CN103413822B - 降低浮空埋层半导体器件漏电流的方法 - Google Patents

降低浮空埋层半导体器件漏电流的方法 Download PDF

Info

Publication number
CN103413822B
CN103413822B CN201310370379.0A CN201310370379A CN103413822B CN 103413822 B CN103413822 B CN 103413822B CN 201310370379 A CN201310370379 A CN 201310370379A CN 103413822 B CN103413822 B CN 103413822B
Authority
CN
China
Prior art keywords
epitaxial layer
buried regions
floating empty
division
empty buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310370379.0A
Other languages
English (en)
Other versions
CN103413822A (zh
Inventor
谭开洲
唐昭焕
刘嵘侃
刘勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 24 Research Institute
Original Assignee
CETC 24 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 24 Research Institute filed Critical CETC 24 Research Institute
Priority to CN201310370379.0A priority Critical patent/CN103413822B/zh
Publication of CN103413822A publication Critical patent/CN103413822A/zh
Priority to PCT/CN2014/074018 priority patent/WO2015024384A1/zh
Priority to US14/463,657 priority patent/US9136325B2/en
Application granted granted Critical
Publication of CN103413822B publication Critical patent/CN103413822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Abstract

本发明涉及一种降低浮空埋层半导体器件漏电流的方法。包括半导体衬底材料、第一外延层、分裂浮空埋层、第二外延层、侧壁掺杂深槽、被保护器件、表面结终端和划片道。其中,被保护器件、表面结终端处于第二外延层中,分裂浮空埋层位于第二外延层和第一外延层之间,侧壁掺杂深槽穿透第二外延层与分裂浮空埋层相连接;半导体衬底材料、第一外延层和第二外延层导电类型相同,分裂浮空埋层、侧壁掺杂深槽与半导体材料导电杂质类型相反。这种结构可以在保持双外延层的分裂浮空埋层半导体器件高耐压低导通电阻的同时,避免了常规浮空埋层器件划片道边缘漏电的缺点。

Description

降低浮空埋层半导体器件漏电流的方法
技术领域
本发明属于半导体器件和集成电路技术领域,特别涉及一种降低浮空埋层半导体器件漏电流的方法。
背景技术
目前半导体器件,尤其是高压半导体硅器件,其击穿电压和导通电阻的优化设计是互相影响和相互矛盾的,获得高击穿电压一般就很难获得低的导通电阻。业界针对传统的器件结构已经提出了一些在保持击穿电压不变来降低导通电阻的方法,最著名的是具有超结(SuperJunction,简称SJ)结构的器件,但这种器件要求其互补的N型和P型耐压漂移区耗尽后空间电荷匹配非常严格,5%的失配就可以导致很大的耐压下降,其次是降低表面电场(RESURF)技术的在半导体器件体内巧妙应用,如双层和三层RESURF的LDMOS,槽栅肖特基,槽栅VDMOS和槽栅IGBT等,还有一类较少讨论的是利用分裂浮空埋层(splitburriedfloatinglayer,简称SBFL)来实现的,如SaitohW等人的“Ultralowon-resistanceSBDwithp-buriedfloatinglayer”,PowerSemiconductorDevicesandICs,Proceedingsofthe14thInternationalSymposiumon4-7,pp.33–36,June2002;JohjiNishio等人的"Ultralow-LossSiCFloatingJunctionSchottkyBarrierDiodes(Super-SBDs)",IEEETRANSACTIONSONELECTRONDEVICES,Vol.55(8),pp.1954-1960,AUGUST2008;南雅公等人的“4H-SiC双层浮结肖特基势垒二极管温度特性研究”,微电子学,Vol.41(1),pp.146-149,Feb2011.和“Studyandoptimalsimulationof4H-SiCfloatingjunctionSchottkybarrierdiodes'structuresandelectricproperties”,Chin.Phys.B,Vol.19(10),pp.107304-1,2010.。
从效果来看,槽栅结构和三层以下的RESURF理论上不如SJ结构,而多层的分裂浮空埋层SBFL结构与SJ结构在极限情况下理论上是基本上是等价的。现实情况下,SJ结构的研究热度和应用超过SBFL结构,SBFL结构目前主要还是在SiC材料中应用较多。
SBFL结构相对于SJ结构在浮空埋层的杂质浓度范围要求没SJ结构电荷平衡那么高,这是SBFL结构的最大优点,并且在外延层数较少时工艺实现难度相对较小。
而已有的SBFL结构浮空埋层与芯片的划片道是相连接的,这将导致SBFL结构器件在耐受反向高压时,浮空埋层空间耗尽层必然会与具有高缺陷密度的划片道交叠而导致SBFL结构器件反向漏电增加,本发明的目的就是提出了一种解决这种问题方法。
发明内容
本发明解决上述SBFL结构器件在反向高压时存在较大漏电问题的技术方案在于,一种降低浮空埋层半导体器件漏电流的方法,包括:
半导体材料1,第一外延层2,分裂浮空埋层3,第二外延层4,侧壁掺杂深槽5,被保护器件6,表面结终端7,划片道8。
半导体材料1、第一外延层2、第二外延层4都是相同导电杂质类型,分裂浮空埋层3、侧壁掺杂深槽5与半导体材料1是相反导电杂质类型。
被保护器件6和表面结终端7都处于第二外延层4中,分裂浮空埋层3位于第二外延层4和第一外延层2之间,侧壁掺杂深槽5穿透第二外延层4与分裂浮空埋层3相连接。
分裂浮空埋层3自身间距W1不大于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的8%,侧壁掺杂深槽5与表面结终端7间距W3不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的25%,分裂浮空埋层3到侧壁掺杂深槽5左侧距离W2不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的25%,分裂浮空埋层3到侧壁掺杂深槽5右侧距离W4不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的30%。
分裂浮空埋层3到划片道8距离不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的20%。
第一外延层2和第二外延层4杂质浓度相等,第一外延层2和第二外延层4杂质浓度为所设计电压在理想平行平面突变结低掺杂区杂质浓度的1.7倍到2.2倍之间。
第一外延层2厚度为所设计电压在理想平行平面突变结情况下最大耗尽层厚度的35%~50%,第二外延层4厚度为所设计电压在理想平行平面突变结情况下最大耗尽层厚度的45%~55%。
有益效果:
由于本发明的一种降低浮空埋层半导体器件漏电流的方法采用了上述技术方案,具有以下优点:
1)在保持SBFL结构器件低导通电阻和高耐压情况下,避免了普通SBFL结构因空间耗尽层与划片道附近半导体材料缺陷交叠而导致的反向漏电流;
2)本方法对SBFL结构所做改动很小,仅增加一次掺杂深槽和一次分裂浮空埋层3版图修改,增加成本较小;
3)本方法避免普通SBFL结构因空间耗尽层与划片道附近半导体材料缺陷相互作用导致的长期可靠性问题,器件稳定性和可靠性得到提高。
附图说明
图1是本发明降低浮空埋层半导体器件漏电流的方法结构示意图。
图2是本发明实施例的硅片第一次外延及形成后分裂浮空埋层3的示意图。
图3是在本发明图2的硅片上进行了第二次外延和侧壁掺杂深槽5刻蚀及其扩散掺杂后的示意图。
图4是在本发明图3的硅片上进行了被保护器件6、表面结终端7掺杂以及表面氧化层9和金属层10形成后的示意图。
具体实施方式
以被保护器件6为一个最简单的600V耐压的二极管结构为例来说明本方法的实施,二极管以外的其它器件具备本方法描述特征的实施例不应被视为不同的方法。图1中“被保护器件”还可以是双极三极管、MOSFET、VDMOS、IGBT等能够利用此结构作为结终端保护的半导体器件或者集成电路。
一般被保护器件的结构是对称的,而图1以“被保护器件”右侧结终端剖面对称结构为例来说明本方法的内容,同样剖面结构作一个镜象轴对称可以放在“被保护器件”左侧构成完整的终端结构。故以对称右侧描述方法为例的内容是完整和清晰的。
下面以结构最简单的硅二极管为例来具体说明。
1、在0.02~0.001Ω.cmN型<100>硅材料上采用行业通行方法形成光刻对位标识;
2、根据二极管600V耐压要求,采用行业通行方法在所述硅材料生长N型第一外延层2,其浓度取为600V理想平行平面突变结低掺杂区杂质浓度的1.89倍,即掺杂浓度为5.8×1014/cm3,处于理想平行平面突变结低掺杂区杂质浓度的1.7倍到2.2倍之间,其厚度取为理想平行平面突变结最大耗尽层厚度的47%,即25μm,处于理想平行平面突变结最大耗尽层厚度的35%~50%范围内,如图1和图2所示;
3、使用行业通用干氧化形成40nm氧化层,再采用通用光刻方法套刻出分裂浮空层3,根据分裂浮空埋层3自身间距(W1)不大于所设计电压在理想平行平面突变结最大耗尽层厚度的8%,分裂浮空埋层3间距取为4μm,是最大耗尽层厚度的7.5%,浮空埋层与划片道8的距离为15μm,是理想平行平面突变结最大耗尽层厚度的28%,如图1和图2所示;
4、在第3步基础上进行通用的硼离子注入方法,注入能量为80KeV,注入剂量为1.0×1013/cm2
5、在第4步注入去胶后进行注入杂质退火激活,采用行业通用的N2气保护退火,温度950摄氏度,时间20分钟,如图1和图2所示;
6、在第5步工艺基础上漂光氧化层,生长N型第二外延层4,厚度27μm,是最大耗尽层厚度的51%,浓度仍为5.8×1014/cm3
7、在第6步工艺基础上,使用行业通用的水汽热氧化600nm,采用通用深槽刻蚀方法,刻蚀出31μm深槽5,深槽穿透浮空埋层3,槽宽1.5μm,深槽5左侧距离浮空层3(W2)62μm,右侧距离浮空层3(W4)21μm,如图1和图3所示;
8、在第7步工艺基础上,使用行业通用的100:1HF溶液浸泡30秒钟去除刻蚀产生的聚合物,再采用标准半导体清洗程序1号液(氨水:双氧水:去离子水=1:2:7)、2号液(盐酸:双氧水:去离子水=1:2:7)将所述硅片清洗干净,再用行业通用的100:1HF溶液浸泡15秒钟去掉侧壁氧化层,保留硅表面氧化层,进行行业通用的硼扩散,扩散杂质总量按方块电阻计小于100Ω每方块;
9、在第8步工艺基础上,进行行业通用的干热氧化100nm,对已经掺杂的深槽5进行氧化层侧壁保护,然后进行行业通用的LPCVD多晶硅填充深槽,多晶厚度以填满深槽为限,对于1.5μm宽度的深槽5,多晶厚度一般为1μm,然后再用行业通用的CMP方法抛光去除表面多晶硅,再用行业通用的方法去除表面残留的氧化层,如图1和图3所示;
10、在第9步工艺基础上,用行业通用的方法进行硅表面干热生长70nm氧化层,用行业通用的光刻方法套刻出3μm宽的二极管P+区6(即被保护器件6),用行业通用的方法进行带胶硼离子注入,能量为60KeV,剂量为2×1015/cm2
11、对于表面终端区7可以是任何一种成熟的表面结终端耐压结构,本例子使用了满足RESURF条件简单耐压终端结构,具体做法为:在第10步工艺基础上,用行业通用的注入去胶方法去胶后再套刻出表面终端区7,此表面终端区7横向长度为38μm,与二极管区6间距1μm,与掺杂深槽5间距(W3)24μm,再用行业通用的带胶硼离子注入方法,能量为80KeV,剂量为1.8×1012/cm2,注入去胶清洗后用行业通用的方法进行950摄氏度,20分钟N2气退火,如图4所示;
12、在第11步工艺基础上,用行业通用的LPCVD方法淀积600nm的二氧化硅,再用行业通用的光刻方法刻蚀出二极管P+接触孔,再用行业通用的溅射方法溅射1.2μm金属层10,光刻金属层10,然后进行行业通用的合金,最终完成器件的制作,如图4所示。
采用这种方法制作的600V二极管的外延比电阻为41.7mΩ.cm2,比理想平行平面突变结二极管的比导通电阻73.3mΩ.cm2减少了43%,与普通SBFL结构相同,但避免了普通SBFL结构划片道漏电和可靠性的缺点。
上述步骤中省略了众所周知的、明显的行业通用清洗等简单过程,这对于本领域的一般技术人员是周知的,这里没有再具体详细进行说明。

Claims (4)

1.一种降低浮空埋层半导体器件漏电流的半导体结构,包括:半导体材料(1),第一外延层(2),分裂浮空埋层(3),第二外延层(4),侧壁掺杂深槽(5),被保护器件(6),表面结终端(7),划片道(8);其特征在于:半导体材料(1)、第一外延层(2)、第二外延层(4)都是相同导电杂质类型,分裂浮空埋层(3)、侧壁掺杂深槽(5)与半导体材料(1)是相反导电杂质类型;被保护器件(6)和表面结终端(7)都处于第二外延层(4)中,分裂浮空埋层(3)位于第二外延层(4)和第一外延层(2)之间,侧壁掺杂深槽(5)穿透第二外延层(4)与分裂浮空埋层(3)相连接;分裂浮空埋层(3)自身间距不大于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的8%,侧壁掺杂深槽(5)与表面结终端(7)间距不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的25%,分裂浮空埋层(3)到侧壁掺杂深槽(5)左侧距离不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的25%,分裂浮空埋层(3)到侧壁掺杂深槽(5)右侧距离不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的30%;第一外延层位于半导体材料上,第二外延层位于第一外延层上。
2.如权利要求1所述的一种降低浮空埋层半导体器件漏电流的半导体结构,其特征在于:分裂浮空埋层(3)到划片道(8)距离不小于所设计电压在理想平行平面突变结情况下最大耗尽层厚度的20%。
3.如权利要求1所述的一种降低浮空埋层半导体器件漏电流的半导体结构,其特征在于:第一外延层(2)和第二外延层(4)杂质浓度相等,第一外延层(2)和第二外延层(4)杂质浓度为所设计电压在理想平行平面突变结低掺杂区杂质浓度的1.7倍到2.2倍之间。
4.如权利要求1所述的一种降低浮空埋层半导体器件漏电流的半导体结构,其特征在于:第一外延层(2)厚度为所设计电压在理想平行平面突变结情况下最大耗尽层厚度的35%~50%,第二外延层(4)厚度为所设计电压在理想平行平面突变结情况下最大耗尽层厚度的45%~55%。
CN201310370379.0A 2013-08-22 2013-08-22 降低浮空埋层半导体器件漏电流的方法 Active CN103413822B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310370379.0A CN103413822B (zh) 2013-08-22 2013-08-22 降低浮空埋层半导体器件漏电流的方法
PCT/CN2014/074018 WO2015024384A1 (zh) 2013-08-22 2014-03-25 降低浮空埋层半导体器件漏电流的方法
US14/463,657 US9136325B2 (en) 2013-08-22 2014-08-19 Device structure for reducing leakage current of semiconductor devices with floating buried layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310370379.0A CN103413822B (zh) 2013-08-22 2013-08-22 降低浮空埋层半导体器件漏电流的方法

Publications (2)

Publication Number Publication Date
CN103413822A CN103413822A (zh) 2013-11-27
CN103413822B true CN103413822B (zh) 2016-05-18

Family

ID=49606820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310370379.0A Active CN103413822B (zh) 2013-08-22 2013-08-22 降低浮空埋层半导体器件漏电流的方法

Country Status (3)

Country Link
US (1) US9136325B2 (zh)
CN (1) CN103413822B (zh)
WO (1) WO2015024384A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
CN103413822B (zh) * 2013-08-22 2016-05-18 中国电子科技集团公司第二十四研究所 降低浮空埋层半导体器件漏电流的方法
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
CN106558634B (zh) * 2015-09-25 2018-04-20 比亚迪股份有限公司 光电二极管及光电二极管的制造方法
CN108010958A (zh) * 2017-12-08 2018-05-08 北京世纪金光半导体有限公司 一种具有掩埋悬浮结和周边深沟槽保护结构的碳化硅sbd器件
CN108172609A (zh) * 2017-12-22 2018-06-15 北京世纪金光半导体有限公司 具有周边深沟槽保护环和接地环的碳化硅悬浮结mosfet器件
CN108133966A (zh) * 2018-01-22 2018-06-08 北京世纪金光半导体有限公司 一种集成了周边RCsnubber结构的碳化硅SBD器件元胞结构
EP3690954A1 (en) * 2019-02-04 2020-08-05 Infineon Technologies Austria AG Semiconductor device
CN111697062A (zh) * 2019-03-12 2020-09-22 南京芯舟科技有限公司 半导体器件及其结边缘区
CN111073649A (zh) * 2019-12-30 2020-04-28 中国科学院半导体研究所 用于二次外延预处理的腐蚀液、其制备方法及预处理方法
CN113745339B (zh) * 2021-09-07 2022-08-19 无锡新洁能股份有限公司 高可靠性功率半导体器件及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034337A (en) * 1989-02-10 1991-07-23 Texas Instruments Incorporated Method of making an integrated circuit that combines multi-epitaxial power transistors with logic/analog devices
US5614755A (en) * 1993-04-30 1997-03-25 Texas Instruments Incorporated High voltage Shottky diode
US6844251B2 (en) * 2001-03-23 2005-01-18 Krishna Shenai Method of forming a semiconductor device with a junction termination layer
JP2003037113A (ja) * 2001-07-23 2003-02-07 Mitsubishi Electric Corp 半導体装置
US6465304B1 (en) * 2001-10-04 2002-10-15 General Semiconductor, Inc. Method for fabricating a power semiconductor device having a floating island voltage sustaining layer
US20050045982A1 (en) * 2002-03-22 2005-03-03 Krishna Shenai Semiconductor device with novel junction termination
US20070120153A1 (en) * 2005-11-29 2007-05-31 Advanced Analogic Technologies, Inc. Rugged MESFET for Power Applications
JP4189415B2 (ja) * 2006-06-30 2008-12-03 株式会社東芝 半導体装置
CN100483686C (zh) * 2007-09-21 2009-04-29 无锡友达电子有限公司 采用磷埋工艺的双极型悬浮pnp管双外延制作方法
US8264038B2 (en) * 2008-08-07 2012-09-11 Texas Instruments Incorporated Buried floating layer structure for improved breakdown
CN101872785B (zh) * 2010-06-11 2012-06-27 东南大学 带浮置埋层的碳化硅高压p型金属氧化物半导体管及方法
US8803277B2 (en) * 2011-02-10 2014-08-12 Cree, Inc. Junction termination structures including guard ring extensions and methods of fabricating electronic devices incorporating same
CN103413822B (zh) * 2013-08-22 2016-05-18 中国电子科技集团公司第二十四研究所 降低浮空埋层半导体器件漏电流的方法

Also Published As

Publication number Publication date
US20150054119A1 (en) 2015-02-26
CN103413822A (zh) 2013-11-27
US9136325B2 (en) 2015-09-15
WO2015024384A1 (zh) 2015-02-26

Similar Documents

Publication Publication Date Title
CN103413822B (zh) 降低浮空埋层半导体器件漏电流的方法
CN105932042B (zh) 一种双分裂沟槽栅电荷存储型igbt及其制造方法
CN108292677B (zh) 一种具有体内场板的折叠型终端
CN107799587A (zh) 一种逆阻型igbt及其制造方法
CN105742346B (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN105679816B (zh) 一种沟槽栅电荷存储型igbt及其制造方法
CN103441148A (zh) 一种集成肖特基二极管的槽栅vdmos器件
CN105870180B (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN107768428A (zh) 一种横向双扩散金属氧化物半导体(ldmos)器件及其制造方法
TWI470802B (zh) 溝槽式金氧半導體電晶體元件及其製造方法
CN108198857A (zh) 一种集成凸块状肖特基二极管的碳化硅mosfet器件元胞结构
CN105993076A (zh) 一种双向mos型器件及其制造方法
CN105789291A (zh) 一种双分裂沟槽栅电荷存储型igbt及其制造方法
CN102194884B (zh) 一种混合导通机制的场效应晶体管
CN105895671A (zh) 超低功耗半导体功率器件及制备方法
CN107768435A (zh) 一种双向igbt及其制造方法
CN114141621A (zh) 具有分裂栅的载流子存储槽栅双极型晶体管及其制备方法
CN106356401A (zh) 一种功率半导体器件的场限环终端结构
CN206574721U (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN205564758U (zh) 超低功耗半导体功率器件
CN104253050A (zh) 一种槽型横向mosfet器件的制造方法
CN110429137A (zh) 具有部分氮化镓/硅半导体材料异质结的vdmos及其制作方法
CN105957882B (zh) 一种高压功率器件终端区结构
CN205564757U (zh) 一种超低功耗半导体功率器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190709

Address after: 401332 367, West Wing Road, Xiyong Town, Shapingba District, Chongqing

Patentee after: China Electric Technology Group Chongqing acoustic photoelectric Co., Ltd.

Address before: 400060 24 Nanping Garden Road, Nanan District, Chongqing

Patentee before: No.24 Inst., China Electronic Science & Technology Group Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210112

Address after: 400060 Chongqing Nanping Nan'an District No. 14 Huayuan Road

Patentee after: The 24th Research Institute of China Electronics Technology Group Corp.

Address before: 401332 367, West Wing Road, Xiyong Town, Shapingba District, Chongqing

Patentee before: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC Co.,Ltd.

TR01 Transfer of patent right