CN103384681A - 结合剂 - Google Patents

结合剂 Download PDF

Info

Publication number
CN103384681A
CN103384681A CN2011800682575A CN201180068257A CN103384681A CN 103384681 A CN103384681 A CN 103384681A CN 2011800682575 A CN2011800682575 A CN 2011800682575A CN 201180068257 A CN201180068257 A CN 201180068257A CN 103384681 A CN103384681 A CN 103384681A
Authority
CN
China
Prior art keywords
spacer
joint
wedding agent
conjunction
fab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800682575A
Other languages
English (en)
Other versions
CN103384681B (zh
Inventor
A.加卢泽
D.海因德尔
M.施莱姆尔
C.赛德尔
H.冯德埃尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN103384681A publication Critical patent/CN103384681A/zh
Application granted granted Critical
Publication of CN103384681B publication Critical patent/CN103384681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及具有式A-a’:a-S-b:b’-B:X(n)的结合剂,其中A以及B是单价结合物,其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,其中S是长度至少1nm的间隔物,其中:X指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度。还公开了产生这类结合剂的方法及其某些用途。

Description

结合剂
发明背景
本发明涉及式A-a’:a-S-b:b’-B:X(n)的结合剂,其中A以及B是单价结合物,其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,其中S是长度至少1nm的间隔物,其中:X指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度。还公开了产生这类结合剂的方法及其某些用途。
一般而言,双特异性抗体或双特异性结合剂的独特之处在于它们能同时结合一种抗原上的两种不同表位或两种不同抗原。此特性使得能够开发新的治疗和诊断策略,这是用常规单克隆抗体所不可能实现的。已开发出大批双特异性双重结合剂,例如双特异性抗体形式的,而且反映出这些分子中较强的科学和商业兴趣。
针对抗原上单表位的单克隆抗体(单抗(mAb))通常以低于多克隆抗血清的亲合力的亲和力结合。然而,某些针对同一抗原上不同表位的单抗对能更有效地且以大于相应各种单独的单抗的亲和力之和的亲合力结合该抗原。
然而,单抗的协同对或化学交联的双特异性F(ab’)2的亲合力常数一般仅达到比各种单抗的亲和力常数高15倍,这显著低于对反应物之间的理想组合所预期的理论亲合力(Cheong,H.S.等,Biochem.Biophys.Res.Commun.173(1990)795-800)。对此一个原因可能是涉及协同结合(产生高亲合力)的各个表位/互补位相互作用必须以相对于彼此的特定方式取向以达到最佳协同。
双特异性抗体的生成记载于例如WO2004/081051。在该申请中披露了一种包含两种抗体的双特异性抗体(BAb),所述两种抗体各自对位于靶结构表面上的不同表位具有结合特异性。为了实现期望的在特异性中的改进,使用对其相应表位各自具有相对较低的结合亲和力的两种单抗。产生的BAb提供对靶组织的高亲合力(由于结合相互作用的累积性质),但对交叉反应性的非靶组织具有低得多的亲和力(由于用来生成它们的各单抗的亲和力较低)。这些双特异性抗体的生成是相当复杂的,并且例如需要复杂的(sophisticated)化学偶联和纯化步骤。
双特异性单克隆抗体还代表相当有趣的新的治疗形态。已设计并开发出广泛类型的双特异性抗体形式(参见例如Fischer,N.和Leger,O.,Pathobiology74(2007)3-14)。可以例如通过化学交联、适当工程化改造的蛋白质域的相互作用、完全重组等来获得这类双特异性治疗性单克隆。显然,将各结合物重组工程化并从生化上类似的同二聚体仔细纯化出期望的异二聚体代表了一些遇到的挑战。
最初由Neri,D.等(1995)描述的螯合重组抗体(CRAb)代表一种具有非常高亲和力的抗体,其中通过柔性接头多肽连接对同一抗原分子上的非重叠表位特异性的两个scFv。最初建模和设计的抗鸡卵溶菌酶(HEL)CRAb采用了18个氨基酸的接头多肽来跨越两个scFv抗体之间的距离,并且后来显示所得亲和力增强比两个scFv的较高者高达100倍,如通过多种生物物理学方法显示的(Neri,D.等,J.Mol.Biol.246(1995)367-373)。
Wright M.J.和Deonarain M.P.(Molecular Immunology44(2007)2860-2869)开发了用于生成螯合重组抗体的噬菌体展示库。彼处描述的库使用以如下方式构建的表达载体,即提供在两个结合实体之间具有各种长度的接头肽的双重结合剂。由此有助于选择出最佳结合剂,即具有这类接头的最佳长度的双重结合剂。然而,对于每一种这类螯合重组抗体,必须构建重组表达系统(允许表达“结合物1-接头(各种长度的)-结合物2”多肽)的完整库。
如以概略方式在上文列出的,双特异性双重结合剂的制备仍然是相当有挑战性的,并且需要复杂的技术来分别鉴定、构建并生成每种那些双特异性结合剂。对衍生化(例如标记)这类双特异性结合剂的经常需要甚至进一步加重了复杂性水平。
令人惊讶地,现已发现本发明中披露的新的双特异性结合剂能克服至少一些现有技术中已知的缺点。
发明概述
本发明涉及式A-a’:a-S-b:b’-B:X(n)的结合剂,其中A以及B是单价结合物,其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,其中S是长度至少1nm的间隔物,其中:X指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度。
还公开了制备这类结合剂的方法及这类制剂的用途,例如在免疫测定法规程中。
还描述并要求保护所述新的结合剂的用途,尤其是在免疫学检测规程中。
发明详述
本发明涉及式A-a’:a-S-b:b’-B:X(n)的结合剂,其中A以及B是单价结合物,其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,其中S是长度至少1nm的间隔物,其中:X指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度。显然,依照本发明的结合剂是包含至少两个具有不同特异性的单价结合物的结合剂。在一个实施方案中,依照本发明的结合剂包含两个单价结合物。在一个实施方案中,依照本发明的结合剂是二价或双重结合剂。
如熟练技术人员会领会的,可以根据期望分离并纯化本发明中描述的结合剂。在一个实施方案中,本发明涉及分离的如本文中公开的结合剂。“分离的”结合剂是已经得到鉴定,并且与/从例如用于合成这类结合剂的试剂混合物分开和/或回收的结合剂。这类反应混合物的不想要的组分是例如没有在期望的结合剂中用尽的单价结合物。在一个实施方案中,将所述结合剂纯化至大于80%。在一些实施方案中,将所述结合剂分别纯化至按重量计大于90%、95%、98%或99%。在依照本发明的结合剂的两个单价结合物都是多肽的情况下,例如容易在蛋白质检测中使用例如考马斯蓝或银染色通过还原性或非还原性条件下的SDS-PAGE测定纯度。在核酸水平上评估纯度的情况下,应用大小层析来将结合剂与副产物分开,并监测260nm处的OD以评估其纯度。
冠词“一个”和“一种”在本文中用于指一个/种或超过一个/种(即至少一个/种)该冠词的语法对象。举例而言,“一个/种抗体”指一个/种抗体或超过一个/种抗体。
术语“多肽”和“蛋白质”可互换使用。在本发明的意义中,多肽由至少5个通过α氨基肽键连接的氨基酸组成。
“靶分子”是对其寻求测定或测量方法的感兴趣的生物分子。优选的靶分子是脂蛋白、多肽、多肽复合物、二级修饰的多肽和多肽与核酸之间的复合物。在一个优选的实施方案中,靶分子是多肽。
依照本发明,“单价结合物”(式I中分别的A和B)是在单个位点(即特异性结合位点)处与靶分子(例如靶多肽)相互作用的分子。在使用单价抗体或抗体片段作为结合物的情况下,该位点被称为互补位。
如会领会的,单价结合物A和B分别各自特异性结合其相应抗原。在一个优选的实施方案中,由单价结合物A和B特异性结合的表位不重叠。如熟练技术人员会领会的,术语特异性用于指示样品中存在的其它生物分子不与使用的结合剂显著结合。优选地,对于特异性的结合物,对靶分子以外的生物分子的结合亲和力的水平产生的结合亲和力是其对特异性结合的靶分子具有的亲和力的仅10%或更低,更优选地仅5%或更低。
单价结合物的例子是肽、肽模拟物、适体、镜铁聚体(spiegelmer)、darpin、锚蛋白重复蛋白、Kunitz型域、单域抗体(参见Hey,T.和Fiedler,E.等,TrendsBiotechnol.23(2005)514-522)和抗体的单价片段。
在某些优选的实施方案中,单价结合物是多肽。在一个优选的实施方案中,单价结合物A和B中的每一个分别为多肽。
在某些优选的实施方案中,单价结合物A和B分别为单价抗体片段,优选地自单克隆抗体衍生的单价片段。
单价抗体片段包括但不限于Fab、Fab’-SH、单域抗体、Fv和scFv片段,如下文提供的。
在一个优选的实施方案中,至少一个单价结合物是单域抗体、单克隆抗体的Fab片段或Fab’片段。
也代表一个优选的实施方案的是,在本文中公开的结合剂中,两个单价结合物都自单克隆抗体衍生,并且是Fab片段、或Fab’片段或Fab片段和Fab’片段。还优选包含两个Fab片段作为单价结合物A和B的结合剂。
单克隆抗体技术允许以特异性单克隆抗体或其片段的形式生成极端特异性的结合剂。在本领域中尤其公知的是通过用感兴趣的多肽免疫小鼠、家兔、仓鼠或任何其它哺乳动物来创建单克隆抗体或其片段的技术。另一种创建单克隆抗体或其片段的方法是使用sFv(单链可变区),特别是人sFv的噬菌体库(参见例如Griffiths等,美国专利No.5,885,793;McCafferty等,WO92/01047;Liming等,WO99/06587)。
可以通过传统手段(如酶促消化)或通过重组技术来生成抗体片段。对于某些抗体片段的综述,参见Hudson,P.J.等,Nat.Med.9(2003)129-134。
Fv是含有完整的抗原结合位点,并且缺乏恒定区的最小抗体片段。在一个实施方案中,双链Fv种类由紧密的、非共价联合的一个重链可变域和一个轻链可变域的二聚体组成。在单链Fv(scFv)种类的一个实施方案中,一个重链可变域和一个轻链可变域可以通过柔性肽接头共价连接,从而使得轻链和重链能以与双链Fv种类中的二聚体结构类似的二聚体结构联合。对于scFv的综述,参见例如Plueckthun,于:The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg和Moore(编),Springer-Verlag,New York(1994),第269页-第315页;亦参见WO93/16185;和美国专利No.5,571,894和5,587,458。一般而言,6个高变区(HVR)赋予抗体以抗原结合特异性。然而,甚至单个可变域(或仅包含对抗原特异性的3个HVR的半个Fv)也具有识别并结合抗原的能力。
Fab片段含有重链和轻链可变域,且还含有轻链恒定域和重链第一恒定域(CH1)。Fab’片段因在重链CH1域的羧基端增加了少数残基(包括来自抗体铰链区的一个或多个半胱氨酸)而与Fab片段有所不同。Fab’-SH是本文中对其中的恒定域半胱氨酸残基携带游离硫醇基团的Fab’的称谓。
已经开发出各种技术用于生成抗体片段。传统地,抗体片段经由对完整抗体的蛋白水解消化而衍生(参见例如Morimoto,K.等,Journal ofBiochemical and Biophysical Methods24(1992)107-117;和Brennan,M.等,Science229(1985)81-83)。例如,用木瓜蛋白酶消化抗体产生两个相同的各具有单一抗原结合位点的抗原结合片段,称作“Fab”片段,和一个残留的“Fc”片段,其名称反映了其容易结晶的能力。
还可以通过重组宿主细胞直接生成抗体片段。Fab、Fv和scFv抗体片段都可以在大肠杆菌(E.coli)中表达并自其分泌,如此允许容易产生大量的这些片段。可以依照标准规程从抗体噬菌体库分离抗体片段。或者,可以直接从大肠杆菌回收Fab’-SH片段(Carter,P.等,Bio/Technology10(1992)163-167)。还可以使用哺乳动物细胞系统来表达并(如期望的话)分泌抗体片段。
在某些实施方案中,本发明的单价结合物是单域抗体。单域抗体是包含抗体的整个或部分重链可变域或整个或部分轻链可变域的单一多肽链。在某些实施方案中,单域抗体是人单域抗体(Domantis,Inc.,Waltham,MA;参见例如美国专利No.6,248,516B1)。在一个实施方案中,单域抗体由抗体的整个或部分重链可变域组成。
如本文中使用的,术语“寡核苷酸”或“核酸序列”一般指短的、通常单链的多核苷酸,其包含至少8个核苷酸且至多约1000个核苷酸。在一个优选的实施方案中,寡核苷酸会具有至少9、10、11、12、15、18、21、24、27或30个核苷酸的长度。在一个优选的实施方案中,寡核苷酸会具有不超过200、150、100、90、80、70、60、50、45、40、35或30个核苷酸的长度。下文对多核苷酸给出的描述同等且完全适用于寡核苷酸。
术语寡核苷酸应当广义理解,且包括DNA和RNA以及其类似物和修饰。
例如,寡核苷酸可以含有在标准碱基脱氧腺苷(dA)、脱氧鸟苷(dG)、脱氧胞苷(dC)、脱氧胸苷(dT)、脱氧尿苷(dU)处携带取代基的经取代的核苷酸。这类经取代的核碱基的例子为:5-取代的嘧啶如5甲基dC、氨基烯丙基(aminoallyl)dU或dC、5-(氨乙基-3-丙烯酰亚氨(acrylimido))-dU、5-丙炔基-dU或-dC、5卤化的-dU或-dC;N取代的嘧啶如N4-乙基-dC;N取代的嘌呤如N6-乙基-dA、N2-乙基-dG;8取代的嘌呤如8-[6-氨基)-己-1-基]-8-氨基-dG或-dA、8卤化的dA或dG、8-烃基dG或dA;和2取代的dA如2氨基dA。
例如,寡核苷酸可以含有在标准碱基脱氧腺苷(dA)、脱氧鸟苷(dG)、脱氧胞苷(dC)、脱氧胸苷(dT)、脱氧尿苷(dU)处携带取代基的经取代的核苷酸。这类经取代的核碱基的例子为:5-取代的嘧啶如5甲基dC、氨基烯丙基(aminoallyl)dU或dC、5-(氨乙基-3-丙烯酰亚氨(acrylimido))-dU、5-丙炔基-dU或-dC、5卤化的-dU或-dC;N取代的嘧啶如N4-乙基-dC;N取代的嘌呤如N6-乙基-dA、N2-乙基-dG;8取代的嘌呤如8-[6-氨基)-己-1-基]-8-氨基-dG或-dA、8卤化的dA或dG、8-烃基dG或dA;和2取代的dA如2氨基dA。
寡核苷酸可以含有核苷酸或核苷类似物。即,可以通过使用核碱基类似物来交换天然存在的核碱基,所述核碱基类似物如5-硝基吲哚(Nitroindol)d核苷;3硝基吡咯d核苷、脱氧肌苷(dI)、脱氧黄苷(dX);7脱氮-dG、-dA、-dI或-dX;7-脱氮-8-氮杂-dG、-dA、-dI或-dX;8-氮杂-dA、-dG、-dI或-dX;d间型霉素(Formycin);假dU;假异dC;4硫代dT;6硫代dG;2硫代dT;异dG;5-甲基-异-dC;N8-连接的8-氮杂-7-脱氮-dA;5,6-二氢-5-氮杂-dC;和亚乙烯基-dA或吡咯并-dC。如对于熟练技术人员显而易见的,必须以如下的方式选择互补链中的核碱基,使得双链体形成是特异性的。如果例如在一条链(例如(a))中使用5-甲基-异-dC,那么必须在互补链(例如(a’))中使用异dG。
寡核苷酸主链可以修饰为含有经取代的糖残基、糖类似物、对核苷间磷酸酯模块的修饰,和/或是PNA。
寡核苷酸可以例如含有具有经取代的脱氧核糖的核苷酸,如2’-甲氧基、2’-氟、2’-甲基硒代、2’-烯丙氧基、4’-甲基dN(其中N是核碱基,例如A,G,C,T或U)。
糖类似物是例如木糖;2’,4’桥接的核糖如(2’-O,4’-C亚甲基)-(称为LNA的寡聚物)或(2’-O,4’-C亚乙基)-(称为ENA的寡聚物);L-核糖、L-d-核糖、己糖醇(称为HNA的寡聚物);环己烯基(称为CeNA的寡聚物);阿卓糖醇(altritol)(称为ANA的寡聚物);三环核糖类似物,其中C3’和C5’原子通过与环丙烷环融合的亚乙基桥连接(称为三环DNA的寡聚物);甘油(称为GNA的寡聚物);吡喃葡萄糖(称为同型(homo)DNA的寡聚物);carbaribose(具有环戊烷(cyclopentan)而非四氢呋喃亚单位);羟甲基-吗啉(称为吗啉代DNA的寡聚物)。
还已知大量的核苷间磷酸酯模块修饰不干扰杂交特性,并且这类主链修饰也可以与经取代的核苷酸或核苷酸类似物组合。例子是硫代磷酸酯、二硫代磷酸酯、氨基磷酸酯(phosphoramidate)和甲基膦酸酯寡核苷酸。
PNA(具有不含磷酸和d-核糖的主链)也可以用作DNA类似物。
上文提述的经修饰的核苷酸、核苷酸类似物以及寡核苷酸主链修饰可以根据期望组合成本发明意义中的寡核苷酸。
由a-S-b组成的接头L具有6至100nm的长度。优选地,由a-S-b组成的接头L具有6至80nm的长度。还优选接头具有6至50nm或6至40nm的长度。在又一个优选的实施方案中,所述接头会具有10nm或更长或15nm或更长的长度。在一个实施方案中,所述接头具有的长度介于10nm和50nm之间。在一个实施方案中,a和b分别为结合对成员,并且各自具有至少2.5nm的长度。
理论上且通过复合方法,给定接头(a-S-b)的非核苷实体的长度可以通过使用与非核苷实体在化学上类似的化合物的已知键距和键角来计算。标准教科书中对一些分子汇总了这类键距:CRC Handbook of Chemistry andPhysics,第91版,2010-2011,第9部分。然而,确切的键距对于每种化合物有所变化。也存在着键角的可变性。
因此,在这类计算中使用平均参数(容易理解近似值)是更实际的。
在间隔物或接头长度的计算中,下列近似值适用:a)为了计算非核苷实体的长度,使用130pm的平均键长及180°的键角,其不依赖于连接的原子的性质;b)单链中的一个核苷酸用500pm计算,且c)双链中的一个核苷酸用330pm计算。
数值130pm基于C(sp3)-C(sp3)-C(sp3)链的两个末端碳原子的距离计算,其中键角为109°28’,两个C(sp3)间的距离为153pm,这假定键角180°和两个C(sp3)间的键距125pm转化成约250pm。考虑到杂原子如P和S以及sp2和sp1C原子也可以是间隔物的一部分,采用数值130pm。如果间隔物包含环状结构如环烃基或芳基,那么以类似的方式计算距离,其通过对所述环状结构中作为限定距离的原子的整条链的一部分的键计数进行。
间隔物S可以根据需要来构建,例如提供期望的长度以及其它期望的特性。所述间隔物可以例如完全或部分由天然存在的或非天然存在的氨基酸构成,由磷酸根-糖单元构成,例如无核碱基的DNA样主链,由糖-肽结构构成,或至少部分由糖类单元或至少部分由可聚合亚单位如二醇或丙烯酰胺构成。
可以根据期望改变依照本发明的结合剂中的间隔物S的长度。为了容易地利用可变长度的间隔物(即库),优选能简单合成这类库的间隔物。间隔物的组合固相合成是优选的。由于不得不合成直至约100nm长度的间隔物,以如下的方式选择合成策略,从而使得在固相合成期间以高效率装配单体合成构建块。基于亚磷酰胺作为单体构建块装配的脱氧寡核苷酸的合成完全满足此要求。在这类间隔物中,间隔物内的单体单元在每种情况下经由磷酸酯或磷酸酯类似物模块连接。
间隔物S可以含有游离的带正电荷或/和负电荷的多官能性氨基-羧酸基团,例如氨基、羧酸根或磷酸根。例如,电荷载体可以自三官能性氨基羧酸衍生,所述三官能性氨基羧酸含有a)一个氨基基团和两个羧酸根基团或b)两个氨基基团和一个羧酸根基团。这类三官能性氨基羧酸的例子是赖氨酸、鸟氨酸、羟赖氨酸、α,β-二氨基丙酸、精氨酸、天冬氨酸和谷氨酸、羧基谷氨酸和对称的三官能性羧酸如那些记载于EP-A-0618192或US-A-5,519,142中的。或者,三官能性氨基羧酸中的一个羧酸根基团a)可以用磷酸根、磺酸根或硫酸根基团替换。这类三官能性氨基酸的一个例子是磷酸丝氨酸。
间隔物S也可以含有不带电荷的亲水性基团。不带电荷的亲水性基团的优选例子是环氧乙烷或优选具有至少3个环氧乙烷单元的聚环氧乙烷基团、亚砜、砜、羧酸酰胺、羧酸酯、膦酸(phosphonic acid)酰胺、膦酸(phosphonicacid)酯、磷酸(phosphoric acid)酰胺、磷酸(phosphoric acid)酯、磺酸酰胺、磺酸酯、硫酸酰胺和硫酸酯基团。优选地,酰胺基团是伯酰胺基团,特别优选地,氨基酸侧链基团(例如氨基酸天冬酰胺和谷氨酰胺)中的羧酸酰胺残基。优选地,酯自亲水性醇,特别是C1-C3醇或二醇或三醇衍生。
在一个实施方案中,间隔物S由一类单体构成。例如,间隔物分别仅由氨基酸、糖残基、二醇、磷酸-糖单元构成或者它可以是核酸。
在一个实施方案中,所述间隔物是DNA。在一个优选的实施方案中,所述间隔物是DNA的L-立体异构体,亦称为β-L-DNA、L-DNA或镜像DNA。L-DNA的特征在于如下的优点,如正交(orthogonal)杂交行为(其意味着仅在L-DNA的两条互补单链间形成双链体,但在L-DNA的单链和互补DNA链之间不形成双链体)、核酸酶抗性和容易合成(即使较长间隔物)。如指出的,容易合成和间隔物长度的可变性对于间隔物库来说是重要的。可变长度的间隔物在鉴定依照本发明的结合剂中是极端有用的,所述结合剂具有最佳长度的间隔物,如此提供两个单价结合物间的最佳距离。
间隔物构建块,顾名思义,可以用于将间隔模块引入间隔物S中或建造接头a-S-b的间隔物S。
有不同数目和种类的非核苷酸以及核苷酸间隔物构建块用于引入间隔模块。
许多不同非核苷酸双官能性间隔物构建块在文献中是已知的,并且许多种是商品化的。非核苷酸双官能性间隔物建造的选择影响着间隔物分子的电荷和柔性。
在双官能性间隔物构建块中,将用酸不稳定性保护基保护的羟基基团与亚磷酰胺基团连接。
在一个实施方案中,双官能性间隔物构建块是非核苷化合物。例如,这类间隔物是C2-C18烷基、烯基、炔基碳链,而所述烷基、烯基、炔基链可以用另外的亚乙氧基(ethyleneoxy)和/或酰胺模块或季铵化(quarternized)阳离子胺模块中断以增加接头的亲水性。也可以使用任选地用一个或两个C1-C6烃基基团取代的环状模块如C5-C6环烃基、C4N、C5N、C4O、C5O杂环烃基、苯基作为非核苷双官能性间隔物模块。优选的双官能性构建块包括C3-C6烃基模块和三-至六-乙二醇链。表I显示了具有不同亲水性、不同刚性和不同电荷的核苷酸双官能性间隔物构建块的一些例子。一个氧原子与酸不稳定性保护基(优选为二甲氧三苯甲基)连接,而另一个是亚磷酰胺的一部分。
表I:非核苷酸双官能性间隔物构建块的例子
Figure BDA0000370392870000101
建造间隔物S或将间隔模块引入间隔物S中的一种简单方式是使用标准的D或L核苷亚磷酰胺构建块。在一个实施方案中,使用dT的单链区段。这是有利的,因为dT不携带碱基保护基。
可以利用杂交来改变间隔物长度(结合对成员a和b之间的距离)和间隔物的柔性,因为双链长度与单链相比是缩短的,并且双链比单链更具刚性。
在一个实施方案中,对于杂交使用用功能性模块X修饰的寡核苷酸。用于杂交的寡核苷酸可以具有一个或两个不与间隔物杂交的末端延伸和/或是内部分支的。可以将这类不与间隔物杂交(且不干扰结合对a:a’和b:b’)的末端延伸用于别的杂交事件。在一个实施方案中,与末端延伸杂交的寡核苷酸是经标记的寡核苷酸。此经标记的寡核苷酸可以再次包含末端延伸或是分支的以允许别的杂交,由此可以获得多核苷酸聚集物或树枝状聚合物(dendrimer)。优选地,使用聚寡核酸树枝状聚合物以产生多标记物或得到较高的X局部浓度。
在一个实施方案中,间隔物S具有1至100nm的主链长度。在本文换言之,式I的基团a和b相隔介于1和100nm之间。在一个实施方案中,a和b各自分别是结合对成员,并且间隔物S具有1至95nm的主链长度。
“a’:a”以及“b:b’”各自独立地代表结合对。在一个实施方案中,每个结合对成员a和b分别具有至少2.5 nm的长度。
分别地,a和a’是结合对a’:a的成员,而b和b’是结合对b:b’的成员。优选地,结合对的每个成员具有的分子量为10kD或之下。在别的也优选的实施方案中,这类结合对的每个结合物的分子量为8、7、6、5或4kD或之下。
分别地,结合对a:a’或b’:b(之内)的结合亲和力是至少108l/mol。这两个结合对是有差异的。对于结合对,如果交互结合,例如a以及a’与b或b’的结合是a:a’对内的亲和力的10%或更低,那么例如承认差异。还优选交互结合,即a以及a’分别与b或b’的结合是a:a’对内的亲和力的5%或更低,或者如果它是a:a’对内的亲和力的2%或更低。在一个实施方案中,该差异如此明显,以致与结合对内的特异性结合亲和力相比,交互(交叉反应性)结合是1%或更小。
在一个实施方案中,a’:a和b:b’是结合对,并且结合对a’:a和b:b’的成员选自由亮氨酸拉链域二聚体和杂交核酸序列组成的组。在一个实施方案中,这两个结合对都代表亮氨酸拉链域二聚体。在一个实施方案中,这两个结合对都是杂交核酸序列。
术语“亮氨酸拉链域”用于指一种普遍公认的二聚化域,其特征在于在约35个残基的区段中每第七个残基处存在一个亮氨酸残基。亮氨酸拉链域是促进找到它的蛋白质的寡聚化的肽。亮氨酸拉链最初在数种DNA结合蛋白中鉴定出来(Landschulz,H.W.等,Science240(1988)1759-1764),并且自此以后在多种不同蛋白质中找到。在已知的亮氨酸拉链中有天然存在的肽和其二聚化或三聚化的衍生物。适合于生成可溶性多聚体蛋白质的亮氨酸拉链域的例子记载于PCT申请WO94/10308,并且自肺表面活性剂蛋白D(SPD)衍生的亮氨酸拉链记载于Hoppe,H.J.等,FEBS Lett.344(1994)191-195。
亮氨酸拉链域形成通过α螺旋卷曲螺旋保持在一起的二聚体(结合对)。卷曲螺旋每转具有3.5个残基,这意味着每第7个残基相对于螺旋轴占据等同的位置。卷曲螺旋内部的亮氨酸的规则排列通过疏水性和范德华相互作用使结构稳定化。
如果亮氨酸拉链域形成第一结合对(a’:a)和第二结合对(b:b’),那么这两个亮氨酸拉链序列是不同的,即序列a和a’不结合b和b’。亮氨酸拉链域可以从已知含有这类域的天然蛋白质如转录因子分离。一个亮氨酸拉链域可以例如来自转录因子fos,而第二个可以来自转录因子jun。亮氨酸拉链域也可以使用本领域中已知的标准合成和设计技术进行人工设计和合成。
在一个优选的实施方案中,结合对a’:a和b:b’的两个成员,即a、a’、b和b’都代表亮氨酸拉链域,并且间隔物S由氨基酸组成。在此实施方案中,容易地生成构建体a-S-b是有可能的。根据期望改变这类间隔物S的长度对于本领域技术人员是简单的。可以合成或重组生成这类多肽。
例如,可以依照标准技术在合适的宿主细胞中表达重组融合蛋白,其包含在N末端与亮氨酸拉链肽融合并且在C末端与亮氨酸拉链肽融合的间隔物多肽。可以将编码期望的肽间隔物的DNA序列在编码第一亮氨酸拉链域a的成员的序列和在相同阅读框中的编码第二亮氨酸拉链域b的成员的DNA序列之间插入。
在一个实施方案中,如果接头a-S-b是多肽,那么间隔物S一次或数次包含GGGGS(SEQ ID NO:13)氨基酸序列基序。间隔物S也可以包含标签序列。所述标签序列可以选自通常使用的蛋白质识别标签如YPYDVPDYA(HA标签)(SEQ ID NO:14)或GLNDIFEAQKIEWHE(Avi标签)(SEQ ID NO:15)。
在一个优选的实施方案中,结合对(a’:a)和(b:b’)两者都是杂交核酸序列。
如命名法已经指示,a和a’以及b和b’分别彼此杂交。在一方面在a和a’中及在另一方面在b和b’中包含的核酸序列是不同的。换言之,结合对a’:a中的序列分别不结合结合对b:b’的序列,反之亦然。在一个实施方案中,本发明涉及式I的至少双重结合剂,其中结合对a:a’和b:b’均分别是杂交核酸序列,且其中不同结合对a’:a和b:b’的杂交核酸序列彼此不杂交。换言之,a和a’彼此杂交但不结合b或b’中的任一个或干扰其杂交,反之亦然。可以通过熔解点分析容易地监测杂交动力学和杂交特异性。如果a:a’对的熔解温度与同b或b’的任意可能组合(即a:b;a:b’;a’:b和a’:b’)相比分别高至少20℃,那么承认结合对(例如a:a’)的特异性杂交和非干扰(例如不干扰b或b’)。
形成结合对例如(a:a’)或任何其它基于核酸序列的结合对的核酸序列可以包含任何天然存在的核碱基或其类似物,并且可以具有如上文所描述的经修饰的或未修饰的主链,只要它能够经由多碱基配对形成稳定的双链体。稳定意味着双链体的熔解温度高于37℃。优选地,双链由两条完全互补的单链组成。然而,错配或插入是有可能的,只要给予于37℃的稳定性。
如熟练技术人员会领会,可以通过链间交联使核酸双链体进一步稳定化。数种合适的交联方法是熟练技术人员已知的,例如使用补骨脂素(psoralen)或基于硫代核苷的方法。
优选地,代表结合对成员的核酸序列由介于12和50个之间的核苷酸组成。还优选这类核酸序列会由介于15至35个之间的核苷酸组成。
RNA酶是普遍存在的,并且必须特别注意避免对基于RNA的结合对和/或间隔物序列的不想要的消化。尽管确实有可能使用例如基于RNA的结合对和/或间隔物,但基于DNA的结合对和/或间隔物代表一个优选的实施方案。
可以容易地设计适当的杂交核酸序列以提供超过两对正交互补的寡核苷酸,从而允许简单生成并使用超过两个结合对。在本发明的结合剂中使用杂交核酸序列的另一个优点是,可以将修饰容易地引入到核酸序列中。经修饰的构建块是商品化的,其例如允许简单合成包含功能性模块的接头。可以在任何期望的位置且在结构a和a’以及b和b’和/或S的任一种中容易地引入这类功能性模块,只要它们代表寡核苷酸。
在一个优选的实施方案中,依照式I的结合剂中包含的间隔物S是核酸。在一个优选的实施方案中,两个结合对均为杂交核酸序列,并且间隔物S也是核酸。在此实施方案中,由a-S-b组成的接头L是寡核苷酸。
在间隔物S以及序列a、a’、b和b’均为寡核苷酸序列的情况下,容易有可能提供并合成代表接头L的单一寡核苷酸,所述接头L包含S和结合对a’:a和b:b’分别的成员a和b。在单价结合物A和B分别是多肽的情况下,可以分别将它们各自与杂交核酸序列a’和b’容易地偶联。可以以任何期望的方式容易地改变这类构建体中包含的间隔物S的长度。基于三种构建体a-S-b、A-a’和b’-B,可以依照标准规程分别通过a’:a和b:b’之间的杂交最容易地获得式I的结合剂。当使用不同长度的间隔物时,所得的构建体提供其它方面相同的、但在单价结合物A和B之间具有不同的距离的结合剂。这允许最适的距离和/或柔性。
在一个优选的实施方案中,间隔物S以及序列a、a’、b和b’是DNA。
对映体L-DNA因其正交杂交行为、其核酸酶抗性和容易合成可变长度的寡核苷酸而著称。这种经由设计合适的间隔物而易于接头长度可变性对于优化如本文中公开的结合剂对其一种或多种抗原的结合是重要的。
在一个优选的实施方案中,接头L(=a-S-b)是对映体L-DNA或L-RNA。在一个优选的实施方案中,接头a-S-b是对映体L-DNA。在一个优选的实施方案中,a、a’、b和b’以及间隔物S是对映体L-DNA或L-RNA。在一个优选的实施方案中,a、a’、b和b’以及间隔物S是对映体L-DNA。
在一个实施方案中,间隔物S是寡核苷酸,并且在包含彼此可杂交的末端的两个部分中合成。在此情况下,可以通过使这些可杂交末端彼此杂交简单地构建间隔物S。所得的间隔物构建体包含寡核苷酸双链体部分。显然,在以所述方法构建间隔物的情况中,以如下的方式选择形成所述双链体的可杂交寡核苷酸实体的序列,即使得不能发生与结合对a:a’和b:b’的杂交或干扰结合对a:a’和b:b’。
如上文已经描述的,式I的单价特异性结合物A和B可以是核酸。在本发明的一个实施方案中,a’、a、b、b’、A、B和S均为寡核苷酸序列。在该实施方案中,式I的亚单位A-a’、a-S-b和b’-B可以依照标准规程容易地且独立地合成,并且依照便利的标准规程通过杂交组合。优选地,功能性模块X选自下组:结合基团、标记基团、效应器基团和反应性基团。
如果存在超过一个功能性模块X,那么每个这类功能性模块在每种情况下可以独立地为结合基团、标记基团、效应器基团或反应性基团。
在一个实施方案中,优选地,所述功能性模块X选自下组:结合基团、标记基团和效应器基团。
在一个实施方案中,基团X是结合基团。如对于本领域技术人员来说显然的,结合基团X会选择为对a’:a和b:b’对没有干扰。
结合基团的例子是生物亲和性(bioaffine)结合对的配偶,其能与该生物亲和性结合对的另一配偶特异性相互作用。合适的生物亲和性结合对是半抗原或抗原和抗体;生物素或生物素类似物(如氨基生物素、亚氨基生物素或脱硫生物素)和亲合素或链霉亲合素;糖和凝集素、寡核苷酸和互补的寡核苷酸、受体和配体(例如类固醇激素受体和类固醇激素)。在一个实施方案中,X是结合基团,并且与式I化合物的a’、a、b、b’或S中的至少一个共价结合。优选地,生物亲和性结合对的较小配偶,例如生物素或其类似物、受体配体、半抗原或寡核苷酸与如上文限定的a’、a、S、b或b’中的至少一个共价结合。
在一个实施方案中,功能性模块X是选自下组的结合基团:半抗原;生物素或生物素类似物如氨基生物素、亚氨基生物素或脱硫生物素;寡核苷酸和类固醇激素。
在一个实施方案中,功能性模块X是反应性基团。所述反应性基团可以选自任何已知的反应性基团,如氨基、硫氢基、羧酸根、羟基、叠氮基、炔基或烯基。在一个实施方案中,所述反应性基团选自马来酰亚胺基、琥珀酰亚氨基、二硫代吡啶基(Dithiopyridyl)、硝基苯基酯、六氟苯基酯。
在一个实施方案中,所述功能性模块X是标记基团。所述标记基团可以选自任何已知的可检测基团。熟练技术人员会选择适合于最佳灵敏度及最少猝灭的标记物数目。
标记基团可以选自任何已知的可检测基团。在一个实施方案中,所述标记基团选自染料如发光标记基团,如化学发光基团(例如吖啶酯或二氧杂环丁烷(dioxetane)或荧光染料例如荧光素、香豆素、罗丹明、
Figure BDA0000370392870000151
嗪(oxazine)、试卤灵(resorufin)、花青(cyanine)、及其衍生物)、发光金属复合物(如钌或铕复合物)、如用于CEDIA(克隆酶供体免疫测定法(Cloned Enzyme DonorImmunoassay),例如EP0061888)的酶、微粒或纳米颗粒例如胶乳颗粒或金属溶胶、和放射性同位素。
在一个实施方案中,所述标记基团是发光金属复合物,并且化合物具有通式(II)的结构:
[M(L1L2L3)]n-Y-XmA      (II)
其中M是选自稀土或过渡金属离子的二价或三价金属阳离子,L1、L2和L3是相同或不同的,且表示具有至少两个含氮杂环的配体,其中L1、L2和L3经由氮原子结合金属阳离子,X是经由接头Y共价结合L1、L2和L3配体中至少一个的反应性官能团,n是1至10,优选为1至4的整数,m是1或2,且优选是1,并且A指平衡电荷可能需要的反荷离子。
优选地,金属复合物是发光金属复合物,即在适当激发后经历可检测的发光反应的金属复合物。可以例如通过荧光或通过电化学发光测量检测所述发光反应。此复合物中的金属阳离子是例如过渡金属或稀土金属。优选地,所述金属为钌、锇、铼、铱、铑、铂、铟、钯、钼、锝、铜、铬、或钨。特别优选钌、铱、铼、铬和锇。最优选钌。
配体L1、L2和L3是具有至少两个含氮杂环的配体。优选芳香族杂环如二吡啶基、二吡嗪基(bipyrazyl)、三吡啶基和菲酚基(phenanthrolyl)。特别优选地,配体L1、L2和L3选自二吡啶和菲咯啉(phenanthroline)环系统。
另外,所述复合物可以含有一个或数个反荷离子A以平衡电荷。合适的带负电荷的反荷离子的例子是卤化物、OH-、碳酸根、烃基羧酸根例如三氟乙酸根、硫酸根、六氟磷酸根和四氟硼酸根基团。特别优选六氟磷酸根、三氟乙酸根和四氟硼酸根基团。合适的带正电荷的反荷离子的例子是单价阳离子如碱性金属和铵离子。
在又一个优选的实施方案中,所述功能性模块X是效应器基团。优选的效应器基团是治疗活性物质。
治疗活性物质具有其有效发挥作用的不同方式,例如在抑制癌症方面。它们能通过烷基化、通过交联、或通过对DNA的双链切割来损害DNA模板。其它治疗活性物质能通过嵌入阻断RNA合成。一些药剂是纺锤体毒物,如长春花生物碱,或抑制酶活性的抗代谢物,或激素和抗激素剂。效应器基团X可以选自烷化剂、抗代谢物、抗肿瘤抗生素、长春花生物碱、表鬼臼毒素(epipodophyllotoxin)、亚硝脲、激素和抗激素剂、和毒素。
目前较优选的烷化剂可以以环磷酰胺、苯丁酸氮芥(chlorambucil)、白消安(busulfan)、美法仑(Melphalan)、塞替派(Thiotepa)、异环磷酰胺(ifosphamide,ifosfamide)、氮芥例示。
目前较优选的抗代谢物可以以甲氨蝶呤、5-氟尿嘧啶、阿糖胞苷(cytosinearabinoside)、6-硫鸟嘌呤、6-巯嘌呤(6-mercaptopurin)例示。
目前较优选的抗肿瘤抗生素可以以多柔比星(doxorubicin)、柔红霉素(daunorubicin)、伊达比星(idorubicin,idarubicin)、nimitoxantron、更生霉素(dactinomycin)、博来霉素(bleomycin)、丝裂霉素和普卡霉素(plicamycin)例示。
目前较优选的纺锤体毒物可以以美登素(maytansine)和美登木素生物碱(maytansinoids)例示,长春花生物碱和表鬼臼毒素可以以长春新碱(vincristin)、长春碱(vinblastin)、长春地辛(vindestin,vindesine)、依托泊苷(Etoposide)、替尼泊苷(Teniposide)例示。
目前较优选的亚硝脲可以以卡莫司汀(carmustin,carmustine)、洛莫司汀(lomustin,lomustine)、司莫司汀(semustin,semustine)、链佐星(streptozocin)例示。
目前较优选的激素和抗激素剂可以以肾上腺皮质类固醇类、雌激素类、抗雌激素类、妊娠素、芳香酶抑制剂、雄激素类、抗雄激素类例示。
其它优选的随机合成药剂可以以达卡巴嗪(dacarbazin)、六甲蜜胺(hexamethylmelamine)、羟基脲、米托坦(mitotane)、丙卡巴肼(procarbazide,procarbazine)、顺铂、卡铂例示。
功能性模块X与(a’)、(a)、(b)、(b’)或S中的至少一个共价或经由别的结合对结合。所述功能性模块X可以存在一次或数(n)次。(n)是整数,且是1或超过1。优选地,(n)介于1和100之间。还优选(n)是1-50。在某些实施方案中,n是1至10,或1至5。在其它实施方案中,n是1或2。
对于功能性模块X与a’、a、b、b’或S中至少一个的共价结合,可以使用任何合适的偶联化学。熟练技术人员可以容易地从标准方案中选出这类偶联化学。也有可能在合成a’、a、b、b’或S时通过使用合适的构建块掺入功能性模块。
在一个优选的实施方案中,功能性模块X与式I限定的结合剂的a、b、或S结合。
在一个优选的实施方案中,功能性模块X与式I限定的结合剂的间隔物S结合。
在一个优选的实施方案中,功能性模块X与式I限定的结合剂的a、b或S共价结合。
如果功能性模块X位于分别代表a、a’、b或b’的杂交寡核苷酸内,那么优选地,这类功能性模块结合至经修饰的核苷酸或附接于核苷间P原子(WO2007/059816)。将不干扰寡核苷酸杂交的经修饰核苷酸掺入那些寡核苷酸中。优选地,这类经修饰的核苷酸是C5取代的嘧啶或C7取代的7脱氮嘌呤。
可以用非核苷酸实体在内部或在5’或3’端修饰寡核苷酸,所述非核苷酸实体用于引入功能性模块。优选地,这类非核苷酸实体位于间隔物S内,即在两个结合对成员a和b之间。
用于构建间隔物的许多不同非核苷酸修饰剂构建块是文献中已知的,并且很多种是商品化的。对于功能性模块的引入,使用非核苷双功能性修饰剂构建块或非核苷三功能性修饰剂构建块作为用于末端标记的CPG或作为用于内部标记的亚磷酰胺(参见Wojczewski,C.等,Synlett10(1999)1667-1678)。
双功能性修饰剂构建块
双功能性修饰剂构建块将功能性模块或受保护的功能性模块(若必要的话)连接至亚磷酰胺基团以将该构建块在5’端(规则合成)或3’端(倒置合成)附接至生长的寡核苷酸链的末端羟基基团。
优选地,双功能性修饰剂构建块是非核苷化合物。例如,这类经修饰的剂构建块是C2-C18烷基、烯基、炔基碳链,而所述烷基、烯基、炔基链可以由别的亚乙氧基和/或酰胺模块中断以增加间隔物以及由此整个接头结构的亲水性。也可以使用环状模块如C5-C6-环烃基、C4N、C5N、C4O、C5O-杂环烃基、苯基(任选地用一个或两个C1-C6烃基基团取代)作为非核苷双功能性修饰构建块。优选的经修饰的双功能性构建块包含C3-C6烃基模块和三-至六-乙二醇链。下文表II中给出了双功能性修饰剂构建块的非限制性但优选的例子。
表II:
Figure BDA0000370392870000181
Figure BDA0000370392870000191
三功能性修饰剂构建块
三功能性构建块连接(i)功能性模块或(若必要的话)受保护的功能性模块,(ii)亚磷酰胺基团,以在寡核苷酸合成期间将报告物或功能性模块或(若必要的话)受保护的功能性模块与生长的寡核苷酸链的羟基基团偶联,以及(iii)用酸不稳定性保护基,优选用二甲氧三苯甲基保护基保护的羟基基团。在除去此酸不稳定性保护基后,释放出能与别的亚磷酰胺起反应的羟基基团。因此,三功能性构建块允许将功能性模块放置到寡核苷酸内的任意位置。三功能性构建块也是使用固体支持物例如可控多孔玻璃(CPG)合成的前提,其用于寡核苷酸的3’端标记。在此情况下,三功能性构建块经由C2-C18烷基、烯基、炔基碳链连接至功能性模块或(若必要的话)受保护的功能性模块,而所述烷基、烯基、炔基链可以用别的亚乙氧基和/或酰胺模块中断以增加间隔物以及由此整个接头结构的亲水性,并且包含经由可切割的间隔物附接于固相的羟基基团和用酸性不稳定性保护基保护的羟基基团。在除去此保护基后,释放出羟基基团,其然后能与亚磷酰胺起反应。
三功能性构建块可以是非核苷的或核苷的。
非核苷的三功能性构建块是C2-C18烷基、烯基、炔基碳链,而所述烷基、烯基、炔基任选地用别的亚乙氧基和/或酰胺模块中断以增加间隔物以及由此整个接头结构的亲水性。其它三功能性构建块为环状基团如C5-C6环烃基、C4N、C5N、C4O、C5O杂环烃基、苯基,其任选地用一个或两个C1-C6烃基基团取代。环状和非环状基团可以用一个-(C1-C18)烃基-O-PG基团取代,而所述C1-C18烃基包含(亚乙氧基)n、(酰胺)m模块,n和M彼此独立地=0-6,并且PG是酸不稳定性保护基。优选的三功能性构建块是C3-C6烃基、环烃基、C5O杂环烃基模块,其任选地包含一个酰胺键,并且用C1-C6烃基O-PG基团取代,其中PG是酸不稳定性保护基,优选为单甲氧三苯甲基、二甲氧三苯甲基、pixyl、呫吨基(xanthyl),最优选二甲氧三苯甲基。
例如,表III中汇总了非核苷三功能性构建块的非限制性但优选的例子。
表III:非核苷三功能性修饰剂构件块的例子
Figure BDA0000370392870000192
Figure BDA0000370392870000201
Figure BDA0000370392870000211
核苷修饰剂构建块:
每当有必要与非修饰的寡核苷酸相比不影响寡核苷酸杂交特性时,使用核苷修饰剂构建块进行内部标记。因此,核苷构建块包含仍然能够与互补碱基杂交的碱基类似物或碱基。在式II中给出了标记化合物的通式,其用于标记依照本发明式I的结合剂中包含的a、a’、b、b’或S中的一种或多种的核酸序列。
式II:
Figure BDA0000370392870000212
其中PG是酸不稳定性保护基,优选为单甲氧三苯甲基、二甲氧三苯甲基、pixyl、呫吨基,最优选二甲氧三苯甲基,其中Y是C2-C18烷基、烯基、炔基,其中所述烷基、烯基、炔基可以包含亚乙氧基和/或酰胺模块,其中Y优选为C4-C18烷基、烯基、或炔基,并且含有一个酰胺模块,且其中X是功能性模块。
可以针对这类取代选择特定的碱基位置以使对杂交特性的影响最小化。因此,下列位置对于取代是优选的:a)在天然碱基的情况中:在C5处取代的尿嘧啶;在C5或N4处取代的胞嘧啶;在C8或N6处取代的腺嘌呤以及在C8或N2处取代的鸟嘌呤,和b)在碱基类似物的情况中:在C7处取代的7脱氮A和7脱氮G;在C7处取代的7脱氮8氮杂A和7脱氮8氮杂G;在C7处取代的7脱氮氮杂2氨基A;在N1处取代的假尿嘧啶和在N2处取代的间型霉素。
表IV中给出了核苷三功能性构建块的非限制性但优选的例子。
表IV:
Figure BDA0000370392870000213
Figure BDA0000370392870000221
在表II、III和IV中,双功能性模块的末端氧原子之一或三功能性模块的末端氧原子之一是亚磷酰胺的一部分,其没有完全详细地显示但是对熟练技术人员来说是明显的。三功能性构建块的第二个末端氧原子用酸不稳定性保护基PG保护,如对上述式II限定的。
合成后修饰是将共价结合的功能性模块引入接头或间隔物分子中的另一种策略。在此办法中,通过在固相合成期间使用双功能性或三功能性构建块引入氨基基团。在从支持物切割并纯化后,氨基修饰的寡核苷酸与功能性模块的活化酯或双功能性试剂起反应,所述双功能性试剂中的一个官能团是活性酯。优选的活性酯是NHS酯或五氟苯基酯。
合成后修饰对于引入在固相合成和脱保护期间不稳定的功能性模块是特别有用的。例子是为了Staudinger连接用三苯基膦羧甲基(triphenylphosphincarboxymethyl)酯修饰(Wang,C.C.等,BioconjugateChemistry14(2003)697-701),用洋地黄毒苷修饰或使用商品化磺基SMCC引入马来酰亚胺基团。
在一个实施方案中,所述功能性模块X经由别的结合对与a’、a、b、b’或S中的至少一个结合。
优选地,可以与功能性模块X结合的别的结合对是亮氨酸拉链域或杂交核酸。在功能性模块X经由别的结合对成员与a’、a、b、b’或S中的至少一个结合的情况下,与X结合的结合对成员和结合对a’:a和b:b’分别都选择为具有不同特异性。结合对a:a’、b:b’和与X结合的结合对各自结合其相应的配偶(例如与其杂交)而不干扰任一种其它结合对的结合。
结合对成员与单价结合物的共价偶联
根据结合物的生物化学性质,有不同缀合策略。
在结合物是50至500个氨基酸的天然存在的蛋白质或重组多肽的情况下,教科书中有描述蛋白质缀合物合成化学的标准规程,其是熟练技术人员可以容易地遵循的(Hackenberger,C.P.等,Angew.Chem.,Int.Ed.,47(2008)10030-10074)。
在一个实施方案中,使用马来酰亚胺模块与蛋白质内半胱氨酸残基的反应。在例如使用抗体的Fab或Fab’片段作为单价结合物的情况下,这是一种优选的偶联化学。或者,在一个实施方案中,实施结合对成员(分别是式I的a’或b’)与结合物多肽C端末端的偶联。例如,可以如描述的(Sunbul,Murat和Yin,Jun,Organic & Biomolecular Chemistry7(2009)3361-3371)实施蛋白质(例如Fab片段)的C末端修饰。
一般地,结合对成员与单价多肽结合物的位点特异性反应和共价偶联基于将天然的氨基酸转化成与蛋白质中存在的其它官能团的反应性具有正交反应性的氨基酸。例如,在罕见的序列背景内的特定半胱氨酸可以酶促转化成醛(参见Frese,M.-A.等,ChemBioChem10(2009)425-427)。还有可能通过利用某些酶与给定序列背景中的天然氨基酸的特异性酶促反应性来获得期望的氨基酸修饰(参见例如:Taki,M.等,Protein Engineering,Design &Selection17(2004)119-126;Gautier,A.等,Chemistry&Biology15(2008)128-136;Bordusa,F.,Highlights in Bioorganic Chemistry(2004)389-403使用蛋白酶催化的C-N键形成,而Mao,H.等,于J.Am Chem Soc.126(2004)2670-2671使用并且Proft,T.,于Biotechnol.Lett32(2010)1-10综述了分选酶(Sortase)介导的蛋白质连接)。
通过末端氨基酸与合适的修饰剂的选择性反应也可以实现结合对成员对单价多肽结合物的位点特异性反应和共价偶联。
可以使用N端半胱氨酸与苄腈(benzonitril)的反应性(Ren,Hongjun,Xiao等,Angewandte Chemie,International Edition48(2009)9658-9662)来实现位点特异性共价偶联。
天然的化学连接也可以依赖于C末端半胱氨酸残基(Taylor,E.Vogel,Imperiali,B.,Nucleic Acids and Molecular Biology22(2009)(ProteinEngineering)65-96)。
EP1074563描述了一种缀合方法,其基于带负电荷的氨基酸区段内的半胱氨酸与位于带正电荷的氨基酸区段中的半胱氨酸的较快反应。
单价结合物也可以是合成肽或肽模拟物。在化学合成多肽的情况下,可以在这类合成期间掺入具有正交化学反应性的氨基酸(de Graaf,A.J.等,Bioconjugate Chemistry20(2009)1281-1295)。由于极其多种正交官能团是所讨论的且可以引入合成肽中,这类肽与接头的缀合是标准化学。
为了获得单标记的蛋白质,可以通过层析将具有1:1化学计量的缀合物与其它缀合产物分开。通过使用经染料标记的结合对成员和带电荷的间隔物来促进此规程。通过使用这种经标记的且高度带负电荷的结合对成员,单缀合的蛋白质与非标记的蛋白质和携带超过一个接头的蛋白质容易地分开,因为可以利用电荷和分子量的差异进行分离。荧光染料对于从未结合的组分(如经标记的单价结合物)纯化结合剂是有价值的。
因此,在一个实施方案中,优选使用用荧光染料标记(例如在合成期间与双功能性间隔物构建块组合使用双功能性或三功能性修饰剂构建块合成)的结合对成员(分别是式I的a’和/或b’)来形成本发明的结合剂。在一个优选的实施方案中,间隔物S以及序列a、a’、b和b’是DNA,并且分别用荧光染料标记a’或b’中的至少一个。在一个优选的实施方案中,间隔物S以及序列a,a’,b和b’是DNA,并且各自用不同荧光染料分别标记a’和b’两者。
在一个实施方案中,本发明涉及式I:A-a’:a-S-b:b’-B:X(n)的双特异性结合剂;其中A以及B是单价特异性结合物,其中a’:a以及b:b’代表结合对,a’:a和b:b’具有不同的特异性,其中S代表间隔物,其中(:X)指经由别的结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度。
在一个优选的实施方案中,所述结合对a’:a和b:b’为杂交核酸序列,所述间隔物S是核酸且结合功能性模块X的别的结合对也是核酸。在此实施方案中,优选地,所述间隔物S构建为除两个分别特异性杂交的序列a和a’以及b和b’以外,还包含一个或多个也能与其互补序列杂交的别的序列。在此实施方案中,功能性模块X经由也由杂交核酸序列组成的别的结合对结合间隔物S。
用于构建如本文中披露的结合剂的单价结合物必须具有10-2/秒至10-5/秒的K解离。还优选用于构建如本文中披露的结合剂的单价结合物必须具有10-3/秒至10-5/秒的K解离
优选地,在依照式I的结合剂中,单价结合物A和B的每种分别具有10-2/秒至10-5/秒,还优选10-3/秒至10-5/秒的K解离
优选地,依照式I的结合剂具有10-5/秒或更优,还优选10-6/秒或更优的K解离。还优选依照式I的结合剂具有10-7/秒或更优的K解离
如熟练技术人员会领会,K解离是一项温度依赖性数值。在逻辑上,在同一温度测定依照本发明的结合剂的K解离值。如会领会,优选地,于会使用结合剂(例如会实施测定法)的相同温度测定K解离值。在一个实施方案中,于室温,即分别于20℃、21℃、22℃、23℃、24℃或25℃建立K解离值。在一个实施方案中,分别于4或8℃建立K解离值。在一个实施方案中,于25℃建立K 值。在一个实施方案中,于37℃建立K解离值。
如上文已经提述的,生成如式I中定义的结合剂现在是可能的且相当简单的。如需要的,能够容易地提供依照式I的结合剂的完全的库,对其进行分析,并以大规模产生这类库中最强大的结合剂。
上文提述的库指依照式I的结合剂的完整集合,其中每种A、a、a’、b、b’和B是相同的,且其中间隔物S的长度被调节为最满足针对结合剂所列出的要求。可以容易地首先使用跨越1至100nm的全部范围并且有约10nm间隔的梯度的间隔物梯。然后在第一轮中鉴定出的最适长度附近再进一步优化间隔物长度。
在一个实施方案中,本发明涉及产生式I:A-a’:a-S-b:b’-B:X(n)的结合剂的方法;其中A以及B是单价结合物,其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,其中S是长度至少1nm的间隔物,其中(:X)指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,其中(n)是整数且至少为1,其中-代表共价键,且其中接头a-S-b具有6至100nm的长度,所述方法包括以下步骤:a)分别合成A-a’和b’-B,b)合成接头a-S-b,以及c)形成式I的结合剂,其中结合a’、a、b、b’或S中至少一个的功能性模块X在步骤a),b)或c)中结合。
在该方法的一个优选的实施方案中,合成具有不同长度间隔物的数种接头分子并用于形成依照式I的包含不同长度的间隔物的结合剂,并且选择那些相对于两个单价结合物中更佳者在K解离中改进至少5倍的结合剂。在一个实施方案中,通过如实施例2.8中披露的BiaCore分析实施对具有期望的K解离的结合剂的选择。
依照本发明的结合剂可以例如用于在免疫测定法中强力结合分析物。如果例如分析物具有至少2种不重叠的表位,那么本发明的结合剂构建为使间隔物S针对单价结合物对这些表位的协同结合具有最佳长度。此改进在例如采用这类结合剂来检测分析物的方法中可能极为有用。因此,在一个实施方案中,本发明涉及如上文中披露的结合剂在检测感兴趣分析物中的用途。在某些实施方案中,使用的检测方法是酶联免疫吸附测定法(ELISA),一种直接、间接、竞争性或夹心式的免疫测定法,其采用任何合适的信号检测方式,例如电化学发光,或者所述结合剂用于免疫组织化学中。
提供以下实施例、序列表和附图以帮助理解本发明,其真实范围在所附权利要求书中列出。应理解的是,可以在不背离本发明的精神的前提下对所列规程做出修改。
序列表描述
1.抗体片段
SEQ ID NO:1 VH(单抗1.4.168):
QCDVKLVESG GGLVKPGGSL KLSCAASGFT FSDYPMSWVR QTPEKRLEWV
ATITTGGTYT YYPDSIKGRF TISRDNAKNT LYLQMGSLQS EDAAMYYCTR
VKTDLWWGLA YWGQGTLVTV SA
SEQ ID NO:2 VL(单抗1.4.168):
QLVLTQSSSA SFSLGASAKL TCTLSSQHST YTIEWYQQQP LKPPKYVMEL
KKDGSHTTGD GIPDRFSGSS SGADRYLSIS NIQPEDESIY ICGVGDTIKE
QFVYVFGGGT KVTVLG
SEQ ID NO:3 VH(单抗8.1.2):
EVQLQQSGPA LVKPGASVKM SCKASGFTFT SYVIHWVKQK PGQGLEWIGY
LNPYNDNTKY NEKFKGKATL TSDRSSSTVY MEFSSLTSED SAVYFCARRG
IYAYDHYFDY WGQGTSLTVS S
SEQ ID NO:4 VL(单抗8.1.2):
QIVLTQSPAI MSASPGEKVT LTCSASSSVN YMYWYQQKPG SSPRLLIYDT
SNLASGVPVR FSGSGSVTSY SLTISRMEAE DAATYYCQQW STYPLTFGAG
TKLELK
2.ssDNA的序列
a)17聚体ssDNA(分别以5’端与抗肌钙蛋白T单抗a的Fab’或针对IGF-1R的Fab’1.4.168共价结合)
5’-AGT TCT ATC GTC GTC CA-3’(SEQ ID NO:5)
b)19聚体ssDNA(分别以3’端与抗肌钙蛋白T单抗b的Fab’或针对磷酸化IGF-1R的Fab’8.1.2共价结合)
5’-A GTC TAT TAA TGC TTC TGC-3’(SEQ ID NO:6)
c)互补的19聚体ssDNA(用作接头的一部分)
5’-G CAG AAG CAT TAA TAG ACT-3’(SEQ ID NO:7)
d)互补的17聚体ssDNA(用作接头的一部分)
5’-TGG ACG ACG ATA GAA CT-3’(SEQ ID NO:8)
3.肌钙蛋白T表位的序列
SEQ ID NO:9=ERAEQQRIRAEREKEUUSLKDRIEKRRRAERAE酰胺,其中U代表β-丙氨酸。(抗体抗肌钙蛋白抗体a的表位“A”)
SEQ ID NO:10=SLKDRIERRRAERAEOOERAEQQRIRAEREKE酰胺,其中O代表氨基-三氧杂-辛酸。(抗体抗肌钙蛋白抗体b的表位“B”)
4.IGF-1R/IR表位的序列
SEQ ID NO:11=FDERQPYAHMNGGRKNERALPLPQSST;IGF-1R(1340-1366)
SEQ ID NO:12=YEEHIPYTHMNGGKKNGRILTLPRSNPS;hIR(1355-1382)
5.蛋白质接头和标签序列
SEQ ID NO:13=GGGGS(=G4S)基序(例如作为多肽接头的一部分)
SEQ ID NO:14=YPYDVPDYA(HA标签)
SEQ ID NO:15=GLNDIFEAQKIEWHE(Avi标签)
附图简述
图1评估抗pIGF1-R双重结合剂装配效率的分析性凝胶过滤实验。图a、b和c显示了各种双重结合剂组分的洗脱谱(荧光素-ssFab’1.4.168,Cy5-ssFab’8.1.2和接头DNA(T=0);Fab’表示与单链寡核苷酸缀合的Fab’片段)。图d显示了在已经将形成二价结合剂需要的3种组分以1:1:1摩尔比混合后的洗脱谱。较粗的(底部)曲线代表在280nm处测量的吸光度,分别指示ssFab’蛋白质或接头DNA的存在。b)和d)中较细的顶部曲线(495nm处的吸光度)指示荧光素的存在,而a)中较细的顶部曲线和d)中的中部曲线(635nm处的吸光度)指示Cy5的存在。单一的双重结合剂组分的洗脱体积(VEssFab’1.4.168约15ml;VEssFab’8.1.2约15ml;VE接头约16ml)与反应混合物的洗脱体积(VE混合物约12ml)的比较表明双重结合剂装配反应是成功的(产率:约90%)。代表洗脱的双重结合剂的280nm主峰与495nm和635nm通道中的主峰很好地重叠,从而证明代表二价结合剂的峰中ssFab’8.1.2和ssFab’1.4.168两者的存在。
图2BiacoreTM实验的示意图。示意性且例示性显示了溶液中的两种结合分子:T0-T-Dig(接头16)二价结合剂和T40-T-Dig(接头15)二价结合剂。这两种二价结合剂仅在其接头长度上不同(在两个杂交核酸序列之间中部洋地黄毒苷化的T,没有额外的T对40个额外的T(中部T-Dig每侧20个))。此外,使用ssFab’片段8.1.2和1.4.168。
图3具有3种动力学的覆盖图的BiacoreTM传感图,其显示了与100nM ssFab’1.4.168或100nM ssFab’8.1.2对同一肽的结合特征相比100nM二价结合剂与固定化的肽pIGF-1R的相互作用,所述二价结合剂由在T40-T-Dig ssDNA接头(即接头15)上杂交的ssFab’8.1.2和ssFab’1.4.168组成。用双重结合剂构建体获得最高结合性能,这清楚地显示双重结合剂的协作结合效应提高对靶肽pIGF-1R的亲和力。
图4具有3种动力学的覆盖图的BiacoreTM传感图,其显示了二价结合剂与固定化的肽pIGF-1R(磷酸化的IGF-1R)、IGF-1R或pIR(磷酸化的胰岛素受体)的相互作用,所述二价结合剂由在T40-T-Dig ssDNA接头(即接头15)上杂交的ssFab’8.1.2和ssFab’1.4.168组成。用pIGF-1R肽获得最高结合性能,这清楚地显示与例如磷酸化的胰岛素受体肽(pIR)相比,双重结合剂的协作结合效应提高对靶肽pIGF-1R的特异性。
图5具有2种动力学的覆盖图的BiacoreTM传感图,其显示了100nM二价结合剂、以及没有接头DNA的100nM ssFab’8.1.2和100nM ssFab’1.4.168混合物的相互作用,所述二价结合剂由在T40-T-Dig ssDNA接头(即接头15)上杂交的ssFab’8.1.2和ssFab’1.4.168组成。仅用二价结合剂获得最佳结合性能,而没有接头的ssFab’混合物未显示可观察到的协作结合效应,尽管事实上这些ssFab’的总浓度已为200nM。
图6BiacoreTM夹心式测定法的示意图。已经将此测定法用于调查这两种抗体在磷酸化的IGF-1R肽上的表位可达性。<MIgGFcy>R呈现了用于捕捉鼠抗体M-1.4.168的家兔抗小鼠抗体。然后,将M-1.4.168用于捕捉pIGF-1R肽。最后,M-8.1.2形成由M-1.4.168、所述肽和M-8.1.2组成的夹心物。
图7BiacoreTM传感图,其显示了二抗8.1.2对pIGF-1R肽在这被BiacoreTM芯片上的抗体1.4.168捕获后的结合信号(粗线)。其它信号(细线)是对照信号:分别给出从上到下500nM8.1.2、500nM1.4.168;500nM靶物无关抗体<CKMM>M-33-IgG;和500nM靶物无关对照抗体<TSH>M-1.20-IgG的线。在任一种这些对照中没能检测出结合事件。
图8BiacoreTM测定法的示意图,其呈现了传感器表面上的生物素化的双重结合剂。在流动池1(=FC1)(未显示)上捕获氨基-PEO-生物素。在FC2、FC3和FC4上将具有递增的接头长度的二价结合剂固定化(分别显示了在FC2(T0-bi=仅1个中部T-Bi)和FC4(T40-bi=1个中部T-Bi和上下游各20个T)上的双重结合剂)。分析物1:在肽的右手端含有M-1.4.168ssFab’表位的IGF-1R肽(顶部线),不存在M-8.1.2ssFab’磷酸表位,因为此肽不是磷酸化的;分析物2:含有M-8.1.2ssFab’磷酸表位(P)和M-1.4.168ssFab’表位的pIGF-1R肽(第二条线);分析物3:pIR肽,其含有交叉反应性M-8.1.2ssFab’磷酸表位,但不含M-1.4.168的表位(第三条线)。
图9双重结合剂实验的动力学数据。具有ssFab’8.1.2和ssFab’1.4.168的T40-T-Bi接头双重结合剂(=图中的T40)显示在与pIR(kd=3.70E-02/s)相比时低1300倍的对pIGF-1R的解离速率(kd=2.79E-05/s)。
图10BiacoreTM传感图,其显示了T40-T-Bi双重结合剂对pIGF-1R肽(磷酸化的IGF-1R肽)的浓度依赖性测量。测定法设置如图8中绘出。以30nM、10nM、2次3.3nM、1.1nM、0.4nM、0nM注射pIGF-1R肽的浓度系列。在图9的表中给出了相应的数据。
图11BiacoreTM传感图,其显示了T40-T-Bi双重结合剂对IGF-1R肽(非磷酸化的IGF-1R肽)的浓度依赖性测量。测定法设置如图8中绘出。以300nM、100nM、2次33nM、11nM、4nM、0nM注射IGF-1R肽的浓度系列。在图9的表中给出了相应的数据。
图12BiacoreTM传感图,其显示了T40-T-Bi双重结合剂对pIR肽(磷酸化的胰岛素受体肽)的浓度依赖性测量。测定法设置如图8中绘出。以100nM、2次33nM、11nM、4nM、0nM注射pIR肽的浓度系列。在图9绘出的表中给出了相应的数据。
实施例
实施例1:针对肌钙蛋白T的二价结合剂
1.1单克隆抗体和Fab’片段
使用在不同的、无重叠的表位(分别为表位A’和表位B’)结合人心脏肌钙蛋白T的两种单克隆抗体。在目前的Roche ElecsysTM肌钙蛋白T测定法中使用这两种抗体,其中以夹心式免疫测定法形式检测肌钙蛋白T。
使用蛋白质化学的现有技术方法实施从培养上清液纯化单克隆抗体。
用预活化的木瓜蛋白酶(抗表位A’单抗)或胃蛋白酶(抗表位B’单抗)对纯化的单克隆抗体进行蛋白酶消化,得到F(ab’)2片段,随后于37℃用低浓度的半胱胺(cysteamin)将其还原成Fab’片段,即分别为通式I(A-a’:a-S-b:b’-B:Xn)中的A和B。通过在Sephadex G-25柱(GE Healthcare)上将半胱胺与含有多肽的样品部分分开来停止反应。
1.2Fab’片段与ssDNA寡核苷酸的缀合
将Fab’片段与下文描述的活化的ssDNAa和ssDNAb寡核苷酸缀合。
分别制备Fab’片段-ssDNA缀合物A’’和B’’:
a)Fab’-抗肌钙蛋白T<表位A’>-ssDNA缀合物(=A’’)
对于Fab’-抗肌钙蛋白T<表位A’>-ssDNAa-缀合物A’’的制备,使用SEDID NO:5的衍生物,即5’-AGT CTA TTA ATG CTT CTG C(=SEQ IDNO:5)-XXX-Y-Z-3’,其中X=经由亚磷酰胺C3(3-(4,4’-二甲氧基三苯甲氧基)丙基-1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research))引入的亚丙基-磷酸酯,其中Y=经由3’-氨基修饰剂TFA氨基C-6lcaa CPG(ChemGenes)引入的3’-氨基修饰剂C6,且其中Z=经由磺基琥珀酰亚胺基4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯(ThermoFischer)引入的4[N-马来酰亚氨甲基]环己烷-1-羧基。
b)Fab’-抗肌钙蛋白T<表位B’>-ssDNAb缀合物(=B’’)
对于Fab’-抗肌钙蛋白T<表位B’>-ssDNA-缀合物(B’’)的制备,使用SEQID NO:6的衍生物,即5’-Y-Z-XXX-AGT TCT ATC GTC GTC CA-3’,其中X=经由亚磷酰胺C3(3-(4,4’-二甲氧基三苯甲氧基)丙基-1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research))引入的亚丙基-磷酸酯,其中Y=经由6-(4-单甲氧基三苯甲氨基(Monomethoxytritylamino))己基-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺(Glen Research)引入的5’-氨基修饰剂C6,且其中Z=经由磺基琥珀酰亚胺基4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯(ThermoFischer)引入的4[N-马来酰亚氨甲基]环己烷-1-羧基。
已经通过现有技术寡核苷酸合成方法分别合成SEQ ID NO:5或6的寡核苷酸。经由Y的氨基基团与在固相寡核苷酸合成过程期间掺入的Z的琥珀酰亚胺基基团的反应完成马来酰亚氨基团的引入。
上文显示的单链DNA构建体携带硫醇反应性马来酰亚氨基团,其与通过半胱胺处理生成的Fab’铰链区的半胱氨酸起反应。为了获得高百分比的单标记的Fab’片段,将ssDNA与Fab’片段的相对摩尔比保持较低。通过阴离子交换层析(柱:MonoQ,GE Healthcare)发生对单标记的Fab’片段(ssDNA:Fab’=1:1)的纯化。通过分析性凝胶过滤层析和SDS-PAG实现有效标记和纯化的验证。
1.3生物素化的接头分子
通过现有技术寡核苷酸合成方法并采用用于生物素化的经生物素化的亚磷酰胺试剂,已经合成了分别在ssDNA接头L1、L2和L3中使用的寡核苷酸。
接头1(=L1),一种除生物素化的胸苷以外没有间隔物的经生物素化的ssDNA接头1,
具有以下组成:5’-GCA GAA GCA TTA ATA GAC T(生物素-dT)-TGGACG ACG ATA GAA CT-3’。它分别包含SEQ ID NO:7和8的ssDNA寡核苷酸,并且通过在间隔物中部使用生物素-dT(=T-Bi)(5’-二甲氧基三苯甲氧基-5-[N-((4-叔-丁基苯酰基)-生物素基)-氨己基)-3-丙烯酰亚氨]-2’-脱氧尿苷-3’-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research)生物素化。
接头2(=L2),一种具有11聚体间隔物的经生物素化的ssDNA接头2,
具有以下组成:5’-GCA GAA GCA TTA ATA GAC T T5-(生物素-dT)-T5TGG ACG ACG ATA GAA CT-3’。它分别包含SEQ ID NO:7和8的ssDNA寡核苷酸、2次各为5个胸苷的寡核苷酸区段,并通过在间隔物中部使用生物素-dT(5’-二甲氧基三苯甲氧基-5-[N-((4-叔-丁基苯酰基)-生物素基)-氨己基)-3-丙烯酰亚氨]-2’-脱氧尿苷-3’-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(GlenResearch)生物素化。
接头3(=L3),一种具有31聚体间隔物的经生物素化的ssDNA接头3,具有以下组成:
5’-GCA GAA GCA TTA ATA GAC T T15-(生物素-dT)-T15TGG ACGACG ATA GAA CT-3’。它分别包含SEQ ID NO:7和8的ssDNA寡核苷酸、2次各15个胸苷的寡核苷酸区段,并通过使用生物素-dT(5’-二甲氧基三苯甲氧基-5-[N-((4-叔-丁基苯酰基)-生物素基)-氨己基)-3-丙烯酰亚氨]-2’-脱氧尿苷-3’-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research)生物素化。
1.4单价肌钙蛋白T结合物A和B分别的表位
已经构建了合成肽,其个别分别对自抗肌钙蛋白T抗体a和b衍生的相应Fab’片段仅具有中等亲和力。
a)抗体a的表位A’包含于:
SEQ ID NO:9=ERAEQQRIRAEREKEUUSLKDRIEKRRRAERAE酰胺,其中U代表β-丙氨酸。
b)抗体b的表位B’包含于:
SEQ ID NO:10=SLKDRIERRRAERAEOOERAEQQRIRAEREKE酰胺,其中O代表氨基-三氧杂-辛酸。
如熟练技术人员会领会,有可能将这两种含有表位的肽以两种方式组合,并且已经通过线性组合表位A’和B’设计并制备了这两种变体。已经通过现有技术肽合成方法分别制备两种变体的序列,即表位A’-B’(=TnT-1)和B’-A’(=TnT-2)的线性序列。
与人心脏肌钙蛋白T序列(P45379/UniProtKB)上的初始表位相比已经分别修饰了表位A’和B’的序列以降低针对其的每种Fab的结合亲和力。在这些情况下,异二价结合效应的动力学是可见得更好的,例如通过用BiacoreTM技术分析结合亲和力实现。
1.5生物分子相互作用分析
对于此实验,于T=25℃使用BiacoreTM3000仪(GE Healthcare),BiacoreTMSA传感器嵌入该系统中。以100μl/分钟用50mM NaOH中的1M NaCl的3次1分钟注射和1分钟10mM HCl完成预条件化。
使用HBS-ET(10mM HEPES pH7.4,150mM NaCl,1mM EDTA,0.05%
Figure BDA0000370392870000341
20)作为系统缓冲液。样品缓冲液与系统缓冲液相同。
在控制软件V1.1.1下驱动BiacoreTM3000系统。用7RU D-生物素使流动池1饱和。在流动池2上,将1063个RU的生物素化的ssDNA接头L1固定化。在流动池3上,将879个RU的生物素化的ssDNA接头L2固定化。在流动池4上,捕捉674个RU的生物素化的ssDNA接头L3。
然后,以600nM注射Fab’片段DNA缀合物A’’。将Fab’片段DNA缀合物B’’以900nM注射到系统中。将所述缀合物以2μl/分钟的流速注射3分钟。连续注射所述缀合物以监测每种Fab’片段DNA缀合物在其相应接头上的相应饱和信号。用单一Fab’片段DNA缀合物A’’、单一Fab’片段DNA缀合物B’’和存在于相应接头上的两种Fab’片段DNA缀合物A’’和B’’驱动Fab’组合。在已经通过Fab’片段DNA缀合物使接头饱和后产生稳定的基线,这是进一步动力学测量的先决条件。
将人工肽分析物TnT-1和TnT-2作为分析物以溶液注射到系统中以与表面呈现的Fab’片段相互作用。
以500nM注射TnT-1,以900nM的分析物浓度注射TnT-2。两种肽都以50μl/分钟注射4分钟结合时间。监测解离5分钟。通过在所有流动池上以50μl/分钟注射50mM NaOH1分钟完成再生。
使用Biaevaluation软件(V.4.1)测定动力学数据。依照线性朗缪尔1:1拟合模型来测定TnT-1和TnT-2肽自相应的表面呈现的Fab’片段组合的解离速率kd(1/s)。根据一级动力学方程:ln(2)/(60x kd)的解答来计算按分钟计的复合物半衰期。
结果:
表1和2中给出的实验数据分别表明分别与单价dsDNA Fab’A’’或B’’缀合物相比分析物(TnT-1或TnT-2)和各种异二价Fab’-Fab’二聚体A’’-B’’之间的复合物稳定性升高。在每张表中与第2行和第3行相比在第1行中看到此效果。
表1:使用TnT-1及各种长度的接头的分析数据
a)接头L1
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 6.6E-03 1.7
x - 3.2E-02 0.4
- x 1.2E-01 0.1
b)接头L2
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 4.85E-03 2.4
x - 2.8E-02 0.4
- x 1.3E-01 0.1
c)接头L3
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 2.0E-03 5.7
x - 1.57E-02 0.7
- x 1.56E-02 0.7
表2:使用TnT-2及各种长度的接头的分析数据
a)接头L1
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 1.4E-02 0.8
x - 4.3E-02 0.3
- x 1.4E-01 0.1
b)接头L2
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 4.9E-03 2.3
x - 3.5E-02 0.3
- x 1.3E-01 0.1
c)接头L3
Fab’片段DNA缀合物A’’ Fab’片段DNA缀合物B’’ kd(1/s) t1/2解离(分)
x x 8.0E-03 1.5
x - 4.9E-02 0.2
- x 3.2E-01 0.04
亲合效应还取决于接头的长度。在表1下显示的子表中,即对于人工分析物TnT-1,包含基于胸苷的31聚体间隔物的接头L3显示出最低的解离速率或最高的复合物稳定性。
在表2下显示的子表中,包含基于胸苷的11聚体间隔物的接头L2对于人工分析物TnT-2显示出最低的解离速率或最高的复合物稳定性。
这些数据共同证明,本发明中给出的方法固有的接头长度灵活性具有很大的效用和优点。
实施例2:针对磷酸化IGF-1R的二价结合剂
2.1单克隆抗体开发(单抗8.1.2和单抗1.4.168)
a)小鼠的免疫
在第0、3、6、9周分别将BALB/C小鼠免疫。每次免疫使用100μg包含磷酸化肽pIGF-1R(1340-1366)(SEQ ID NO:11)的缀合物。此肽在第1346位酪氨酸处已经被磷酸化(=1346-pTyr),并且经由C端半胱氨酸与KLH偶联(=Aoc-Cys-MP-KLH-1340)以得到用于免疫的缀合物。在第0周和第6周分别在腹膜内实施免疫,在第3周和第9周,分别在小鼠身体各部位皮下实施免疫。
b)融合和克隆
依照Galfre G.和Milstein C.,Methods in Enzymology73(1981)3-46,将经免疫小鼠的脾细胞与骨髓瘤细胞融合。在此过程中,将经免疫小鼠的约1x108个脾细胞与2x107个骨髓瘤细胞a(P3X63-Ag8653,ATCC CRL1580)混合,并离心(以250g且于37℃持续10分钟)。然后,用无胎牛血清(FCS)的RPMI1640培养基将细胞清洗一次,并在50ml锥形管中以250g再次离心。弃去上清液,通过轻敲使细胞沉降物温和地松散,添加1ml PEG(分子量4000,Merck,Darmstadt),并通过移液混合。在37℃水浴中温育1分钟后,在4-5分钟的时段内于室温逐滴加入5ml无FCS的RPMI1640。再用10ml无FCS的RPMI1640重复此步骤。然后,添加25ml含有10%FCS的RPMI1640,接着是于37℃、5%CO2持续30分钟的温育步骤。在以250g且于4℃离心10分钟后,将沉降的细胞在含有10%FCS的RPMI1640培养基中吸出,并在次黄嘌呤-重氮丝氨酸选择培养基(在RPMI1640+10%FCS中100mmol/l次黄嘌呤、1μg/ml重氮丝氨酸)中接种。将100U/ml的白介素6添加至培养基作为生长因子。7天后,用新鲜培养基更换该培养基。在第10天,对原代培养物测试特定抗体。依靠荧光激活细胞分选器在96孔细胞培养板中克隆阳性原代培养物。
c)从细胞培养上清液分离免疫球蛋白
将获得的杂交瘤细胞以1x107个细胞的密度在CELLine1000CL烧瓶(Integra)中接种。一周两次收集含有IgG的杂交瘤细胞上清液。产率范围通常为每1ml上清液介于400μg和2000μg之间的单克隆抗体。使用蛋白质化学的常规方法(例如依照Bruck,C.,Methods in Enzymology121(1986)587-695)实施从培养物上清液纯化抗体。
2.2合成可杂交的寡核苷酸
依照标准方法合成下列氨基修饰的前体,其分别包含在SEQ ID NO:5和6中给出的序列。下面给出的寡核苷酸不仅包含所谓的氨基接头,而且还包含荧光染料。如熟练技术人员会容易领会,此荧光染料非常便于促进寡核苷酸本身以及包含它们的组分的纯化。
a)5’-荧光素-AGT CTA TTA ATG CTT CTG C-(间隔物C3)3-C7氨基接头-;
b)5’-Cy5AGT CTA TTA ATG CTT CTG C-(间隔物C3)3-C7氨基接头-;
c)5’-氨基接头-(间隔物C3)3-AGT TCT ATC GTC GTC CA-荧光素-3’;
d)5’-荧光素-(βL AGT CTA TTA ATG CTT CTG C)-(间隔物C3)3-C7氨基接头-;(βL指示这是L-DNA寡核苷酸)和
e)5’-氨基接头-(间隔物C3)3-(βL-AGT TCT ATC GTC GTC CA)-荧光素-3’(βL指示这是L-DNA寡核苷酸)。
在ABI394合成仪上以10μmol规模以三苯甲基开启(对于5’氨基修饰)或三苯甲基关闭(对于3’氨基修饰)模式实施合成,其使用商品化的CPG作为固体支持物和标准的dA(bz)、dT、dG(iBu)和dC(Bz)亚磷酰胺(Sigma Aldrich)进行。
使用下列亚酰胺(酯)(amidite)、氨基修饰剂和CPG支持物在寡核苷酸合成期间分别引入C3-间隔物、染料和氨基模块:
间隔物亚磷酰胺C3(3-(4,4’-二甲氧基三苯甲氧基)丙基-1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research);
通过使用5’-氨基修饰剂C6(6-(4-单甲氧基三苯甲氨基)己基-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺(Glen Research)引入5’氨基修饰剂;
5’-荧光素亚磷酰胺6-(3’,6’-二特戊酰荧光素基(dipivaloylfluoresceinyl)-6-羰酰胺基(carboxamido))-己基-1-O-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺(Glen Research);
Cy5TM亚磷酰胺1-[3-(4-单甲氧基三苯甲氧基)丙基]-1’-[3-[(2-氰乙基)-(N,N-二异丙基亚磷酰胺基(phosphoramidityl)]丙基]-3,3,3’,3’-四甲基吲哚二羰花青氯化物(tetramethylindodicarbocyanine chloride)(Glen Research);
LightCycler荧光素CPG500A(Roche Applied Science);和
3’-氨基修饰剂TFA氨基C-6lcaa CPG500A(Chemgenes),
对于经Cy5标记的寡核苷酸,使用dA(tac)、dT、dG(tac)、dC(tac)亚磷酰胺(Sigma Aldrich),并于室温用33%氨水实施脱保护2小时。
通过使用β-L-dA(bz)、dT、dG(iBu)和dC(Bz)亚磷酰胺(Chemgenes)合成L-DNA寡核苷酸。
通过两步规程实施经荧光素修饰的可杂交寡核苷酸的纯化:首先在反相HPLC上纯化寡核苷酸(Merck-Hitachi-HPLC;RP-18柱;梯度系统[A:0.1M(Et3NH)OAc(pH7.0)/MeCN95:5;B:MeCN]:3分钟,A中的20%B,12分钟,A中的20-50%B和25分钟,A中的20%B,流速为1.0ml/分钟,在260nm处检测)。将含有期望产物的级分(通过分析性RP HPLC监测)合并,并蒸发至干燥。(通过与20%醋酸一起温育20分钟将在5’端用单甲氧三苯甲基保护的烃基氨基基团修饰的寡核苷酸脱三苯甲基化)。将含有荧光素作为标记物的寡聚物通过在HPLC上的IEX层析再次纯化[Mono Q柱:缓冲液A:氢氧化钠(10mM/l;pH约12);缓冲液B:1M溶解于氢氧化钠(10mM/l;pH约12)中的氯化钠,梯度:30分钟中从100%缓冲液A至100%缓冲液B,流动1ml/分钟,在260nm处检测]。通过透析将产物脱盐。
在反相HPLC上首次纯化(Merck-Hitachi-HPLC;RP-18柱;梯度系统[A:0.1M(Et3NH)OAc(pH7.0)/MeCN95:5;B:MeCN]:3分钟,A中的20%B,12分钟,A中的20-50%B和25分钟,A中的20%B,流速为1.0ml/分钟,在260nm处检测)后使用经Cy5标记的寡聚物。通过透析将寡聚物脱盐,并在Speed-Vac蒸发器上冻干以产生固体,将其于-24℃冷冻。
2.3可杂交寡核苷酸的活化
将来自实施例2的氨基修饰的寡核苷酸在0.1M硼酸钠缓冲液pH8.5缓冲液中溶解(c=600μmol),并与在来自Thermo Scientific的、在DMF中溶解的、18倍摩尔过量的磺基SMCC(磺基琥珀酰亚胺基4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯(c=3mg/100μl)起反应。将反应产物对水彻底透析以除去磺基SMCC的水解产物4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯。
通过蒸发将透析液浓缩,并直接用于与包含硫醇基团的单价结合物缀合。
2.4合成在两端都包含可杂交寡核苷酸的接头寡核苷酸
通过标准方法在ABI394合成仪上以10μmol规模以三苯甲基开启模式,使用商品化dT-CPG作为固体支持物并使用标准的dA(bz)、dT、dG(iBu)和dC(Bz)亚磷酰胺(Sigma Aldrich)来合成寡核苷酸。
通过使用商品化βL-dT-CPG作为固体支持物和β-L-dA(bz)、dT、dG(iBu)和dC(Bz)亚磷酰胺(Chemgenes)合成L-DNA寡核苷酸。
如实施例3下描述的,在反相HPLC上实施寡核苷酸纯化。将含有期望产物的级分(通过分析性RP HPLC分析/监测)合并,并蒸发至干燥。通过与80%醋酸一起温育15分钟实施脱三苯甲基化。通过蒸发除去醋酸。将剩余物在水中溶解,并冻干。
使用下列亚酰胺(酯)和CPG支持物在寡核苷酸合成期间引入C18间隔物、洋地黄毒苷和生物素基团:
间隔物亚磷酰胺18(18-O-二甲氧基三苯甲基六乙二醇(Dimethoxytritylhexaethyleneglycol),1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research);
生物素-dT(5’-二甲氧基三苯甲氧基-5-[N-((4-叔-丁基苯酰基)-生物素基)-氨己基)-3-丙烯酰亚氨]-2’-脱氧尿苷-3’-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research);
生物素亚磷酰胺1-二甲氧基三苯甲氧基-2-(N-生物素基-4-氨基丁基)-丙基-3-O-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺和
5’-二甲氧基三苯甲基-5-[N-(三氟乙酰氨基己基)-3-丙烯酰亚氨]-2’-脱氧尿苷,3’-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺,用于氨基修饰和用洋地黄毒苷-N-羟基-琥珀酰亚胺基酯的后标记(postlabeling)。
合成下列桥接构建体或接头:
接头1:5’-G CAG AAG CAT TAA TAG ACT-TGG ACG ACG ATA GAA CT-3’
接头2:5’-G CAG AAG CAT TAA TAG ACT-(T40)-TGG ACG ACG ATA GAACT-3’
接头3:5’-[B-L]G CAG AAG CAT TAA TAG ACT-(生物素-dT)-TGG ACGACG ATA GAA CT-3’
接头4:5’-[B-L]G CAG AAG CAT TAA TAG ACT-T5-(生物素-dT)-T5-TGGACG ACG ATA GAA CT-3’
接头5:5’-[B-L]G CAG AAG CAT TAA TAG ACT-T20-(生物素-dT)-T20-TGGACG ACG ATA GAA CT-3’
接头6:5’-[B-L]G CAG AAG CAT TAA TAG ACT-T30-(生物素-dT)-T30-TGGACG ACG ATA GAA CT-3’
接头7:5’-GCA GAA GCA TTA ATA GAC T T5-(生物素-dT)-T5TG GAC GACGAT AGA ACT-3’
接头8:5’-GCA GAA GCA TTA ATA GAC T T10-(生物素-dT)-T10TGG ACGACG ATA GAA CT-3’
接头9:5’-GCA GAA GCA TTA ATA GAC T T15-(生物素-dT)-T15TGG ACGACG ATA GAA CT-3’
接头10:5’-GCA GAA GCA TTA ATA GAC T T20-(生物素-dT)-T20TGG ACGACG ATA GAA CT-3’
接头11:5’-G CAG AAG CAT TAA TAG ACT-间隔物C18-(生物素-dT)-间隔物C18-TGG ACG ACG ATA GAA CT-3’
接头12:5’-G CAG AAG CAT TAA TAG ACT-(间隔物C18)2-(生物素-dT)-(间隔物C18)2-TGG ACG ACG ATA GAA CT-3’
接头13:5’-G CAG AAG CAT TAA TAG ACT-(间隔物C18)3-(生物素-dT)-(间隔物C18)3-TGG ACG ACG ATA GAA CT-3’
接头14:5’-G CAG AAG CAT TAA TAG ACT-(间隔物C18)4-(生物素-dT)-(间隔物C18)4-TGG ACG ACG ATA GAA CT-3’
接头15:5’-G CAG AAG CAT TAA TAG ACT-T20-(Dig-dT)-T20-TGG ACGACG ATA GAA CT-3’
接头16:5’-G CAG AAG CAT TAA TAG ACT-(Dig-dT)-TGG ACG ACG ATAGAA CT-3’
接头17:5’-G CAG AAG CAT TAA TAG ACT-(生物素-dT)-TGG ACG ACGATA GAA CT-3’
上述桥接构建体例子包含至少第一可杂交寡核苷酸和第二可杂交寡核苷酸。接头3至17分别在可杂交核酸区段外包含中部生物素化的或洋地黄毒苷化的胸苷,或由上文给出的长度的胸苷单元组成的间隔物。
分别地,5’可杂交寡核苷酸对应于SEQ ID NO:7,而3’可杂交寡核苷酸对应于SEQ ID NO:8。SEQ ID NO:7的寡核苷酸会容易与SED ID NO:5的寡核苷酸杂交。SEQ ID NO:8的寡核苷酸会容易与SED ID NO:6的寡核苷酸杂交。
在上述桥接构建体例子中,[B-L]指示给出L-DNA寡核苷酸序列;间隔物C18、生物素和生物素dT分别指如自上文给定的构建块衍生的C18间隔物、生物素和生物素-dT;而带数字的T指示在给定位置处掺入接头中的胸苷残基的数目。
2.5双重结合剂构建体的装配
A)切割IgG并用ssDNA标记Fab’片段
在蛋白酶胃蛋白酶的帮助下切割纯化的单克隆抗体,产生F(ab’)2片段,随后通过于37℃用低浓度的半胱胺处理将其还原成Fab’片段。经由在PD10柱上分离半胱胺停止反应。如依照实施例3生成的,用活化的寡核苷酸标记Fab’片段。此单链DNA(=ssDNA)携带硫醇反应性马来酰亚氨基团,其与Fab’铰链区的半胱氨酸起反应。为了获得高百分比的单标记的Fab’片段,将ssDNA与Fab’片段的相对摩尔比保持较低。通过离子交换层析(柱:Source15Q PE4.6/100,Pharmacia/GE)发生单标记的Fab’片段(ssDNA:Fab’=1:1)的纯化。通过分析性凝胶过滤和SDS-PAGE实现有效纯化的确认。
B)抗pIGF-1R双重结合剂的装配
抗pIGF-1R双重结合剂基于靶向IGF-1R胞内域的不同表位的两种Fab’片段:Fab’8.1.2检测所述靶蛋白的一个磷酸化位点(pTyr1346),而Fab’1.4.168检测一个非磷酸位点。所述Fab’片段已经与单链DNA(ssDNA)共价连接:Fab’1.4.168与包含SEQ ID NO:6且含有荧光素作为荧光标志物的17聚体ssDNA,而Fab’8.1.2与包含SEQ ID NO:5且含有Cy5作为荧光标志物的19聚体ssDNA共价连接。在下文中,将这些共价结合有17聚体或19聚体ssDNA的Fab’分别称为ssFab’1.4.168和ssFab’8.1.2。双重结合剂装配由与ssFab’片段的相应ssDNA杂交的接头(即包含两个互补ssDNA寡核苷酸(分别为SEQ ID NO:7和8)的桥接构建体)介导。可以通过使用间隔物(例如C18间隔物)或不同长度的DNA分别修改双重结合剂的两个ssFab’片段之间的距离。
对于装配评估,将双重结合剂组分ssFab’8.1.2、ssFab’1.4.168和接头构建体(I)(=实施例2.4的接头17)5’-G CAG AAG CAT TAA TAG ACTT(-Bi)-TGG ACG ACG ATA GAA CT-3’和(II)(=实施例2.4的接头10)5’-GCAG AAG CAT TAA TAG ACT-(T20)-T(-Bi)-(T20)-TGG ACG ACG ATA GAACT-3’于室温以等摩尔数量混合。在1分钟的温育步骤后,在分析性凝胶过滤柱(SuperdexTM200,10/300GL,GE Healthcare)上分析反应混合物。单一的双重结合剂组分的洗脱体积(VE)与反应混合物的VE的比较表明,已经成功形成双重结合剂(图1)。(两种接头中部的生物素化的胸苷(T-(Bi))在这些实验中无功能。)
2.6评估抗pIGF-1R双重结合剂对固定化的IGF-1R和IR肽的结合的BiacoreTM实验
对于此实验,于T=25℃使用BiacoreTM2000仪(GE Healthcare),BiacoreTMSA传感器嵌入该系统中。以100μl/分钟用50mM NaOH中1M NaCl的3次1分钟注射和1分钟10mM HCl发生预条件化。
使用HBS-ET(10mM HEPES pH7.4,150mM NaCl,1mM EDTA,0.05%20)作为系统缓冲液。样品缓冲液与系统缓冲液相同。在控制软件V1.1.1下驱动BiacoreTM2000系统。
随后,在相应的流动池中在SA表面上捕捉生物素化的肽。在流动池2上捕获16个RU的IGF-1R(1340-1366)[1346-pTyr;Glu(Bi-PEG-1340]酰胺(即1346酪氨酸磷酸化的SEQ ID NO:11的肽,其包含经由对应于第1340位的谷氨酸结合的PEG接头,且接头另一端是生物素化的)。在流动池3上捕获18个RU的IGF-1R(1340-1366);Glu(Bi-PEG-1340]酰胺(即1346酪氨酸非磷酸化的SEQID NO:11的肽,其包含经由对应于第1340位的谷氨酸结合的PEG接头,且接头另一端是生物素化的)。在流动池4上捕获20个RU的hIR(1355-1382)[1361-pTyr;Glu(Bi-PEG-1355]酰胺(即1361酪氨酸磷酸化的SEQ ID NO:12的肽,其包含经由对应于人胰岛素受体第1355位的谷氨酸结合的PEG接头,且接头另一端是生物素化的)。最后,将所有流动池用d-生物素饱和。
对于双重结合剂形成,使用如实施例2.5中描述的装配方案。当仅用两种ssFab’之一实施个别运行时,接头DNA的缺乏或存在不影响结合或解离曲线(数据未显示)。
将溶液中100nM分析物(在这些实验中即为二价双重结合剂)以50μl/分钟注射240秒结合时间,并监测解离500秒。通过以50μl/分钟用80mMNaOH使用1分钟注射步骤完成有效再生。流动池1充当参照。使用空白缓冲液注射代替抗原注射以通过缓冲液信号扣除作为数据的双重参照。
在每个测量循环中,将溶液中的下列分析物之一在所有4个流动池上注射:分别地,100nM ssFab’8.1.2、100nM ssFab’1.4.168、100nM ssFab’8.1.2和100nM ssFab’的混合物、100nM由在接头III(5’-G CAG AAG CAT TAA TAGACT-T(20)-T(-Dig)-(T20)-TGG ACG ACG ATA GAA CT-3’(=实施例2.4的接头15))上杂交的ssFab’8.1.2和ssFab’1.4.168组成的二价结合剂、和100nM由在接头(IV)(5’-G CAG AAG CAT TAA TAG ACT-T(-Dig)-TGG ACG ACGATA GAA CT-3’(=实施例2.4的接头16))上杂交的ssFab’8.1.2和ssFab’1.4.168组成的二价结合剂。(上述接头中的中部胸苷的洋地黄毒苷化(T(-Dig))与这些实验无关。)
信号以时间依赖性的BIAcoreTM传感图监测。
报告点设置于分析物结合相结束(结合后期,BL)和分析物解离相结束(稳定性后期,SL)以监测每种相互作用的应答单位信号高度。依照线性1:1朗缪尔拟合使用BiacoreTM评估软件4.1计算解离速率kd(1/s)。根据公式ln(2)/(60x kd)计算按分钟计的复合物半衰期。
传感图(图2-5)显示了,当以双重结合剂(=二价结合剂)形式使用ssFab’1.4.168和ssFab’1.4.168时,pIGF-1R结合的特异性和复合体稳定性都增加,这大概是由于根本的协作结合效应所致。单独的Fab’1.4.168显示对pIR肽没有交叉反应性,但不区分IGF-1R的磷酸化的和未磷酸化的形式(这两种情况下T1/2解离=3分钟)。然而,Fab’8.1.2仅与IGF1-R肽的磷酸化型式结合,但展现出一些不期望的与磷酸化胰岛素受体的交叉反应性。所述双重结合剂完全区分pIGF-1R肽和其它两种肽(见图4),并且如此帮助克服非特异性结合的问题。注意到特异性增加在应用没有接头DNA的两种Fab’时都是丧失的(图5)。双重结合剂对pIGF-1R肽的亲和力增加表现为与个别Fab’和省略接头DNA的Fab’混合物相比解离半衰期延长(图3和图5)。尽管具有两种不同DNA接头长度的测试双重结合剂共享对靶物结合特异性和亲和力的总体正面影响,但是较长的接头(具有T40-T-Dig作为间隔物的(III))(即实施例2.4的接头15)表现为就两种标准而言都是有利的。
2.7BiacoreTM测定法M-1.4.168-IgG和M-8.1.2-IgG的夹心物
使用BiacoreTMT100仪(GE Healthcare),将BiacoreTMCM5传感器嵌入该系统中。通过以100μl/分钟用0.1%SDS、50mM NaOH、10mM HCl和100mMH3PO4注射1分钟对传感器进行预条件化。
系统缓冲液是HBS-ET(10mM HEPES pH7.4,150mM NaCl,1mM EDTA,0.05%
Figure BDA0000370392870000441
20)。样品缓冲液是系统缓冲液。
在控制软件V1.1.1下驱动BiacoreTM T100系统。依照制造商的用法说明书经由EDC/NHS化学,分别在流动池1、2、3和4上以10000个RU固定化10mM醋酸钠pH4.5中30μg/ml的多克隆家兔IgG抗体<IgGFCγM>R(JacksonImmunoResearch Laboratories Inc.)。最后,用1M乙醇胺封闭传感器表面。于13℃驱动整个实验。
在<IgGFCγM>R表面上以10μl/分钟捕捉500nM一级单抗M-1.004.168-IgG达1分钟。将3μM含有IgG片段混合物(IgG类IgG1、IgG2a、IgG2b、IgG3的)的封闭溶液以30μl/分钟注射5分钟。将肽IGF-1R(1340-1366)[1346-pTyr;Glu(Bi-PEG-1340]酰胺于300nM以30μl/分钟注射3分钟。将300nM二抗M-8.1.2-IgG以30μl/分钟注射。使用10mM甘氨酸-HCl pH1.7以50μl/分钟将传感器再生3分钟。
图6描述了测定法设置。在图7中给出了测量结果。该测量清楚地指示,两种单克隆抗体都能同时结合其相应靶肽上的两个不同的、无关的表位。这是任何以产生协作结合事件为目的的后续实验的先决条件。
2.8在传感器表面上的BiacoreTM测定法双重结合剂
于T=25℃使用BiacoreTM3000仪(GE Healthcare),BiacoreTMSA传感器嵌入该系统中。以100μl/分钟用50mM NaOH中的1M NaCl的3次1分钟注射和1分钟10mM HCl将系统预条件化。
系统缓冲液是HBS-ET(10mM HEPES pH7.4,150mM NaCl,1mM EDTA,0.05%
Figure BDA0000370392870000442
20)。样品缓冲液是系统缓冲液。
在控制软件V4.1下驱动BiacoreTM3000系统。
在参照流动池1上捕获124个RU的氨基-PEO-生物素。在不同的流动池上捕获1595个RU的生物素化的14.6kDa T0-Bi37聚体ssDNA-接头(i)(5’-G CAGAAG CAT TAA TAG ACT-T(-Bi)-TGG ACG ACG ATA GAA CT-3’)(=实施例2.4的接头17)和1042个RU的生物素化的23.7kDa T40-Bi77聚体ssDNA-接头(II)(5’-G CAG AAG CAT TAA TAG ACT-T(20)-(生物素-dT)-(T20)-TGG ACGACG ATA GAA CT-3’=实施例2.4的接头10)。
将300nM ssFab’8.1.2和300nM ssFab’1.004.168以50μl/分钟注射到系统中达3分钟。作为对照,仅注射300nM ssFab’8.1.2或300nM ssFab’1.004.168以测试每种ssFab的动力学贡献。作为对照,注射缓冲液代替ssFab。以浓度阶梯0nM、4nM、11nM、33nM(两次)、100nM和300nM分别将溶液中游离的肽pIR(1355-1382)[1361-pTyr]酰胺和IGF-1R(1340-1366)酰胺以50μl/分钟注射到系统中达4分钟。在另一组实验中,为了测量对肽pIGF-1R(1340-1366)[1346-pTyr]酰胺的亲和力,使用0nM、0.4nM、1.1nM、3.3nM(两次)、10nM和30nM的浓度阶梯。
以50μl/分钟监测解离5.3分钟。在每个浓度阶梯后用12秒的25mM NaOH脉冲使系统再生,并重新加载ssFab’配体。
图8示意性描绘了BiacoreTM仪上的测定法设置。图9中给出的表显示了此办法的量化结果。图10、11和12绘出了使用T40双重结合剂来自此测定法设置的例示性BiacoreTM结果。
图9中的表表明双重结合剂概念的益处。与具有192分钟和30pM的T0双重结合剂(即具有实施例2.4的接头16的双重结合剂)相比,T40双重结合剂(具有实施例2.4的接头10,即具有T20-生物素-dT-T20间隔物的接头的双重结合剂)产生改善2倍的抗原复合物半衰期(414分钟)和改善3倍的亲和力(10pM)。这支撑优化接头长度以产生最佳协作结合效应的必要性。
T40双重结合剂(即包含T40-Bi接头(实施例2.4的接头10)的双重结合剂)展现出对磷酸化IGF-1R肽的10pM亲和力(图9中的表,图10)。这是对磷酸化胰岛素受体肽(24nM)的2400倍亲和力改善和对非磷酸化的IGF-1R肽的100倍改善。
因此,实现了通过组合两种不同的且分开的结合事件来提高特异性和亲和力的目的。
从针对磷酸化IGF-1R肽的解离速率来看,协作结合效应尤其变得明显,其中相对于单独的单价结合物8.1.2为0.5分钟和单独的单价结合物1.4.168为3分钟,双重结合剂显示414分钟抗原复合体半衰期。
此外,在与单一Fab’杂交的构建体相比时,完全装配的构建体大致将其解离速率kd(1/s)相乘(图10、11、12和图9中的表)。令人感兴趣地,在与单一Fab’相互作用事件相比时,结合速率ka(1/Ms)也略微增加,这可能是由于构建体的分子柔性升高所致。
与个别(单价)Fab’分子形成比较,使用强烈清洗规程的诊断系统的确应当采用T40双重结合剂的高性能。杂交的构建体(即依照本发明的二价结合剂)产生特异性的且相当稳定的结合事件,而单价结合物更快地解离,例如它们被更快地洗去。
实施例3:针对HER2的二价结合剂
3.1抗HER2二价结合剂的装配
使用两种在不同的、不重叠的表位A和B结合人HER2(ErbB2或p185neu)的单克隆抗体。第一种抗体是抗HER2抗体4D5(huMAb4D5-8、rhuMAbHER2、曲妥珠单抗(trastuzumab)或赫赛汀(HERCEPTIN);参见通过提述完整并入本文的US5,821,337)。
“4D5表位”是ErbB2的胞外域中被抗HER2抗体4D5(ATCC CRL10463)结合的区域。该表位与ErbB2的跨膜域接近。
第二种抗体是抗HER2抗体2C4(帕妥珠单抗
Figure BDA0000370392870000462
(pertuzumab))。抗体2C4,尤其是其人源化变体,在通过提述完整并入本文的WO01/00245中有详细记载。2C4由保藏于美国典型培养物保藏中心,Manassass,VA,USA,ATCCHB-12697下的杂交瘤细胞系产生。在WO01/00245(通过提述完整并入本文)的实施例3中提供了人源化2C4抗体的例子。人源化抗HER2抗体2C4也称为帕妥珠单抗。
帕妥珠单抗(前面的2C4)是称为HER二聚化抑制剂(HDI)的一类新药剂中的首个。帕妥珠单抗在HER2的二聚化域结合HER2,由此抑制其形成活性二聚体受体复合物的能力,从而阻断最终导致细胞生长和分裂的下游信号级联(参见Franklin,M.C.,Cancer Cell5(2004)317-328)。帕妥珠单抗是针对HER2胞外域的一种完全人源化的重组单克隆抗体。
可以使用蛋白质化学的现有技术方法实施从培养上清液纯化单克隆抗体。
用预活化的木瓜蛋白酶或胃蛋白酶对纯化的单克隆抗体进行蛋白酶消化,得到F(ab’)2片段。随后于37℃用低浓度的半胱胺将其还原成Fab’片段。通过在Sephadex G-25柱(GE Healthcare)上将半胱胺与样品含有多肽的部分分开来停止反应。
将获得的Fab’片段与活化的ssDNA多核苷酸缀合。
a)抗HER2抗体4D5Fab’-ssDNA缀合物
为了制备抗HER2抗体4D5Fab’-ssDNA缀合物,使用SED ID NO:5的衍生物,即5’-AGT CTA TTA ATG CTT CTG C(=SEQ ID NO:5)-XXX-Y-Z-3’,其中X=经由亚磷酰胺C3(3-(4,4’-二甲氧基三苯甲氧基)丙基-1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research))引入的亚丙基-磷酸酯,其中Y=经由6-(4-单甲氧基三苯甲氨基)己基-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺(Glen Research)引入的5’-氨基修饰剂C6,且其中Z=经由磺基琥珀酰亚胺基4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯(ThermoFischer)引入的4[N-马来酰亚氨甲基]环己烷-1-羧基。
b)抗HER2抗体2C4Fab’-ssDNA缀合物
为了制备抗HER2抗体2C4Fab’-ssDNA缀合物B,使用SEQ ID NO:6的衍生物,即5’-Y-Z-XXX-AGT TCT ATC GTC GTC CA-3’,其中X=经由亚磷酰胺C3(3-(4,4’-二甲氧基三苯甲氧基)丙基-1-[(2-氰乙基)-(N,N-二异丙基)]-亚磷酰胺(Glen Research))引入的亚丙基-磷酸酯,其中Y=经由6-(4-单甲氧基三苯甲氨基)己基-(2-氰乙基)-(N,N-二异丙基)-亚磷酰胺(Glen Research)引入的5’-氨基修饰剂C6,且其中Z=经由磺基琥珀酰亚胺基4-[N-马来酰亚氨甲基]环己烷-1-羧酸酯(ThermoFischer)引入的4[N-马来酰亚氨甲基]环己烷-1-羧基。
已经通过现有技术多核苷酸合成方法分别合成SEQ ID NO:5或SEQ IDNO:6的多核苷酸。经由Y的氨基基团与在固相多核苷酸合成过程期间掺入的Z的琥珀酰亚胺基基团的反应完成马来酰亚氨基团的引入。
单链DNA构建体携带硫醇反应性马来酰亚氨基团,其与通过半胱胺处理生成的Fab’铰链区的半胱氨酸起反应。为了获得高百分比的单标记的Fab’片段,将ssDNA与Fab’片段的相对摩尔比保持较低。通过阴离子交换层析(柱:MonoQ,GE Healthcare)发生对单标记的Fab’片段(ssDNA:Fab’=1:1)的纯化。通过分析性凝胶过滤层析和SDS-PAG实现有效标记和纯化的验证。
3.2生物分子相互作用分析
对于此实验,于T=25℃使用Biacore T100仪(GE Healthcare),Biacore SA传感器嵌入该系统中。以100μl/分钟用50mM NaOH,pH8.0中的1M NaCl的3次1分钟注射和1分钟10mM HCl注射完成预条件化。系统缓冲液为HBS-EP(10mM HEPES pH7.4,150mM NaCl,1mM EDTA,0.05%P20)。样品缓冲液为用1mg/ml CMD(羧甲基右旋糖苷(Carboxymethyldextrane))补充的系统缓冲液。
在相应的流动池中在SA表面上捕获生物素化的ss-L-DNA接头。用氨基-PEO-生物素(PIERCE)饱和流动池1。
在流动池2上捕获40RU的生物素化的37聚体寡核苷酸接头(实施例2.4的接头3)。在流动池3上捕获55RU的生物素化的77聚体寡核苷酸接头(实施例2.4的接头5)。在流动池4上捕获60RU的生物素化的97聚体寡核苷酸接头(实施例2.4的接头6)。
将250nM抗HER2抗体4D5-Fab’-ss-L-DNA注射到系统中3分钟。将300nM抗HER2抗体2C4-Fab’-ss-L-DNA以2μl/分钟注射到系统中5分钟。单独或组合地注射经DNA标记的Fab片段。
作为对照,仅将250nM抗HER2抗体4D5-Fab’-ss-D-DNA和300nM抗HER2抗体2C4-Fab’-ss-D-DNA注射到系统中。还作为对照,注射缓冲液代替经DNA标记的Fab片段。在用ss-L-DNA标记的Fab片段在相应ss-L-DNA bi接头上的杂交后,将溶液中的分析物hHER2-ECD以24nM,8nM,3nM,1nM,0.3nM,0nM的不同浓度系列以100μl/分钟注射到系统中达3.5分钟结合阶段。以100μl/分钟监测解离阶段达15分钟。通过以20μl/分钟进行100mM甘氨酸缓冲液(甘氨酸pH11,150mM NaCl)的30秒注射,接着又以30μl/分钟进行水的1分钟注射使系统再生。
以分析物浓度依赖性的、时间分辨的传感图测量信号。使用BiacoreBiaevaluation软件4.1评估数据。作为拟合模型,使用标准的朗缪尔二元结合模型。
结果:
当将用ss-D-DNA标记的Fab片段注射到系统中时,未能观察到HER2-ECD相互作用,因为用ss-D-DNA标记的Fab片段未与传感器表面上呈现的镜铁聚体性ss-L-DNA接头杂交。
表3:双重结合剂实验的动力学结果。接头:表面呈现的生物素化的ss-L-DNA多核苷酸接头,如上文描述的在接头长度中不同的Oligo_37mer-Bi,Oligo_77mer-Bi和Oligo_97mer-Bi。ss-L-DNA-Fab:2C4-ss-L-DNA:用19聚体-荧光素标记的抗HER2抗体2C4-Fab’-ss-L-DNA。4D5-ss-L-DNA:用17聚体-荧光素标记的抗HER2抗体4D5-Fab’-ss-L-DNA。4D5-+2C4-ss-L-DNA指表面结合的包含两种单价抗HER2抗体片段组合的双重结合剂。
在表3中使用下列缩写:LRU:在传感器表面上杂交的以应答单位计的质量。抗原:使用87kDa HER2-ECD作为溶液中的分析物。ka:结合速率(1/Ms)。kd:解离速率(1/s)。t1/2解离:依照一级动力学方程式的解法ln(2)/kd*3600以小时计计算的抗原复合物半衰期。KD:以摩尔计的亲和力。KD:以皮摩尔计的亲和力。R最大:以应答单位(RU)计的饱和时的最大分析物应答信号。MR:摩尔比,指示相互作用的化学计量。χ2,U值:测量质量的指示物。
表3
Figure BDA0000370392870000491
在上表中,35聚体、75聚体和95聚体应分别读成37聚体、77聚体和97聚体。
37聚体双重结合剂HER2-ECD相互作用(即对于具有的接头仅由与结合物附接的杂交序列基序和中部生物素化胸苷组成的结合剂)的biacore数据指示该双重结合剂在动力学表现中没有显示出改进。这最可能是由于37聚体接头接头长度不足且缺乏柔性。
77聚体双重结合剂HER2-ECD相互作用(即对于具有的接头包含2次20个胸苷和中部生物素化胸苷以增加接头长度的结合剂)的biacore数据指示该双重结合剂在其动力学表现中显示出急剧的改进。这最可能是由于该77聚体接头的最佳接头长度以及柔性。
97聚体双重结合剂HER2-ECD相互作用(即对于具有的接头包含2次30个胸苷和中部生物素化胸苷以增加接头长度的结合剂)的biacore数据指示该双重结合剂在其动力学表现中显示出急剧的改进。这最可能是由于该97聚体接头的最佳接头长度以及柔性。
表3中的数据提供了证明协作性结合事件存在的证据。尽管完全建立的双重结合剂的R最大值大概是单一Fab臂的构建体的信号高度的两倍,但是摩尔比值确切地是1(MR=1)。这是证明存在两Fab片段的同时的、协作的结合事件的清楚的证据。双重结合剂计数为具有1:1朗缪尔结合化学计量的单一分子。尽管具有2个独立的结合HER2界面,但未能检测到一个双重结合剂和两个HER2域之间的分子间结合。
一般而言,单克隆抗体协同对或化学交联的双特异性F(ab’)2的亲合力常数仅达到比分别的单克隆抗体的亲和力常数高15倍,这显著低于对反应物之间的理想组合所预期的理论亲合力(Cheong,H.S.等,Biochem.Biophys.Res.Commun.173(1990)795-800)。不受该理论束缚地,对此一个可能的原因是涉及协同结合(产生高亲合力)的各个表位/互补位相互作用必须以相对于彼此的特定方式取向以实现最佳协同。
此外,表3中呈现的数据提供了短37聚体接头(仅自ss-L-DNA杂交基序组成)显示的柔性和/或接头长度不足以产生协作结合效应的证据。37聚体接头是一种刚性的、双螺旋L-DNA构建体。该杂交产生双重L-DNA螺旋,它比ss-L-DNA序列更短且柔性更低。该螺旋显示出降低的自由度并且可以看做刚性接头构建体。表3显示,37聚体接头不能产生协作性结合事件。完全建立的37聚体双重结合剂显示与仅单一杂交的构建体相同的亲和力。
通过高度柔性的聚T ss-L-DNA来延长接头长度以分别形成77聚体和97聚体,其提供了亲和力和尤其在抗原复合物稳定性kd(1/s)中的增加。
χ2值指示测量的高质量。所有测量均显示极端小的误差。数据能拟合到朗缪尔1:1拟合模型,残差偏离仅+/-1RU,χ2值较小且获得数据仅需要10次迭代性计算。
协作结合效应依据物理法则(即自由结合能ΔG1和ΔG2汇总)起作用。亲和力相乘:Kd协作=KD1x KD2。此外,解离速率也相乘:kd协作=kd1xkd2。这在77聚体和97聚体接头实验中是确切可观察到的。这导致非常长的复合物半衰期,分别为4146小时(173天)和3942小时(164天)。亲和力在100fmol/l的范围内。显然发生了协作性结合事件。
与单一杂交的构建体相比,所有双重结合剂的结合速率更快。尽管显示更高的分子量,但结合速率提高。
此处我们能显示,在如本文中报告的复合物中连接在一起的曲妥珠单抗和帕妥珠单抗同时结合HER-2胞外域(ECD)。两种Fab片段均结合HER2-ECD上的真表位。另外,两种Fab片段在其结合角中有强烈差异。通过使用最佳的77聚体接头(长度约30nm)ss-L-DNA及其有益的柔性和长度特性,能显示协作性结合事件。
因此,能显示经由高度柔性的ss-L-DNA接头连接在一起的赫赛汀Fab和帕妥珠单抗Fab之间的协作性结合。
Figure IDA0000370392910000011
Figure IDA0000370392910000021
Figure IDA0000370392910000031
Figure IDA0000370392910000041
Figure IDA0000370392910000051

Claims (15)

1.一种结合剂,其为下式:
A-a’:a-S-b:b’-B:X(n)
其中A以及B是单价结合物,
其中a’:a以及b:b’是结合对,其中a’和a不干扰b对b’的结合且反之亦然,
其中S是长度至少1nm的间隔物,
其中(:X)指共价或经由结合对结合a’、a、b、b’或S中至少一个的功能性模块,
其中(n)是整数且至少为1,
其中-代表共价键,且
其中接头a-S-b长度为6至100nm。
2.权利要求1的结合剂,其中所述间隔物S长度为1至95nm。
3.权利要求1或2的结合剂,其中所述结合对选自下组:亮氨酸拉链域二聚体和杂交核酸序列。
4.权利要求1-3中任一项的结合剂,其中所述结合对均为杂交核酸序列且其中所述结合对a’:a和b:b’的不同的杂交核酸序列彼此不杂交。
5.权利要求1-4中任一项的结合剂,其中所述间隔物S是核酸。
6.权利要求1-5中任一项的结合剂,其中所述间隔物S是核酸且其中所述结合对a’:a以及b:b’也均为核酸。
7.权利要求1-6中任一项的结合剂,其中所述间隔物S是核酸且其中所述结合对a’:a以及b:b’均为核酸且其中所述单价结合物A和B是核酸。
8.权利要求1-7中任一项的结合剂,其中X是选自下组的功能性模块:标记基团、结合基团和效应器基团。
9.权利要求1-8中任一项的结合剂,其中所述功能性模块X结合a、b或S。
10.权利要求1-9中任一项的结合剂,其中所述功能性模块X结合所述间隔物S。
11.权利要求1-10中任一项的结合剂,其中所述功能性模块X共价结合所述间隔物S。
12.权利要求1-10中任一项的结合剂,其中所述功能性模块X经由杂交核酸结合所述间隔物S。
13.权利要求1-3或8-12中任一项的结合剂,其中所述单价结合物A和B为多肽,优选为单克隆抗体的Fab片段。
14.依照权利要求1-13中任一项的结合剂在检测感兴趣分析物中的用途。
15.依照权利要求1-13中任一项的结合剂在免疫测定法中的用途。
CN201180068257.5A 2010-12-23 2011-12-21 结合剂 Active CN103384681B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP10196685.1 2010-12-23
EP10196685 2010-12-23
EP101966851 2010-12-23
PCT/EP2011/073633 WO2012085113A1 (en) 2010-12-23 2011-12-21 Binding agent

Publications (2)

Publication Number Publication Date
CN103384681A true CN103384681A (zh) 2013-11-06
CN103384681B CN103384681B (zh) 2018-05-18

Family

ID=44041540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180068257.5A Active CN103384681B (zh) 2010-12-23 2011-12-21 结合剂

Country Status (6)

Country Link
US (3) US20130289251A1 (zh)
EP (1) EP2655414B1 (zh)
JP (1) JP6162044B2 (zh)
CN (1) CN103384681B (zh)
CA (1) CA2817448C (zh)
WO (1) WO2012085113A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206074A (zh) * 2014-12-22 2017-09-26 西雅图免疫公司 双特异性四价抗体及其制备和使用方法
WO2021083077A1 (zh) * 2019-10-29 2021-05-06 安升(上海)医药科技有限公司 半衰期延长的药物及其文库、以及制备方法和应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034605A2 (en) 2009-09-16 2011-03-24 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
AR080793A1 (es) 2010-03-26 2012-05-09 Roche Glycart Ag Anticuerpos biespecificos
WO2012085111A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
BR112014019579A2 (pt) 2012-02-10 2019-10-15 Genentech, Inc Anticorpo de cadeia única, polinucleotídeo, vetor, célula hospedeira, método de produção de um anticorpo de cadeia única, heteromultímero e método de produção do heteromultímero
BR112014028368A2 (pt) 2012-06-27 2017-11-14 Hoffmann La Roche método de produção de conjugado de região fc de anticorpo, conjugado de região fc de anticorpo e formulação farmacêutica
EP2867255B1 (en) * 2012-06-27 2017-07-19 F. Hoffmann-La Roche AG Method for the selection and production of tailor-made, selective and multi-specific therapeutic molecules comprising at least two different targeting entities and uses thereof
ES2597228T3 (es) 2012-06-27 2017-01-17 F. Hoffmann-La Roche Ag Procedimiento para la selección y la producción de entidades de objetivación, como dianas, altamente selectivas y multiespecíficas, personalizadas, las cuales contienen por lo menos dos entidades de unión diferentes, y utilización de éstas
JP6231263B2 (ja) * 2012-07-17 2017-11-15 株式会社島津製作所 アフィニティ支持体及びそれを用いた物質の捕捉方法
MX2015002407A (es) 2012-09-14 2015-06-22 Hoffmann La Roche Metodo para produccion y seleccion de moleculas que comprenden al menos dos entidades diferentes y usos del mismo.
EP3327038B1 (en) * 2013-12-20 2020-09-23 F. Hoffmann-La Roche AG Bispecific her2 antibodies and methods of use
WO2016087416A1 (en) 2014-12-03 2016-06-09 F. Hoffmann-La Roche Ag Multispecific antibodies
WO2018057779A1 (en) * 2016-09-23 2018-03-29 Jianbiao Zheng Compositions of synthetic transposons and methods of use thereof
JP7114408B2 (ja) 2017-08-30 2022-08-08 キヤノン株式会社 電子写真感光体の製造方法およびその製造方法により製造された電子写真感光体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137932A2 (en) * 2004-11-03 2006-12-28 Leucadia Technologies, Inc. Homogeneous analyte detection
US20080044834A1 (en) * 2005-06-15 2008-02-21 Saint Louis University Three-component biosensors for detecting macromolecules and other analytes
CN101573452A (zh) * 2006-08-09 2009-11-04 圣路易大学 探测大分子与其他分析物的分子生物感应器

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095818B (en) 1981-03-27 1985-10-02 Exxon Research Engineering Co Staged adsorption/resorption heat pump
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4868105A (en) 1985-12-11 1989-09-19 Chiron Corporation Solution phase nucleic acid sandwich assay
IL86164A0 (en) 1987-04-28 1988-11-15 Tamir Biotechnology Ltd Improved dna probes
WO1989002439A1 (en) 1987-09-21 1989-03-23 Ml Technology Ventures, L.P. Non-nucleotide linking reagents for nucleotide probes
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US4914210A (en) 1987-10-02 1990-04-03 Cetus Corporation Oligonucleotide functionalizing reagents
FR2632955B1 (fr) 1988-06-20 1991-12-27 Oris Ind Derives de nucleosides utilisables pour la synthese d'oligonucleotides marques, oligonucleotides obtenus a partir de ces derives et leur synthese
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
FR2642074B1 (fr) 1989-01-20 1994-04-29 Oris Ind Derives de molecules polyhydroxylees permettant l'introduction d'au moins une ramification dans un oligonucleotide
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5290925A (en) 1990-12-20 1994-03-01 Abbott Laboratories Methods, kits, and reactive supports for 3' labeling of oligonucleotides
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
AU664030B2 (en) 1991-02-27 1995-11-02 Micromet Ag Serine-rich peptide linkers
LU91067I2 (fr) 1991-06-14 2004-04-02 Genentech Inc Trastuzumab et ses variantes et dérivés immuno chimiques y compris les immotoxines
JP2899111B2 (ja) 1991-07-15 1999-06-02 ラ ホヤ ファーマシューティカル カンパニー オリゴヌクレオチドの5’末端へ官能基を提供するための修飾された亜リン酸中間体
DE59209203D1 (de) 1991-08-28 1998-03-26 Boehringer Mannheim Gmbh Primer für matrizenabhängige enzymatische nukleinsäuresynthesen
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5932448A (en) * 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
ATE463573T1 (de) 1991-12-02 2010-04-15 Medimmune Ltd Herstellung von autoantikörpern auf phagenoberflächen ausgehend von antikörpersegmentbibliotheken
DE69333807T2 (de) 1992-02-06 2006-02-02 Chiron Corp., Emeryville Marker für krebs und biosynthetisches bindeprotein dafür
DK0672141T3 (da) 1992-10-23 2003-06-10 Immunex Corp Fremgangsmåder til fremstilling af opløselige, oligomere proteiner
DE4310141A1 (de) 1993-03-29 1994-10-06 Boehringer Mannheim Gmbh Homobidentale trifunktionelle Linker
US5635602A (en) * 1993-08-13 1997-06-03 The Regents Of The University Of California Design and synthesis of bispecific DNA-antibody conjugates
NZ264970A (en) 1993-11-29 1997-02-24 Shell Int Research Hydrocarbon oxidation; catalytic partial oxidation of hydrocarbon feedstock, preparation of carbon monoxide/hydrogen mixture, details regarding catalyst arrangement
US5849879A (en) 1994-11-03 1998-12-15 The Regents Of The University Of California Methods for the diagnosis of glaucoma
AU6163196A (en) 1995-06-07 1996-12-30 Smithkline Beecham Corporation Method for obtaining receptor agonist antibodies
US5736626A (en) 1996-01-29 1998-04-07 The Perkin-Elmer Corporation Solid support reagents for the direct synthesis of 3'-labeled polynucleotides
WO1999006587A2 (en) 1997-08-01 1999-02-11 Morphosys Ag Novel method and phage for the identification of nucleic acid sequences encoding members of a multimeric (poly)peptide complex
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6117986A (en) 1998-06-10 2000-09-12 Intergen Company, L.P. Pyrimidines linked to a quencher
JP2000325086A (ja) 1999-05-21 2000-11-28 Igaku Seibutsugaku Kenkyusho:Kk リン酸化酵素活性の測定方法
CH694589A5 (de) 1999-06-25 2005-04-15 Genentech Inc Humanisierte Anti-ErbB2-Antikörper und Behandlung mit Anti-ErbB2-Antikörpern.
EP1074563A1 (en) 1999-08-02 2001-02-07 F. Hoffmann-La Roche Ag Chimeric polypeptides enhancing dimer formation through electrostatic interactions and disulfide bond, method for production and uses thereof
DE10044373A1 (de) 2000-09-08 2002-03-21 Roche Diagnostics Gmbh Neues Reagenz zur Markierung von Nukleinsäuren
US20100081792A1 (en) 2001-06-28 2010-04-01 Smithkline Beecham Corporation Ligand
US7183385B2 (en) 2002-02-20 2007-02-27 Cell Signaling Technology, Inc. Phospho-specific antibodies to Flt3 and uses thereof
KR100527334B1 (ko) 2002-06-07 2005-11-09 (주)넥스젠 올리고뉴클레오타이드의 신규한 링커
ES2260569T3 (es) 2002-12-20 2006-11-01 Roche Diagnostics Gmbh Derivados de manitol y glucitol.
GB0305702D0 (en) 2003-03-12 2003-04-16 Univ Birmingham Bispecific antibodies
US7238792B2 (en) 2003-03-18 2007-07-03 Washington State University Research Foundation Foldable polymers as probes
WO2005035753A1 (ja) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha 機能蛋白質を代替する二重特異性抗体
US20080075712A1 (en) 2003-10-14 2008-03-27 Kunihiro Hattori Double Specific Antibodies Substituting For Functional Proteins
CA2494571C (en) 2003-12-02 2010-02-09 F.Hoffmann-La Roche Ag Oligonucleotides containing molecular rods
US7705150B2 (en) 2004-02-04 2010-04-27 Biosearch Technologies, Inc. Cyanine dyes
JP4318721B2 (ja) 2004-10-15 2009-08-26 独立行政法人科学技術振興機構 mRNA−ピューロマイシン−タンパク質連結体作製用リンカー
US20060199207A1 (en) 2005-02-24 2006-09-07 Matysiak Stefan M Self-assembly of molecules using combinatorial hybridization
ES2332139T3 (es) 2005-11-23 2010-01-27 F. Hoffmann-La Roche Ag Polinucleotidos con mimetico de fosfato.
ES2804129T3 (es) 2005-11-23 2021-02-03 Ventana Med Syst Inc Conjugado anticuerpo-enzima
WO2007069092A2 (en) 2005-12-15 2007-06-21 Centre National De La Recherche Scientifique (Cnrs) Cationic oligonucleotides, automated methods for preparing same and their uses
WO2007123345A1 (en) 2006-04-21 2007-11-01 Peoplebio, Inc. Method for differentially detecting multimeric form from monomeric form of multimer-forming polypeptides through three-dimensional interactions
GB0614780D0 (en) 2006-07-25 2006-09-06 Ucb Sa Biological products
EP2076614A4 (en) * 2006-10-16 2012-07-04 Univ Arizona SYNTHETIC ANTIBODIES
EP2407558A1 (en) 2006-10-31 2012-01-18 Noxxon Pharma AG Methods for the detection of a single- or double-stranded nucleic acid molecule
US20080280778A1 (en) 2007-05-03 2008-11-13 Urdea Michael S Binding reagents that contain small epitope binding molecules
NZ600758A (en) 2007-06-18 2013-09-27 Merck Sharp & Dohme Antibodies to human programmed death receptor pd-1
CN107226864A (zh) 2007-06-21 2017-10-03 宏观基因有限公司 共价双抗体及其用途
KR101072900B1 (ko) 2007-12-04 2011-10-17 주식회사 파나진 고정화된 펩티드핵산 프로브를 사용한 표적핵산의 선택적 표지 및 검출 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137932A2 (en) * 2004-11-03 2006-12-28 Leucadia Technologies, Inc. Homogeneous analyte detection
US20080044834A1 (en) * 2005-06-15 2008-02-21 Saint Louis University Three-component biosensors for detecting macromolecules and other analytes
CN101573452A (zh) * 2006-08-09 2009-11-04 圣路易大学 探测大分子与其他分析物的分子生物感应器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206074A (zh) * 2014-12-22 2017-09-26 西雅图免疫公司 双特异性四价抗体及其制备和使用方法
US10717783B2 (en) 2014-12-22 2020-07-21 Zeren Gao Bispecific tetravalent antibodies and methods of making and using thereof
CN107206074B (zh) * 2014-12-22 2023-12-01 西雅图免疫公司 双特异性四价抗体及其制备和使用方法
WO2021083077A1 (zh) * 2019-10-29 2021-05-06 安升(上海)医药科技有限公司 半衰期延长的药物及其文库、以及制备方法和应用

Also Published As

Publication number Publication date
CN103384681B (zh) 2018-05-18
JP6162044B2 (ja) 2017-07-12
CA2817448A1 (en) 2012-06-28
EP2655414B1 (en) 2018-08-29
WO2012085113A1 (en) 2012-06-28
US20200277406A1 (en) 2020-09-03
CA2817448C (en) 2019-01-22
US20160194410A1 (en) 2016-07-07
US10633460B2 (en) 2020-04-28
EP2655414A1 (en) 2013-10-30
JP2014504157A (ja) 2014-02-20
US20130289251A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
CN103384681B (zh) 结合剂
CN103384831B (zh) 通过二价结合剂来检测多肽二聚体
US10982007B2 (en) Detection of a posttranslationally modified polypeptide by a bivalent binding agent
TWI564306B (zh) 雙特異性抗體
JP5766296B2 (ja) ポリペプチド−ポリヌクレオチド複合体、およびエフェクター成分の標的化された送達におけるその使用
JP6445429B2 (ja) 少なくとも2つの異なる標的化実体を含むテーラーメイドで選択的かつ多重特異性治療用分子を選択および作製するための方法およびその使用
CN113195530A (zh) 抗体融合蛋白、制备方法及其应用
Lee et al. Construction and characterization of functional anti-epiregulin humanized monoclonal antibodies
US20220175945A1 (en) Antibodies and enonomers
CN117384290B (zh) 人源robo1结合分子及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1186739

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant