4(图4C)与α3β4(图4D)nAChRs亚型。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件(例如参考J.萨姆布鲁克等著,黄培堂等译的《分子克隆实验指南》,第三版,科学出版社)、相应的参考文献、或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:α-芋螺毒素TxIB/Txd4基因的克隆和序列分析
1.织锦芋螺基因组DNA的提取
分别以从海南岛、西沙群岛等沿海采集的织锦芋螺(C.textileLinnaeus)活体为材料,储存在-80℃备用。先将芋螺毒腺解剖出来,并称重。然后用海洋动物基因组DNA提取试剂盒(购自中国北京天根生化科技有限公司),提取毒腺的基因组DNA,具体操作参见试剂盒说明书。将提取的芋螺基因组总DNA溶于100μL TE中,取5μL进行1.0%琼脂糖凝胶电泳,以λ-EcoT14 I digest DNA Marker为标准,检测所得DNA的完整性和大小。用核酸蛋白质分析仪测定DNA溶液的OD260、OD280值以及OD260/OD280比值,并计算DNA的浓度(μg·ml-1)、纯度和DNA产率(μg·g-1)。所提取的完整DNA用于下一步PCR扩增进行芋螺毒素基因克隆的模板。
2.PCR反应及其产物的克隆、测序、和序列分析
根据α-CTX前体基因内含子序列及其3’端非翻译区(3’-UTR)序列,设计α-CTX特异引物:
上游内含子引物1:5’-GTGGTTCTGGGTCCAGCA-3’(SEQ ID NO:12);
下游3’-UTR引物2:5’-GTCGTGGTTCAGAGGGTC-3’(SEQ ID NO:13)。
将前面所提取的基因组DNA原液稀释后作为PCR扩增的模板,采用如下的PCR扩增体系和反应条件:
(1)PCR反应体系:
(2)PCR反应条件:
Figure BDA00001981639400222
回收PCR特异扩增产物,与T-easy载体(Promega)连接后转化大肠杆菌XL1菌株(也可以使用其它的商业化的感受态大肠杆菌细胞),利用蓝白菌落和氨苄青霉素抗性挑选重组子,抽提纯化重组子质粒用于测序分析,得到PCR特异扩增产物的序列。
所获PCR特异扩增产物序列经DNAStar软件分析,获知其编码蛋白序列、3’-非翻译区(UTR)序列。经序列分析,获得了本发明的1种新型α-CTX TxIB/Txd4的前体基因(SEQ ID NO:11)(图1)。
芋螺毒素前体蛋白的信号肽、前肽以及成熟肽的预测,采用在线ProP 1.0 Server进行分析(Duckert,P.;Brunak,S.;Blom,N.,Prediction of proprotein convertase cleavage sites.Proteinengineering,design & selection:PEDS 2004,17(1),107-12.)。
根据前体基因及芋螺毒素特点,推导出TxIB/Txd4芋螺毒素前肽,它具有SEQ ID NO:5所示的含有41氨基酸的蛋白序列。
根据前肽序列再推导出成熟肽TxIB/Txd4或TxIB/Txd4(G),它们分别具有SEQ ID NO:1或SEQ ID NO:2所示的氨基酸序列,推导的方法和原理请参考Luo S,Zhangsun D,Zhang B,Quan Y,Wu Y.Novelalpha-conotoxins identified by gene sequencing from cone snailsnative to Hainan,and their sequence diversity.J Pept Sci.2006,12(11):693-704,以及在线软件ProP 1.0 Server。
推导结果详见图1。
TxIB/Txd4和TxIB/Txd4(G)是新的α-芋螺毒素,与其他α-CTX的序列和活性比较见表1。
表1:α-Tx I B与其他α-芋螺毒素前体蛋白序列及其活性比较
成熟肽都具有CC-C-C的半胱氨酸模式。TxIB(G)的C-末端只比TxIB多一个甘氨酸(G),是TxIB的类似物。TxIB/Txd4或TxIB/Txd4(G)含有α-CTX所特有的CC-C-C半胱氨酸模式,二硫键连接方式可以为I-III,II-IV(图2,A-B),即在第一和第三个半胱氨酸之间,以及第二和第四个半胱氨酸之间分别形成两对二硫键。TxIB/Txd4和TxIB/Txd4(G)为4/7型α-CTX(图1和图2)。
(1)SEQ ID NO:1(本文中也称为α-conotoxin TxIB/Txd4或α-TxIB/Txd4或TxIB/Txd4或TxIB)所示的氨基酸序列(成熟肽):
GCCSDPPCRNKHPDLC(SEQ ID NO:1)(16aa)。
优选地,C-末端的半胱氨酸(C)是酰胺化的,即表示为GCCSDPPCRNKHPDLC#,其中#表示C-末端酰胺化。
(2)SEQ ID NO:2(本文中也称为α-conotoxin TxIB/Txd4(G)或α-TxIB/Txd4(G)或TxIB/Txd4(G)或TxIB(G))所示的氨基酸序列(成熟肽):
GCCSDPPCRNKHPDLC G(SEQ ID NO:2)(17aa)。
优选地,C-末端的甘氨酸(G)是酰胺化的,即表示为GCCSDPPCRNKHPDLC G#,其中#表示C-末端酰胺化。
不拘于理论的限制,没有酰胺化的SEQ ID NO:2的C-末端的甘氨酸(第17位)可以是酰胺化酶(在细胞内或细胞外)的识别位点,从而导致与该甘氨酸紧邻的半胱氨酸(C,第16位)的酰胺化,这种情况下将得到酰胺化的SEQ ID NO:1(GCCSDPPCRNKHPDLC#)。
(3)SEQ ID NO:3所示的氨基酸序列:
GCCSDPPCRNKHPDLC GG(SEQ ID NO:3)(18aa)。
不拘于理论的限制,SEQ ID NO:3的第18位的甘氨酸可以是酰胺化酶(在细胞内或细胞外)的识别位点,从而导致与该甘氨酸紧邻的17位的甘氨酸(G)的酰胺化,这种情况下将得到酰胺化的SEQ IDNO:2(GCCSDPPCRNKHPDLC G#)。
或者,
SEQ ID NO:3的第17位的甘氨酸可以是酰胺化酶(在细胞内或细胞外)的识别位点,从而导致与该甘氨酸紧邻的16位的半胱氨酸(C)的酰胺化,这种情况下将得到酰胺化的SEQ ID NO:1(GCCSDPPCRNKHPDLC#)。
(4)SEQ ID NO:4所示的氨基酸序列:
GCCSDPPCRNKHPDLC GGRR(SEQ ID NO:4)(20aa)。
不拘于理论的限制,SEQ ID NO:4的第18位的甘氨酸可以是酰胺化酶(在细胞内或细胞外)的识别位点,从而导致与该甘氨酸紧邻的17位的甘氨酸(G)的酰胺化,这种情况下将得到酰胺化的SEQ I DNO:2(GCCSDPPCRNKHPDLC G#)。
或者,
SEQ ID NO:4的第17位的甘氨酸可以是酰胺化酶(在细胞内或细胞外)的识别位点,从而导致与该甘氨酸紧邻的16位的半胱氨酸(C)的酰胺化,这种情况下将得到酰胺化的SEQ ID NO:1(GCCSDPPCRNKHPDLC#)。
(5)SEQ ID NO:5(本文中也称为α-conotoxin TxIB/Txd4precursor或α-TxIB/Txd4 precursor或TxIB/Txd4 precursor或TxIB precursor)所示的氨基酸序列(前体肽):
FDGRNTSANNKATDLMALPVR GCCSDPPCRNKHPDLC GGRR(SEQ ID NO:5)(41aa)。
(6)SEQ ID NO:6所示的核苷酸序列(编码TxIB/Txd4成熟肽):
GGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACCCAGATCTTTGT(SEQ IDNO:6)(48bp)。
(7)SEQ ID NO:7所示的核苷酸序列(编码TxIB/Txd4成熟肽或编码TxIB(G)成熟肽):
GGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACCCAGATCTTTGTGGC(SEQ ID NO:7)(51bp)。
(8)SEQ ID NO:8所示的核苷酸序列(编码TxIB/Txd4成熟肽或编码TxIB(G)成熟肽):
GGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACCCAGATCTTTGTGGCGGA(SEQ ID NO:8)(54bp)。
(9)SEQ ID NO:9所示的核苷酸序列(编码TxIB/Txd4成熟肽前体或编码TxIB(G)成熟肽前体):
GGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACCCAGATCTTTGTGGCGGAAGACGCTGA(SEQ ID NO:9)(63bp)。
(10)SEQ ID NO:10所示的核苷酸序列(编码TxIB/Txd4或TxIB(G)前体蛋白序列):
TTTGATGGCAGGAATACCTCAGCCAACAACAAAGCGACTGACCTGATGGCTCTGCCTGTCAGGGGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACCCAGATCTTTGTGGCGGAA GACGCTGA(SEQ ID NO:10)(123bp)。
(11)SEQ ID NO:11所示的核苷酸序列:
GTGGTTCTGGGTCCAGCATTTGATGGCAGGAATACCTCAGCCAACAACAAAGCGACTGACCTGATGGCTCTGCCTGTCAGGGGATGCTGTTCCGATCCTCCCTGTAGAAACAAGCACC CA GATCTTTGTGGCGGAAGACGCTGATGCTCCAGGACCCTCTGAACCACGAC(斜体字母是内含子,对应引物)(SEQ ID NO:11)(170bp)。
实施例2:α-芋螺毒素TxIB与TxIB(G)的人工合成
根据α-芋螺毒素TxIB与TxIB(G)成熟肽的氨基酸序列(SEQ IDNO:1和2,C-末端均酰胺化),采用Fmoc方法人工合成TxIB与TxIB(G)线性肽(图2)。具体方法如下:
树脂肽采用Fmoc化学方法进行人工合成,可用多肽合成仪或手工合成法合成树脂肽。除了半胱氨酸外,其余氨基酸用标准的侧链保护基团。TxIB与TxIB(G)的第1和第3个半胱氨酸(Cys)的-SH用Trt(S-trityl)保护,第2和第4个半胱氨酸的-SH用Acm(S-acetamidomethyl)成对保护。其合成步骤为:采用固相合成法中的Fmoc与FastMoc方法,在ABI Prism 433a多肽合成仪上合成了3个异构体线性肽。Fmoc氨基酸的侧链保护基为:Pmc(Arg)、Trt(Cys)、But(Thr、Ser、Tyr),OBut(Asp),Boc(Lys).采用Fmoc HOBT DCC方法,Rink酰胺化树脂及Fmoc氨基酸,合成步骤参考仪器合成手册进行。为反应完全,在哌啶脱保护及偶合时间上分别适当延长,对难接氨基酸采用双偶合,获得树脂肽。用reagent K(trifluoroacetic acid/water/ethanedithiol/phenol/thioanisole;90:5:2.5:7.5:5,v/v/v/v/v)将线性肽从树脂上切割下来,并用冰乙醚沉淀和洗涤回收线性肽粗品,用制备型反向HPLC C18柱(Vydac)纯化,洗脱线性梯度为在0-40min内2-42% B60,42-47min 42–100% B60。溶剂B60是60% ACN(acetonitrile),40% H20,0.05% TFA(trifluoroacetic acid);溶剂A是0.05% TFA的水溶液。
纯化后的线性肽用分析型的HPLC C18柱(Vydac)进行纯度检测,洗脱梯度为0–40min 2–42% B60,42-47min 42–100% B60,流速为1mL/min。其纯度达95%以上,用于氧化折叠。
参照文献(Dowell,C.;Olivera,B.M.;Garrett,J.E.;Staheli,S.T.;Watkins,M.;Kuryatov,A.;Yoshikami,D.;Lindstrom,J.M.;McIntosh,J.M.,Alpha-conotoxin PIA is selective for alpha6subunit-containing nicotinic acetylcholine receptors.TheJournal of neuroscience 2003,23(24),8445-52.)对TxIB与TxIB(G)的线性肽进行两步氧化折叠反应,过程简述如下:
首先通过铁氰化钾氧化法(20mM potassium ferricyanide,0.1M Tris,pH7.5,30min)在Trt保护基团的两个半胱氨酸之间形成第一对二硫键。单环肽经反相HPLCC18柱(Vydac)纯化后,进行碘氧化(10mM iodinein H2O:trifluoroacetic acid:acetonitrile(78:2:20 by volume,10min),移去另外2个半胱氨酸上的Acm,同时在这2个半胱氨酸之间形成第二对二硫键。二环肽再经反相HPLCC18柱(Vydac)纯化,即获得按照从N端至C端的顺序在相应的半胱氨酸之间定向形成二硫键的α-芋螺毒素,并通过质谱(MS)鉴定为正确。
氧化折叠后的TxIB与TxIB(G)的理论分子量(monoisotopicmass)与测定分子量一致:TxIB的理论分子量为1738.7Da,TxIB的测定分子量为1738.6Da;TxIB(G)的理论分子量为1795.7Da;TxIB(G)的测定分子量为1795.6Da。多肽浓度用280nm波长下比色测定,根据Beer-Lambert方程(equation)计算多肽浓度和质量。这些定量过的折叠好的毒素肽用于后续的活性测试。
实施例3:α-芋螺毒素TxIB与TxIB(G)特异阻断α6/α3β2 β3 nAChR实验
参照文献(Azam L,Yoshikami D,McIntosh JM.Amino acidresidues that confer high selectivity of the alpha6 nicotinicacetylcholine receptor subunit to alpha-conotoxinMII[S4A,E11A,L15A].J Biol Chem.2008;283(17):11625-32.)中的方法,以及体外转录试剂盒(mMessage mMachine in vitrotranscription kit(Ambion,Austin,TX))说明书,制备各种大鼠神经型nAChRs亚型,α3β2,α6/α3β2β3(即α6β2*-nAChRs),α6/α3β4,α9α10,α4β2,α4β4,α3β4,α2β2,α2β4,α7)、人类α6/α3β2β3、以及小鼠肌肉型nAChRs(α1β1δε)的cRNA,其浓度用UV260nm下的OD值进行测算。解剖收集非洲爪蟾(Xenopus l ave i s)卵母细胞(蛙卵),将cRNA注射入蛙卵中,每个亚基的注射量为5ng cRNA。肌肉nAChR每个亚基注射0.5-2.5ngDNA。蛙卵在ND-96中培养。蛙卵收集后的1-2天内注射cRNA,注射后1-4天内用于nAChRs的电压钳记录。
将1个注射过cRNA的蛙卵置于30uL的Sylgard记录槽中(直径4mm×深度2mm),重力灌注含有0.1mg/ml BSA(bovine serum albumin)的ND96灌流液(96.0mM NaC l,2.0mM KCl,1.8mM CaCl2,1.0mM MgCl2,5mM HEPES,pH7.1-7.5)或含有1mM atropine的ND96(ND96A),流速为1ml/min。所有的芋螺毒素溶液也含有0.1mg/ml BSA以减少毒素的非特异性吸附,用转换阀(SmartValve,Cavro ScientificInstruments,Sunnyvale,CA)可以在灌注毒素或乙酰胆碱(ACh)之间进行自由切换,以及一系列三通螺线阀(solenoid valves,model161TO31,Neptune Research,Northboro,MA)使灌注ND96与ACh等之间进行自由切换。Ach门控的电流由双电极电压箝放大器(modelOC-725B,Warner Instrument Corp.,Hamden,CT)设置在“慢”箝,以及clamp gain在最大值(×2000)位置时进行在线记录。用1mm外径×0.75内径mm的玻璃毛细管(fiber-filled borosilicatecapillaries,WPI Inc.,Sarasota,FL)拉制玻璃电极,并充满3MKCl作为电压和电流电极。膜电压箝制在-70mV.整个系统均由电脑控制和记录数据。ACh脉冲为每隔5mi n自动灌注1s的ACh。ACh的浓度分别为,表达肌肉型的nAChRs和神经型α9α10nAChRs卵为10μM;表达神经型的nAChRs之α7为200μM,其他的亚型都为100μM。至少记录4个卵表达某个亚型对不同毒素浓度的电流反应情况,以及电流轨迹。
测试的电流数据用GraphPad Prism软件(San Diego,CA)进行统计分析,绘制剂量反应曲线,计算芋螺毒素的半阻滞浓度IC50等多种有关毒素阻断nAChRs的各种参数。
结果表明,α-TxIB和TxIB(G)(实施例2制备)对大鼠α6/α3β2β3 nAChR均有特异阻断作用,洗脱都很快(图3).1μMα-TxIB/Txd4几乎完全阻断了由Ach门控的大鼠α6/α3β2β3 nAChR开放产生的电流,洗脱很快,阻断是可逆的(图3A)。相比之下,α-TxIB比TxIB(G)的活性要强8.7倍(图3B),它们对α6/α3β2β3 nAChR的半阻断剂量IC50和误差范围分别为α-TxIB,28.4(18.6-43.4)nM;α-TxIB(G),247.4(186.2-328.8)nM。它们的剂量反应曲线的斜率(Hillslope)和误差范围分别为α-TxIB,0.51(0.41-0.60)和α-TxIB(G),0.78(0.63-0.93).因此,α-TxIB和TxIB(G)对其他nAChRs亚型没有阻断活性,其IC50>10μM(图3C,表2)。
表2:α-TxIB与TxIB(G)对各种nAChRs
亚型的半阻断剂量IC50和剂量反应曲线的斜率
Figure BDA00001981639400291
Figure BDA00001981639400301
表2中a是置信度为95%的区间。b是TxIB(G)与TxIB半阻断剂量(IC50)的比值。c是在10μM下没有阻断活性。
α-TxIB/Txd4对α6/α3β2β3 nAChR的阻断选择性特高。从1μMα-TxIB/Txd4对α6/α3β2β3 nAChR,以及10μM α-TxIB/Txd4对其非常接近的α3β2(B),α6/α3β4(C),α3β4(D)nAChRs的电流影响情况可以看出(图4),1μMα-TxIB/Txd4特异阻断α6/α3β2β3 nAChR(图4A),而比之高10倍浓度的毒素对α3β2(图4B),α6/α3β4(图4C),与α3β4(图4D)nAChRs亚型没有任何阻断活性。对人类α6/α3β2β3 nAChR,α-TxIB和TxIB(G)具有与大鼠α6/α3β2β3 nAChR相似的阻断活性。因此,α-TxIB是目前发现的,对α6/α3β2β3 nAChR选择性最好的α-芋螺毒素,其活性比较见上面的表1。
已有的研究表明,α6/α3β2β3 nAChR是治疗神经精神疾病,如烟碱、吗啡与可卡因等的成瘾、帕金森病、痴呆、精神分裂症、抑郁等的药物作用靶点(参见背景技术中的文献)。因此,本发明的新α-芋螺毒素TxIB/Txd4和TxIB(G)在上述疾病的机理研究、诊断、治疗方面具有极高的应用价值。
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理解。根据已经公开的所有教导,可以对那些细节进行各种修改和替换,这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。
Figure IDA00001981640400021
Figure IDA00001981640400031

Claims (15)

1.一种多肽,其为或者包含选自如下(1)至(3)中任一项所述的氨基酸序列:
(1)SEQ ID NO:1-5中的任一序列所示的氨基酸序列;
(2)与上述(1)所述的氨基酸序列至少80%、优选至少85%、更优选至少90%、尤其优选至少95%、最优选至少97%相同的氨基酸序列;或
(3)被1-5个、优选1-3个、更优选1-2个、最优选1个氨基酸残基的取代、缺失、插入和/或添加而与上述(1)或(2)所示序列有所不同的氨基酸序列。
2.根据权利要求1所述的多肽,其中,
所述多肽的C末端是酰胺化的;和/或
所述多肽的N末端的第一个半胱氨酸与第三个半胱氨酸形成二硫键,并且第二个半胱氨酸与第四个半胱氨酸形成二硫键,或所述多肽的N末端的第一个半胱氨酸与第四个半胱氨酸形成二硫键,并且第二个半胱氨酸与第三个半胱氨酸形成二硫键,或所述多肽的N末端的第一个半胱氨酸与第二个半胱氨酸形成二硫键,并且第三个半胱氨酸与第四个半胱氨酸形成二硫键。
3.一种多核苷酸,其编码权利要求1或2所述多肽的氨基酸序列。
4.根据权利要求3所述的多核苷酸,其为或者包含选自如下的(1)至(3)中任一项所述的核苷酸序列:
(1)SEQ ID NO:6-11中的任一序列所示的核苷酸序列;
(2)上面(1)中所述核苷酸序列的互补序列;
(3)在严谨条件下能够与上述(1)中所述的核苷酸序列杂交的核苷酸序列。
5.一种核酸构建体,其包含权利要求3或4所述的多核苷酸。
6.一种表达载体,其包含权利要求5所述的核酸构建体。
7.一种转化的细胞,其包含权利要求6所述的表达载体。
8.一种融合蛋白,其包含权利要求1或2所述的多肽。
9.一种药物组合物,其包含权利要求1或2所述的多肽,或者包含权利要求8所述的融合蛋白;可选地,其还包含药学上可接受的载体或辅料。
10.一种在体内或体外阻断乙酰胆碱受体或者调节乙酰胆碱水平的方法,包括使用有效量的权利要求1或2所述的多肽的步骤;具体地,所述乙酰胆碱受体是α6/α3β2β3(即α6β2*-nAChRs)乙酰胆碱受体。
11.一种确定乙酰胆碱受体亚型的方法,该方法包括:将乙酰胆碱受体与权利要求1或2所述的多肽进行接触的步骤。
12.权利要求1或2所述的多肽用于阻断乙酰胆碱受体的用途;具体地,所述乙酰胆碱受体是α6/α3β2β3乙酰胆碱受体。
13.权利要求1或2所述的多肽在制备阻断乙酰胆碱受体的药物或试剂中的用途;具体地,所述乙酰胆碱受体是α6/α3β2β3乙酰胆碱受体。
14.权利要求1或2所述的多肽在制备治疗和/或预防神经系统疾病例如成瘾与神经痛,以及治疗帕金森症、痴呆、精神分裂症、抑郁、癌症等的药物的用途,或者用于制备杀灭害虫、镇痛、戒烟、戒毒的药物的用途;具体地,所述成瘾由如下原因导致:各种精神活性物质,包括尼古丁、鸦片、海洛因、甲基苯丙胺(冰毒)、吗啡、大麻、可卡因以及国家规定管制的其他能够使人形成瘾癖的麻醉药品和精神药品等。具体地,所述神经痛由如下原因导致:癌症与癌症化疗、酒精中毒、坐骨神经痛、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、淋巴神经痛、骨髓瘤、多点运动神经痛、慢性先天性感觉神经病、急性剧烈自发性神经痛、挤压神经痛、脉管炎、血管炎、局部缺血、尿毒症、儿童胆汁肝脏疾病、慢性呼吸障碍、复合神经痛、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎、或过敏症。
15.权利要求1或2所述的多肽的制备方法,包括下述步骤:
1)在ABI Prism 433a多肽合成仪上或者手工方法合成线性多肽,Fmoc氨基酸的侧链保护基为:Pmc(Arg)、Trt(Cys)、But(Thr、Ser、Tyr),OBut(Asp),Boc(Lys);半胱氨酸用Trt或Acm保护基团,分别在相应的半胱氨酸之间定点形成二硫键;
2)将步骤1)中得到的线性多肽从树脂上切割下来,并用冰乙醚沉淀和洗涤回收线性多肽粗品,用制备型反向HPLC C18柱(Vydac)纯化;
3)将步骤2)中得到的产物进行两步氧化折叠。
CN201210277619.8A 2012-08-07 2012-08-07 α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途 Active CN103570808B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201210277619.8A CN103570808B (zh) 2012-08-07 2012-08-07 α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途
US14/419,584 US9469674B2 (en) 2012-08-07 2013-06-18 α-conotoxin peptide, pharmaceutical composition and use thereof
PCT/CN2013/077363 WO2014023129A1 (zh) 2012-08-07 2013-06-18 α-芋螺毒素肽、其药物组合物及用途
EP13828357.7A EP2889307B1 (en) 2012-08-07 2013-06-18 Alpha-conotoxin peptide, and medical composition and purpose thereof
JP2015525711A JP6336979B2 (ja) 2012-08-07 2013-06-18 α−コノトキシンペプチド、その医薬組成物及びそれらの使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210277619.8A CN103570808B (zh) 2012-08-07 2012-08-07 α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途

Publications (2)

Publication Number Publication Date
CN103570808A true CN103570808A (zh) 2014-02-12
CN103570808B CN103570808B (zh) 2015-12-09

Family

ID=50043584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210277619.8A Active CN103570808B (zh) 2012-08-07 2012-08-07 α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途

Country Status (1)

Country Link
CN (1) CN103570808B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074920A (zh) * 2014-09-30 2017-08-18 深圳华大基因科技有限公司 芋螺毒素多肽κ‑CPTx‑btl03、其制备方法及应用
CN113773376A (zh) * 2017-05-09 2021-12-10 同济大学 芋螺毒素αD-GeXXA中的cNTD及其制备方法及应用
CN114478733A (zh) * 2020-11-13 2022-05-13 广西大学 α-芋螺毒素肽LvID和LvIB、其药物组合物及用途
WO2022117116A1 (zh) * 2020-12-01 2022-06-09 中国海洋大学 一种α9α10nAChR抑制活性肽及其应用
CN114751959A (zh) * 2021-01-11 2022-07-15 广西大学 α-芋螺毒素肽LvIC及其突变体、其药物组合物及用途
CN114853864A (zh) * 2022-06-01 2022-08-05 海南大学 一种nAChR受体α3β2亚型抑制失活型阻断剂、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041691A (zh) * 2007-02-06 2007-09-26 中山大学 中国南海信号芋螺神经毒素基因lt5.4及其应用
CN101745097A (zh) * 2008-12-12 2010-06-23 海南大学 特异阻断乙酰胆碱受体的海南产α-芋螺毒素及其用途
CN101979572A (zh) * 2010-11-08 2011-02-23 中山大学 中国南海线纹芋螺毒素s4.3的制备及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041691A (zh) * 2007-02-06 2007-09-26 中山大学 中国南海信号芋螺神经毒素基因lt5.4及其应用
CN101745097A (zh) * 2008-12-12 2010-06-23 海南大学 特异阻断乙酰胆碱受体的海南产α-芋螺毒素及其用途
CN101979572A (zh) * 2010-11-08 2011-02-23 中山大学 中国南海线纹芋螺毒素s4.3的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARIK HASSON ET AL: "Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous conus snail", 《EUROPEAN JOURNAL OF NEUROSCIENCE》, vol. 5, no. 1, 31 January 1993 (1993-01-31) *
C.BRUCE ET AL: "Recombinant conotoxin,TxVIA,produced in yeast has insecticidal activity", 《TOXICON》, vol. 58, no. 1, 31 July 2011 (2011-07-31) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074920A (zh) * 2014-09-30 2017-08-18 深圳华大基因科技有限公司 芋螺毒素多肽κ‑CPTx‑btl03、其制备方法及应用
CN107074920B (zh) * 2014-09-30 2020-07-28 深圳华大基因科技有限公司 芋螺毒素多肽κ-CPTx-btl03、其制备方法及应用
CN113773376A (zh) * 2017-05-09 2021-12-10 同济大学 芋螺毒素αD-GeXXA中的cNTD及其制备方法及应用
CN113773376B (zh) * 2017-05-09 2023-06-09 同济大学 芋螺毒素αD-GeXXA中的cNTD及其制备方法及应用
CN114478733A (zh) * 2020-11-13 2022-05-13 广西大学 α-芋螺毒素肽LvID和LvIB、其药物组合物及用途
CN114478733B (zh) * 2020-11-13 2024-05-10 广西大学 α-芋螺毒素肽LvID和LvIB、其药物组合物及用途
WO2022117116A1 (zh) * 2020-12-01 2022-06-09 中国海洋大学 一种α9α10nAChR抑制活性肽及其应用
CN114751959A (zh) * 2021-01-11 2022-07-15 广西大学 α-芋螺毒素肽LvIC及其突变体、其药物组合物及用途
CN114853864A (zh) * 2022-06-01 2022-08-05 海南大学 一种nAChR受体α3β2亚型抑制失活型阻断剂、其制备方法及应用
CN114853864B (zh) * 2022-06-01 2023-06-20 海南大学 一种nAChR受体α3β2亚型抑制失活型阻断剂、其制备方法及应用

Also Published As

Publication number Publication date
CN103570808B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
EP2889308B1 (en) Alpha o-superfamily conotoxin peptide, pharmaceutical composition and use thereof
CN103570808B (zh) α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途
KR101299417B1 (ko) 카복시-말단 아미드화 펩티드를 제조하는 방법
CN108218971B (zh) α-芋螺毒素肽TxID新突变体、其药物组合物及用途
EP2889307B1 (en) Alpha-conotoxin peptide, and medical composition and purpose thereof
JPH05255392A (ja) A−c−bプロインスリン、その製造法および使用法、およびインスリン生産の中間体
WO2009149339A2 (en) P53 activator peptides
CN108473546A (zh) Mg53突变体及其制备方法和用途
US20120122803A1 (en) Alpha-conotoxin mii analogs
CN112010959B (zh) αO-芋螺毒素肽GeXIVA新突变体、其药物组合物及用途
Benkhadir et al. Molecular cloning and functional expression of the alpha-scorpion toxin BotIII: pivotal role of the C-terminal region for its interaction with voltage-dependent sodium channels
CN103665133A (zh) α-芋螺毒素肽LvIA/LvD21、其药物组合物及用途
CN103665130B (zh) α-芋螺毒素肽TxIC/Txd1、其药物组合物及用途
CN113493502B (zh) α-芋螺毒素肽TxIE、其药物组合物及用途
US10485847B2 (en) Neuroprotective agents derived from spider venom peptides
CN107868125A (zh) Mg53突变体及其制备方法和用途
JP5519702B2 (ja) 鎮痛を目的とする、t型カルシウムチャンネルの新規拮抗薬である毒素の同定
CN107949567B (zh) 三种芋螺毒素肽、其制备方法及应用
CN114617956B (zh) 一种高效降糖的蛋白质药物
CN115433265A (zh) α-芋螺毒素肽LvIE和LvIF、其药物组合物及用途
US20230391838A1 (en) Conformationally-Constrained Alpha-RGIA Analogues
CN109306003B (zh) 骨保护素的突变体蛋白及其相关产品与应用
Singh Elucidating the role of the linker in DkTx mediated TRPV1 activation Mechanism
US6767895B2 (en) I-superfamily conotoxins
CN114751959A (zh) α-芋螺毒素肽LvIC及其突变体、其药物组合物及用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant