CN103374064B - 植物根毛发育相关蛋白TaRSL4及其编码基因与应用 - Google Patents

植物根毛发育相关蛋白TaRSL4及其编码基因与应用 Download PDF

Info

Publication number
CN103374064B
CN103374064B CN201210122370.3A CN201210122370A CN103374064B CN 103374064 B CN103374064 B CN 103374064B CN 201210122370 A CN201210122370 A CN 201210122370A CN 103374064 B CN103374064 B CN 103374064B
Authority
CN
China
Prior art keywords
plant
sequence
tarsl4
gene
root hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210122370.3A
Other languages
English (en)
Other versions
CN103374064A (zh
Inventor
倪中福
孙其信
韩瑶
姚颖垠
彭惠茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201210122370.3A priority Critical patent/CN103374064B/zh
Publication of CN103374064A publication Critical patent/CN103374064A/zh
Application granted granted Critical
Publication of CN103374064B publication Critical patent/CN103374064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了植物根毛发育相关蛋白TaRSL4及其编码基因与应用。本发明所提供的蛋白来源于小麦,名称为TaRSL4,由序列表序列2所示的氨基酸序列组成。实验证明,将含有序列表序列1所示DNA分子(即所述蛋白的编码基因)的重组表达载体pB2GW7.0-TaRSL4转化拟南芥得到的T3代纯合转基因植株,其表型与相同条件下的野生型拟南芥植株相比,根毛长度显著增加,且在正常和营养胁迫条件下,地上部植株的株型和鲜重均明显增大。本发明在提高植物根毛长度、进而提高植物生物产量方面具有重要意义。

Description

植物根毛发育相关蛋白TaRSL4及其编码基因与应用
技术领域
本发明涉及生物技术领域中的一种植物根毛发育相关蛋白及其编码基因与应用,特别是一种植物根毛发育相关蛋白TaRSL4及其编码基因与应用,该蛋白质TaRSL4来源于小麦,具有调控植物根毛长度、进而调控植物生物产量的功能。
背景技术
根毛是靠近根尖特异表皮细胞外伸形成的单细胞、管状突出物,根毛的存在使根的表面积显著增加,有助于提高根在土壤中的稳定性、根与微生物的互作及根对土壤营养的吸收,它是根系吸收水分和养分最活跃的组织。研究表明,具有较长根毛的植物能更有效地吸收水分和养分,从而提高作物的产量。小麦作为我国第三大粮食作物,在农业生产上具有重要地位,参与其根毛发生发育机制的基因目前尚未见报道。
发明内容
本发明的目的是提供一种植物根毛发育相关蛋白TaRSL4及其编码基因与应用。
本发明所提供的与植物根毛发育相关的蛋白质,来源于小麦,名称为TaRSL4,是如下a)或b)的蛋白质:
a)由序列表序列2所示的氨基酸序列组成的蛋白质;
b)将序列表序列2的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与植物根毛长度或生物产量相关的由(a)衍生的蛋白质。
序列表序列2所示的氨基酸序列由302个氨基酸残基组成,自序列表序列2的第225-270位为bHLH(碱性/螺旋-环-螺旋)转录因子家族的保守结构域。
为了使上述(a)中的蛋白便于纯化,可在由序列表序列2所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。
表1标签的序列
  标签   残基   序列
  Poly-Arg   5-6(通常为5个)   RRRRR
  Poly-His   2-10(通常为6个)   HHHHHH
  FLAG   8   DYKDDDDK
  Strep-tag II   8   WSHPQFEK
  c-myc   10   EQKLISEEDL
上述(b)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达得到。上述(b)中的蛋白的编码基因可通过将序列表序列1的第45位至第953位所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。
所述蛋白质的编码基因也属于本发明的保护范围。
所述蛋白质的编码基因为如下1)-4)基因中的任意一种:
1)其核苷酸序列是序列表序列1所示的DNA分子;
2)其核苷酸序列是序列表序列1的第45位至第953位所示的DNA分子;
3)与1)或2)限定的DNA序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码所述蛋白质的DNA分子;
4)在严格条件下与1)或2)或3)限定的DNA序列杂交且编码所述蛋白质的DNA分子。
序列表序列1由986个脱氧核苷酸组成,是小麦蛋白TaRSL4的全长cDNA序列,其中,自序列表序列1的第45-953位序列为小麦蛋白TaRSL4的编码序列。
所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M Na3PO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
含有所述基因的重组载体、表达盒、转基因细胞系、重组菌或重组病毒也属于本发明的保护范围。
可用现有的植物表达载体构建含有所述基因的重组表达载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pROKII、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa或pCAMBIA1391-Xb(CAMBIA公司)等。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂合成酶Nos基因)、植物基因(如大豆贮存蛋白基因)3’端转录的非翻译区均具有类似功能。使用所述基因构建重组植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子(如花椰菜花叶病毒(CAMV)35S启动子、玉米的泛素启动子(Ubiquitin))、组成型启动子或组织特异表达启动子(如种子特异表达的启动子),它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对methatrexate抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。
含有所述基因的重组载体具体可为pDONRTM221-TaRSL4或pB2GW7.0-TaRSL4;所述pDONRTM221-TaRSL4为载体pDONRTM221上的ccdB基因和CmR基因被序列表序列1所示986bp核苷酸序列的DNA片段所替换;所述pB2GW7.0-TaRSL4为载体pB2GW7.0上的CmR-ccdB基因被序列表序列1所示986bp核苷酸序列的DNA片段所替换。
本发明所提供的蛋白质及基因可用于调控目的植物的根毛长度或生物产量。
本发明的另一个目的是提供一种培育转基因植物的方法,该方法是将所述基因导入目的植物中,得到根毛长度或生物产量大于目的植物的转基因植物。
在上述方法或应用中,所述目的植物可为单子叶植物或双子叶植物。
在上述方法或应用中,所述双子叶植物具体可为拟南芥。
上述生物产量具体可为地上部植株的株型或鲜重。
实验证明,将含有序列表序列1所示DNA分子的重组表达载体pB2GW7.0-TaRSL4转化拟南芥得到的T3代纯合转基因植株,其表型与相同条件下的野生型拟南芥植株相比,根毛长度显著增加,且在正常和营养胁迫条件下,地上部植株的株型和鲜重均明显增大。本发明在提高植物根毛长度、进而提高植物生物产量方面具有重要意义。
附图说明
图1为以小麦的cDNA为模板对TaRSL4基因进行PCR扩增的电泳图。其中,从左至右的泳道依次为:小麦的cDNA、分子量标准(从上至下的片段大小依次为:2000bp、1000bp、750bp、500bp、250bp、100bp)、水空白对照。
图2为Gateway技术的载体构建原理图。
图3为供体载体pDONRTM221的结构示意图。
图4为目的载体pB2GW7.0的结构示意图。
图5为部分转基因拟南芥植株的PCR鉴定电泳图。其中,泳道1-5为5个不同转基因拟南芥植株系的植株,+为质粒阳性对照,泳道M为分子量标准(从上到下的片段大小依次为2000bp、1000bp、750bp、500bp、250bp、100bp)、泳道WT为野生型拟南芥植株,H2O为空白对照。
图6为转基因拟南芥植株和野生型拟南芥植株中TaRSL4基因的相对表达量结果。
图7为转基因拟南芥植株和野生型拟南芥植株根毛的荧光显微照片。左列的3幅图为转基因拟南芥植株的一条根,右列的3幅图为野生型拟南芥植株的一条根。
图8为转基因拟南芥植株和野生型拟南芥植株根毛相对长度结果。
图9为转基因拟南芥植株和野生型拟南芥植株营养胁迫照片。其中,左侧盆中含有土壤和蛭石,右侧盆中只含有蛭石;两个盆中的左列为野生型拟南芥植株,右列为转基因拟南芥植株。
图10为转基因拟南芥植株和野生型拟南芥植株营养胁迫后的地上部鲜重柱形统计图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
扬麦158(Triticum aestivum L.):中国农业大学,参考文献:赵龙国.扬麦158.湖南农业,1998,9,10-10;
根癌农杆菌GV3101(Agrobacterium tumefactiens GV3101):中国农业大学,参考文献:Tong SM,Ni ZF,Peng HR,Dong GQ,Sun QX.Ectopic overexpression ofwheat TaSrg6 gene confers water stress tolerance in Arabidopsis.Plantscience,2007,172(6):1079-1086;
拟南芥Col-0(Arabidopsis thaliana Columbia):中国农业大学,参考文献:Li,Y.,Zheng,L.,Corke,F.,Smith,C.,and Bevan,M.W.(2008).Control of finalseed and organ size by the DA1 gene family in Arabidopsis thaliana.Genes Dev22,1331-1336。
pDONRTM221:Invitrogen,12536-017;
pB2GW7.0:Invitrogen,11791019。
实施例1、小麦TaRSL4基因的克隆
取水培8天的扬麦158根系,Trizol法提取总RNA,纯化后用M-MLV反转录酶进行反转录得到cDNA。以该cDNA为模板,用引物L:5′-TGCATTGAGCGGTTGAGCCT-3′和R:5′-CAGTGTAGCTAGCGCCACAT-3′进行PCR扩增,结果如图1所示。
PCR反应体系(30μl):dH2O 5.4μl,2×GCbuffer 15μl,10mM dNTPs(各2.5mM)0.6μl,100U rTaq(Takara)0.3μl,引物各3μl,DNA模板3μl。
PCR反应条件:94℃,5min;35个循环:94℃,30s,59℃,30s,72℃,1min;最后72℃延伸10min。
将获得的PCR扩增产物在1%的琼脂糖凝胶中电泳,回收1kb左右的片段,连接到pEGM-T载体(Promega)上转化大肠杆菌DH5α菌株进行测序。测序结果表明,pEGM-T载体中插入了序列表序列1所示986bp的DNA片段,该片段为小麦TaRSL4基因的全长cDNA序列,其序列如序列表序列1所示,其中序列表序列1的第45位至第953位为小麦TaRSL4基因的编码序列,编码序列表序列2所示的由302个氨基酸残基组成的蛋白TaRSL4,该蛋白自序列表序列2的第225-270位氨基酸序列为bHLH(碱性/螺旋-环-螺旋)转录因子家族的保守结构域。
实施例2、重组植物表达载体的构建
利用Gateway技术的位点特异重组,通过BP和LR两步反应,将目的序列转移至Gateway改造过的表达载体(即目的载体)中。Gateway技术是基于已研究的非常清楚的λ噬菌体位点特异重组系统(attB×attP→attL×attR)。BP和LR两个反应就构成了Gateway技术(图2)。BP反应是利用一个attB DNA片段或表达克隆和一个attP供体载体之间的重组反应,创建一个入门克隆。LR反应是一个attL入门克隆和一个attR目的载体之间的重组反应。LR反应用来在平行的反应中转移目的序列到一个或更多个目的载体。本实施例所使用的供体载体为pDONRTM221,表达载体为pB2GW7.0,其结构示意图如图3和图4所示。
1、BP反应
1)带接头的含有目的基因的PCR产物的获得
首先,以实施例1中获得的含有pEGM-T重组载体(即经测序验证在pEGM-T载体中插入了序列表序列1所示986bpDNA片段的重组载体)的阳性大肠杆菌菌液为模板,进行第一步PCR反应,引物为:
L1:5’-CAAAAAAGCAGGCTTGCATTGAGCGGTTGAGCCT-3’(下划线序列为添加的部分Gateway重组位点序列);
R1:5’-ACAAGAAAGCTGGGCAGTGTAGCTAGCGCCACAT-3’(下划线序列为添加的部分Gateway重组位点序列)。
PCR选用TaKaRa高保真酶Primer Star,扩增体积为50μL,反应程序:98℃变性2min;94℃15s,58℃20s,72℃1min,共28个循环;72℃延伸7min;琼脂糖凝胶电泳后回收1kb左右的PCR产物,将该PCR产物稀释50倍,用引物L2和R2进行第二次PCR反应,引物序列如下:
L2:5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTC-3’(下划线序列为添加的部分Gateway重组位点序列);
R2:5’-GGGGACCACTTTGTACAAGAAAGCTGGGTC-3’(下划线序列为添加的部分Gateway重组位点序列)。
PCR选用TaKaRa高保真酶Primer Star,扩增体积为50μL,反应程序:98℃变性2min;94℃15s,58℃20s,72℃1min,共28个循环;72℃延伸7min。琼脂糖凝胶电泳后回收PCR产物,用于BP反应。
2)BP反应
BP反应体系(5.0μL):步骤1)的PCR产物(40-100fmol)3.5μL,pDONRTM221(150ng/μL)0.5μL,BP ClonaseTMenzyme mixture(Invitrogen,11789-013)1.0μL。
BP反应条件:25℃温浴16小时。
BP反应目的基因克隆的筛选及鉴定:
a)取上述BP反应产物2μL转化大肠杆菌DH5α的感受态细胞,37℃倒置培养12-16h(培养基附加50μg/mL卡那霉素);
b)挑取步骤a)获得的单克隆,37℃、180-200rpm摇菌培养(附加50μg/mL卡那霉素);
c)收集步骤b)菌液中的菌体,提取质粒,用实施例1中扩增小麦TaRSL4基因全长cDNA序列的引物L和R进行PCR检测。
d)将步骤c)PCR鉴定为阳性的质粒进行测序,测序结果表明,获得入门载体pDONRTM221-TaRSL4,即载体pDONRTM221上的ccdB基因和CmR基因被序列表序列1所示986bp核苷酸序列的DNA片段所替换。
2、LR反应
将步骤1获得的入门载体pDONRTM221-TaRSL4(即BP克隆质粒)进行LR反应,反应体系(5.0μL)如下:BP克隆质粒(40-100fmol)3.5μL,目的载体pB2GW7.0(150ng/μL)0.5μL,LR ClonaseTMenzyme mixture(Invitrogen,11789-026)1.0μL。
LR反应条件:25℃温浴16h。
LR反应目的基因克隆的筛选及鉴定:
1)取上述LR反应产物2μL转化大肠杆菌DH5a的感受态细胞,37℃倒置培养12-16h(培养基附加50μg/ml壮观霉素);
2)挑取步骤1)获得的单克隆,37℃、180-200rpm摇菌培养(附加50μg/ml壮观霉素);
3)收集步骤2)菌液中的菌体,提取质粒,用实施例1中扩增小麦TaRSL4基因全长cDNA序列的引物L和R进行PCR检测。
4)将步骤3)PCR鉴定为阳性的质粒进行测序,测序结果表明,获得重组植物表达载体pB2GW7.0-TaRSL4,即载体pB2GW7.0-TaRSL4上的CmR-ccdB基因被序列表序列1所示986bp核苷酸序列的DNA片段所替换。
实施例3、小麦TaRSL4基因转化拟南芥
1、重组农杆菌的构建
取实施例2制备得到的重组植物表达载体pB2GW7.0-TaRSL4转化根癌农杆菌GV3101感受态细胞,28℃于含50μg/ml壮观霉素和100μg/ml利福平的YEB固体培养中筛选培养;挑取阳性克隆提质粒,用实施例1中扩增小麦TaRSL4基因全长cDNA序列的引物L和R进行PCR检测;PCR鉴定呈阳性的克隆即为含有重组植物表达载体pB2GW7.0-TaRSL4的重组根癌农杆菌,命名为GV3101/pB2GW7.0-TaRSL4。
2、转基因拟南芥的获得
1)将哥伦比亚生态型拟南芥Col-0(Arabidopsis thaliana Columbia)的野生型种子在4℃条件下春化72h,播种于MS培养基中于22℃/18℃、15h光照/9h黑暗、湿度60%-70%的培养室中培养,生长到两片真叶时移栽到营养土与蛭石等比例混合的种植钵中。待植株开花后,剪去主枝顶端,促进侧枝发展。
2)取步骤1的重组根癌农杆菌GV3101/pB2GW7.0-TaRSL4接种于5ml YEB液体培养基(含100μg/ml壮观霉素和100μg/ml利福平)中,摇菌过夜,第二天转瓶至500mlYEB液体培养基中,28℃培养至OD600为0.8;离心收集菌体,用转化缓冲液(100ml的1/2MS培养液中含5%蔗糖和0.02%-0.05%Silivet)悬浮至OD600为0.8。
3)将步骤1)剪枝后4~6天的拟南芥植株倒置于转化缓冲液中浸泡;取出种植盘,用充满气的黑色塑料袋包住,平放,22℃下暗培养24h后去掉塑料袋将种植钵直立。恢复光照和温度按正常方法培养植株至结实,收获成熟的T0代种子。
4)T0代种子消毒后,用无菌水清洗6-7次,平铺于MS固体培养基上(含125μL/L Basta除草剂),4℃春化3天后,移入22℃/18℃,16h光照/8h黑暗培养7天后挑选抗除草剂Basta的阳性转基因拟南芥植株(表现为真叶健康呈深绿色,根伸长至培养基中),将T0代阳性转基因拟南芥植株转至MS固体培养基(不含Basta除草剂)上继续培养10天后移入土壤中,50天后按单株收获T1代种子。按照同样的方法种植筛选T1代种子,移栽除草剂Basta抗性分离比为3∶1的T1代株系12个,并单株收获T1代株系内各单株上所结T2代种子,随机取10个T2代株系种子按照同样的方法进行除草剂Basta抗性筛选,得到10个T2代不再产生除草剂Basta抗性分离的纯合转基因株系。单株收获T2代为纯合转基因株系的T3代种子,进行下述步骤4的表型鉴定和分析。
同时,以相同的方法转化空载体pB2GW7.0作为空载体对照,得到T2代纯合的转空载体对照株系。
T0代表示转化当代所结的种子及由它所长成的植株;T1代表示T0代自交产生的种子及由它所长成的植株;T2代表示T1代自交产生的种子及由它所长成的植株;T3代表示T2代自交产生的种子及由它所长成的植株;株系表示由上一代的同一植株自交所产生的种子或植株群体。
3、转基因拟南芥植株的PCR鉴定
取步骤2得到的5个T2代不再产生除草剂Basta抗性分离的纯合转基因株系植株叶片提取基因组DNA,用实施例1中的引物L和R进行PCR扩增,结果全部呈阳性,部分植株的PCR产物电泳结果如图5所示。
同时,PCR检测步骤2得到的T2代纯合转空载体对照株系植株,结果全部呈阳性;而阴性对照野生型拟南芥呈阴性。
4、转基因拟南芥的实时荧光定量PCR检测
用Trizol法分别提取哥伦比亚生态型拟南芥Col-0的野生型(WT)植株、T2代纯合的转空载体对照拟南芥植株及步骤2得到的T2代纯合转基因拟南芥株系的植株根系总RNA,纯化后用M-MLV反转录酶进行反转录得到cDNA。以该cDNA为模板,特异引物5′-CGACGACACCTATGTCATCG-3′(对应于序列表序列1的第572位-第591位)和5′-CATTGGGAACCAAGTTCTGC-3′(对应于序列表序列1的第780位-第761位),对TaRSL4基因的相对表达量进行实时定量PCR检测,内参基因为TaACTIN,引物为:5′-GACCTCACGGATAATCTAATG-3′和5′-ACCATCAGGCATCTCATAG-3′,实时荧光定量PCR仪型号CFX96TMReal-Time System,一次平行试验设3次重复。利用Livak KJ和Schmittgen TD(2001)报道的方法,即2-ΔΔCT计算相对表达量。
ΔΔCT=(CT.Target-CT.Actin)Time x-(CT.Target-CT.Actin)Time 0
Time x表示任意时间点,Time 0表示经actin校正后1倍量的目标基因表达。
结果:外源基因TaRSL4在野生型拟南芥Col-0中不表达,而在所有转基因拟南芥株系中表达,部分转基因拟南芥株系(L1、L2和L3)的相对表达量结果如图6所示,T2代纯合的转空载体对照拟南芥植株与野生型拟南芥Col-0的结果无显著差异。
5、转基因拟南芥植株的表型鉴定
1)苗期根毛性状鉴定
取纯合转基因拟南芥株系(L1、L2和L3)的T3代种子,同时取哥伦比亚生态型拟南芥Col-0的野生型(WT)种子及纯合的转空载体对照拟南芥T3代种子,用0.5%次氯酸钠溶液(包括0.5%次氯酸钠和0.01%Triton-X 100)分别将上述种子消毒15min,然后用无菌水清洗6次,取6粒野生型种子、同一株系的6粒T3代纯合转基因株系种子及6粒纯合的转空载体对照拟南芥T3代种子同时点播在同一MS培养基平板上,每个株系3次重复。4℃下春化3天后,移入光照培养箱中(22℃恒温,24小时光照,光强30-40μmol·m-2·s-1)培养,萌芽14天后用体式荧光显微镜在同一放大倍数下观察同一平板中的转基因拟南芥植株、野生型拟南芥植株的根毛并拍照(部分结果如图7所示),分别测量照片中转基因拟南芥植株和野生型拟南芥Col-0植株的根毛长度(即根毛相对长度),分别统计各株系3个平板内转基因拟南芥植株和野生型拟南芥植株的根毛相对长度的平均值,结果如表2和图8所示。
表2转基因拟南芥植株根毛相对长度的统计结果
表2、图7和图8的结果表明:转基因拟南芥株系的根毛长度明显大于野生型拟南芥植株。纯合的转空载体对照拟南芥植株的结果与野生型拟南芥植株无显著差异。
2)营养胁迫鉴定
取1个步骤2得到的T3代纯合转基因株系(L2)的种子,与哥伦比亚生态型拟南芥Col-0的野生型(WT)种子同时直接播种于只含有蛭石的盆中(营养胁迫条件),以直接播种于含有以等体积比混合的土壤和蛭石的盆中(正常条件)为对照,播种后定期浇水以保证水分充足。每个处理重复3次;4℃下春化3天后,移入光照培养箱中(22℃恒温,24小时光照,光强30-40μmol·m-2·s-1);播种15天后,观测纯合转基因株系的生长态势并拍照,结果如图9所示;取2种处理各重复中单株的地上部直接称重(即地上部鲜重),计算平均值,结果如表3和图10所示。
表3.转基因拟南芥植株地上部鲜重(单位:克)的统计结果
图9、表3和图10的结果显示,转基因拟南芥株系植株在正常条件下和营养胁迫条件下,地上部的株型和鲜重均明显大于野生型拟南芥植株。纯合的转空载体对照拟南芥植株的结果与野生型拟南芥植株无显著差异。这说明转化基因TaRSL4后的转基因植物的根毛长度的增加明显提高了目的植物的生物产量。

Claims (8)

1.如序列表序列2所示的氨基酸序列组成的蛋白质或其编码基因在调控目的植物根毛长度中的应用。
2.根据权利要求1所述的应用,其特征在于:所述编码基因为为如下1)或2)基因中的任意一种: 
1)其核苷酸序列是如序列表序列1所示的DNA分子;
2)其核苷酸序列是如序列表序列1的第45位至第953位所示的DNA分子。
3.根据权利要求1或2所述的应用,其特征在于:所述目的植物为单子叶植物或双子叶植物。
4.根据权利要求3所述的应用,其特征在于:所述双子叶植物为拟南芥。
5.一种培育转基因植物的方法,是将如序列表序列2所示的氨基酸序列组成的蛋白质的编码基因导入目的植物中,得到根毛长度大于目的植物的转基因植物。
6.根据权利要求5所述的方法,其特征在于:所述编码基因为为如下1)或2)基因中的任意一种: 
1)其核苷酸序列是如序列表序列1所示的DNA分子;
2)其核苷酸序列是如序列表序列1的第45位至第953位所示的DNA分子。
7.根据权利要求5或6所述的方法,其特征在于:所述目的植物为单子叶植物或双子叶植物。
8.根据权利要求7所述的方法,其特征在于:所述双子叶植物为拟南芥。
CN201210122370.3A 2012-04-24 2012-04-24 植物根毛发育相关蛋白TaRSL4及其编码基因与应用 Active CN103374064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210122370.3A CN103374064B (zh) 2012-04-24 2012-04-24 植物根毛发育相关蛋白TaRSL4及其编码基因与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210122370.3A CN103374064B (zh) 2012-04-24 2012-04-24 植物根毛发育相关蛋白TaRSL4及其编码基因与应用

Publications (2)

Publication Number Publication Date
CN103374064A CN103374064A (zh) 2013-10-30
CN103374064B true CN103374064B (zh) 2015-02-11

Family

ID=49459945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210122370.3A Active CN103374064B (zh) 2012-04-24 2012-04-24 植物根毛发育相关蛋白TaRSL4及其编码基因与应用

Country Status (1)

Country Link
CN (1) CN103374064B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433736A (zh) * 2021-04-29 2022-12-06 谢文军 用于高效表达纯化小标签活性融合蛋白的Gateway原核载体系统
CN116199760A (zh) * 2023-04-07 2023-06-02 西北农林科技大学 一种小麦金属转运蛋白TaNRAMP3与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796068A (zh) * 2007-05-22 2010-08-04 植物生物科学有限公司 Rhd6及其调节植物根毛发育的应用
CN101942459A (zh) * 2010-09-10 2011-01-12 陈全家 一种棉花try基因

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214786B2 (en) * 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796068A (zh) * 2007-05-22 2010-08-04 植物生物科学有限公司 Rhd6及其调节植物根毛发育的应用
CN101942459A (zh) * 2010-09-10 2011-01-12 陈全家 一种棉花try基因

Also Published As

Publication number Publication date
CN103374064A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
US11873499B2 (en) Methods of increasing nutrient use efficiency
CN103319583B (zh) 植物耐逆性相关蛋白TaNF-YB1及其编码基因和应用
CN101701035B (zh) 一种与植物耐旱相关的蛋白GaTPSP及其编码基因与应用
CN103374063B (zh) 植物根毛发育相关蛋白TaRHD6及其编码基因与应用
CN110713994B (zh) 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用
CN104710521A (zh) 一个控制植物产量的相关基因及其应用
CN103374064B (zh) 植物根毛发育相关蛋白TaRSL4及其编码基因与应用
CN101659699B (zh) 植物耐逆性相关蛋白GmSIK2及其编码基因与应用
CN105802931B (zh) Crk4蛋白及其编码基因在调控植物茎叶生长中的应用
CN102653556B (zh) 植物耐逆性相关转录因子GmWRKY78及其编码基因与应用
CN103172717B (zh) 植物耐低钾胁迫相关蛋白GmWRKY50及其编码基因与应用
CN114805508B (zh) 水稻抽穗期基因dhd3功能以及应用
CN104140462B (zh) 植物耐盐性相关蛋白GhSnRK2-6及其编码基因与应用
CN114560919B (zh) 一种与植物耐旱相关的转录因子VcMYB108及其编码基因与应用
CN112662687B (zh) 推迟玉米花期的方法、试剂盒、基因
CN103570813A (zh) 与植物抗逆性相关蛋白Gh01399及其编码基因与应用
CN105001317B (zh) TuVIPP1蛋白及其编码基因与应用
CN103524607B (zh) 小麦热胁迫相关蛋白TaGCN5及其编码基因和应用
CN103172718B (zh) 植物耐低氮胁迫相关蛋白GmDUF-CBS及其编码基因与应用
CN108892714B (zh) 植物耐盐相关蛋白GmLURP17及其编码基因的应用
CN113929758A (zh) 钾离子转运体蛋白HbRSAR1及其在调控植物对钾转运中的应用
CN104861051B (zh) 植物发育相关蛋白AtUBP15及其编码基因和应用
CN102731634B (zh) 来源于小麦的多效基因相关蛋白及其编码基因与应用
CN102558321B (zh) 植物耐低磷胁迫相关的蛋白AtLPT4及其编码基因与应用
CN114573669A (zh) 蛋白质Ghd7在调控植物抗低氮性中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant