CN103367440A - 用于FinFET器件的鳍结构 - Google Patents

用于FinFET器件的鳍结构 Download PDF

Info

Publication number
CN103367440A
CN103367440A CN2012103624101A CN201210362410A CN103367440A CN 103367440 A CN103367440 A CN 103367440A CN 2012103624101 A CN2012103624101 A CN 2012103624101A CN 201210362410 A CN201210362410 A CN 201210362410A CN 103367440 A CN103367440 A CN 103367440A
Authority
CN
China
Prior art keywords
semi
fin
conducting material
substrate
sti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103624101A
Other languages
English (en)
Other versions
CN103367440B (zh
Inventor
乔治斯·威廉提斯
马克·范·达尔
布兰丁·迪里耶
查理德·奥克斯兰德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN103367440A publication Critical patent/CN103367440A/zh
Application granted granted Critical
Publication of CN103367440B publication Critical patent/CN103367440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/6681Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET using dummy structures having essentially the same shape as the semiconductor body, e.g. to provide stability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

提供一种用于鳍式场效应晶体管(FinFET)器件的鳍结构。器件包括:衬底、设置在衬底上的第一半导体材料、设置在衬底上方并且形成在第一半导体材料的相对两侧的浅沟槽隔离(STI)区、以及形成在STI区上设置的第一鳍和第二鳍的第二半导体材料,第一鳍与第二鳍间隔第一半导体材料的宽度。鳍结构可以用于通过形成在第一鳍、在第一鳍和第二鳍之间设置的第一半导体材料的顶面、以及第二鳍上方形成的栅极层来生成FinFET器件。

Description

用于FinFET器件的鳍结构
技术领域
本发明一般地涉及半导体技术领域,更具体地来说,涉及FinFET器件。
背景技术
半导体器件在大量电子器件中使用,诸如,计算机、蜂窝电话等。半导体器件包括集成电路,通过在半导体晶圆上方沉积多种类型的薄膜材料,并且图案化薄膜材料以形成集成电路在半导体晶圆上形成集成电路。集成电路包括场效应晶体管(FET),诸如,金属氧化物半导体(MOS)晶体管。
半导体工业的目标之一是继续减小独立FET的尺寸并且提高独立FET的速度。为了实现这些目标,将在先进的晶体管节点中使用鳍式FET(FinFET)或多个栅极晶体管。例如,FinFET不仅改进了面密度而且改进了沟道的栅极控制。
在提高性能和减少互补金属氧化物半导体(CMOS)和MOSFET器件的功耗的努力中,半导体工业采用高迁移率半导体以代替作为晶体管沟道的硅。例如,半导体工业还通过绝缘体上硅(SOI)和异质结构器件促进衬底隔离技术,从而可以改进截止状态的特性。
发明内容
为了解决现有技术中所存在的缺陷,根据本发明的一方面,提供了一种用于鳍式场效应晶体管(FinFET)器件的鳍结构,包括:衬底;第一半导体材料,设置在所述衬底上;浅沟槽隔离(STI)区,设置在所述衬底上方并形成在所述第一半导体材料的相对侧上;以及第二半导体材料,形成在所述STI区上设置的第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度。
在该鳍结构中,能够相对于所述第二半导体材料选择性地蚀刻所述第一半导体材料。
在该鳍结构中,所述第一半导体材料的顶面通常与所述第一鳍和所述第二鳍的底面共面。
在该鳍结构中,所述第一鳍和所述第二鳍在所述第一半导体材料的顶面上方竖直凸出。
在该鳍结构中,所述第一半导体材料是IV族、III-V族以及II-VI族半导体材料中的一种。
在该鳍结构中,所述第二半导体材料是IV族、III-V族以及II-VI族半导体材料中的一种。
在该鳍结构中,所述第一半导体材料是第一硅锗(SiGe)合金,以及所述第二半导体材料是第二SiGe合金。
在该鳍结构中,所述第一半导体材料是锗,以及所述第二半导体材料是硅。
在该鳍结构中,所述第二半导体材料是外延生长半导体材料。
根据本发明的另一方面,提供了一种场效应晶体管(FinFET)器件,包括:衬底;第一半导体材料,设置在所述衬底上;浅沟槽隔离(STI)区,设置在所述衬底上方并形成在所述第一半导体材料的相对侧上;第二半导体材料,形成在所述STI区上设置的第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度;以及栅极层,形成在所述第一鳍、在所述第一鳍和所述第二鳍之间设置的所述第一半导体材料的顶面以及所述第二鳍的上方。
在该器件中,能够相对于所述第二半导体材料选择性地蚀刻所述第一半导体材料。
在该器件中,所述第一半导体材料的顶面通常与所述第一鳍和所述第二鳍的底面共面。
在该器件中,所述栅极层形成在所述第一鳍和所述第二鳍的侧壁和顶面上。
在该器件中,所述栅极层不形成在所述第一半导体材料的侧壁上。
在该器件中,掺杂所述第一半导体材料,以禁止通过所述第一半导体材料导电。
在该器件中,所述第二半导体材料是外延生长半导体材料。
根据本发明的又一方面,提供了一种形成鳍式场效应晶体管(FinFET)器件的方法,包括:在衬底上形成第一半导体材料;在所述衬底和所述第一半导体材料的下部上方形成浅沟槽隔离(STI)区;沿着所述第一半导体材料的上部的侧壁外延生长第二半导体材料;以及选择性地蚀刻掉所述第一半导体材料的所述上部以形成第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度。
该方法进一步包括:在所述第一鳍、设置在所述第一鳍和所述第二鳍之间的所述第一半导体材料的顶面以及所述第二鳍的上方形成栅极层。
在该方法中,在外延生长所述第二半导体材料之前,在所述第一半导体材料的顶面上进一步形成硬掩模。
该方法进一步包括:掺杂所述第一半导体材料,以禁止通过所述第一半导体材料导电。
附图说明
为了更完整地理解本公开内容及其优点,现在将结合附图所进行的以下描述作为参考,其中:
图1a至图1h共同示出了形成用于FinFET器件的鳍结构的工艺的一个实施例;
图2是使用图1的工艺制造的鳍结构的一个实施例的截面图;
图3a至图3i共同示出了形成图2的鳍结构的工艺的一个实施例;
图4a至图4f共同示出了形成图2的鳍结构的工艺的一个实施例;
图5a至图5g共同示出了使用在图1a至图1h、图3a至图3i、或图4a至图4f中共同示出的工艺之一形成FinFET器件的工艺的一个实施例;以及
图6是形成图2的鳍结构的方法的一个实施例。
除非另外说明,否则不同图中的相应数字和符号通常是指相应部分。绘制图以清楚地示出实施例的相关方面并且并不必按比例绘制。
具体实施方式
以下详细论述了本优选实施例的制造和使用。然而,应该想到,本公开内容提供了许多可以在各种具体环境中实现的可应用的发明思想。所论述的特定实施例仅是示意性的,而不限制本公开内容的范围。
结合具体上下文的优选实施例描述了本公开内容,即,FinFET金属氧化物半导体(MOS)。然而,本发明还可以应用于其他集成电路、电子结构等。
图1a至图1h共同示出了形成用于FinFET器件12(在图5g中示出)的鳍结构10(在图2中示出)的工艺的一个实施例。如以下更加全面地说明,鳍结构10通过使鳍密度加倍并且改进衬底隔离来制造具有增强的晶体管性能和改进的功耗的FinFET器件12。实际上,实现鳍结构10的FinFET器件12提供优良性能、短沟道效应以及期望的截止状态下的泄漏控制。另外,使用本文中公开的鳍结构10所形成的FinFET器件12增加了栅极控制面积,并且减小了FinFET器件的栅极宽度而没有增加器件占位面积(footprint)。
现在,参考图1a,浅沟槽隔离(STI)区14形成在衬底16周围。在一个实施例中,STI区14由二氧化硅或其他合适的介电材料形成。在一个实施例中,衬底16是硅或其他合适的半导体材料。如图所示,衬底16通常在STI区14的部分之间向上凸出。另外,衬底16的顶面18和STI区14的顶面20通常是共面的。
现在,参考图1b,通过蚀刻掉衬底16的上部形成凹槽22。此后,在图1c中,第一半导体材料24(也叫作材料A)形成在凹槽22中。在一个实施例中,在凹槽22中外延生长第一半导体材料24。在一个实施例中,在凹槽22填充有第一半导体材料24之后,实施化学机械抛光(CMP)工业以使第一半导体材料24的顶面26和相邻STI区14的顶面20平滑。
在一个实施例中,第一半导体材料24是锗(Ge)、磷化铟(InP)、砷化铟镓(InGaAs)、砷化铟(InAs)、锑化镓(GaSb)、或硅锗(SiGe)。在一个实施例中,第一半导体材料24是IV族、III-V族、或II-VI族半导体材料。在一个实施例中,第一半导体材料24是具有公式Si1-xGex(其中,1>x>0)的SiGe合金。
参考图1d,硬掩模28形成在第一半导体材料24上方。在一个实施例中,硬掩模28由氮化硅或其他合适掩模材料形成。一旦沉积硬掩模28,就实施光刻工艺以图案化如图1d所示的硬掩模。接下来,相对于如图1e所示的硬掩模选择性地蚀刻STI区14的上部。如图1e所示,现在,暴露来自第一半导体材料24的上部32的相对侧壁30。
现在,参考图1f,第二半导体材料34(也叫作材料B)形成在第一半导体材料24的侧壁30上。在一个实施例中,第二半导体材料34沿着第一半导体材料24的侧壁30外延生长。如图所示,第二半导体材料34位于STI区上并且在STI区34上方凸出。因为未去除硬掩模28,所以在第一半导体材料24的顶面26上不生长或形成第二半导体材料34。
在在第一半导体材料24的侧壁30上设置第二半导体材料34的情况下,如图1g所示,可以去除硬掩模28。在一个实施例中,去除硬掩模28,而不影响相邻的第二半导体材料34和STI区14。此后,如图1h所示,实施选择性蚀刻工艺以去除第一半导体材料24的上部32(图1e)。如图1h所示,在蚀刻掉第一半导体材料24之后,第二半导体材料24形成整个鳍结构10的第一鳍36和第二鳍38。
第一鳍36和第二鳍38通常设置在STI区14上并且与STI区14直接接触,并且具有介于第一鳍36和第二鳍38之间的凹槽40。另外,在一个实施例中,第一鳍36与第二鳍38间隔第一半导体材料24的宽度42。再次参考图1h,第一半导体材料24的顶面26和/或STI区14的顶面20通常与第一鳍36和第二鳍38的底面44共面。在一个实施例中,第一半导体材料24的顶面26可以竖直地设置在STI区14的顶面20之下。如图所示,第一鳍36和第二鳍38竖直地在第一半导体材料24的顶面上方凸出。在一个实施例中,掺杂第一半导体材料24以禁止或防止通过第一半导体材料24导电。
在一个实施例中,当第一半导体材料是锗(Ge)时,第二半导体材料34是硅(Si)。在这样的实施例中,锗可以使用盐酸(HCI)溶液以非常高的选择性被蚀刻掉。在一个实施例中,当第一半导体材料24是磷化铟(InP)时,第二半导体材料34是砷化铟镓(InGaAs)。在这样的实施例中,磷化铟可以使用盐酸(HCI)溶液以非常高的选择性被蚀刻掉。
在一个实施例中,当第一半导体材料24是砷化铟镓(InGaAs)时,第二半导体材料34是磷化铟(InP)。在这样的实施例中,砷化铟镓可以使用磷酸和过氧化氢(H3PO4+H2O2)以非常高的选择性被蚀刻掉。在一个实施例中,当第一半导体材料24是砷化铟(InAs)时,第二半导体材料34是锑化镓(GaSb)。在这样的实施例中,砷化铟(InAs)可以使用柠檬酸和过氧化氢(C6H8O7+H2O2)溶液以非常高的选择性被蚀刻掉。
在一个实施例中,当第一半导体材料24是锑化镓(GaSb)时,第二半导体材料34是砷化铟(InAs)。在这样的实施例中,锑化镓可以使用氢氧化铵(NH4OH)溶液以非常高的选择性被蚀刻掉。在其他实施例中,其他结合和其他蚀刻化合物是可能的。在一些实施例中,选择性可以接近或实现百分之一百。
在一个实施例中,第二半导体材料34是IV族、III-V族、II-VI族半导体材料。在一个实施例中,当第一半导体材料24是具有公式Si1-xGex(其中,1>x>0)的SiGe合金时,第二半导体材料34是具有公式Si1-yGey(其中,1>y>0)的SiGe合金,其中,x>y。在这样的实施例中,具有公式Si1-xGex的SiGe合金可以使用盐酸(HCI)溶液以非常高的选择性被蚀刻掉。
现在,参考图2,在一个实施例中,鳍结构10上的第一鳍36和第二鳍38的高度46可以在约5纳米(5nm)和约40纳米(40nm)之间。在一个实施例中,第一鳍36和第二鳍38的宽度48可以在约2纳米(2nm)和10纳米(10nm)之间。在一个实施例中,在第一鳍36和第二鳍38之间的距离50(如图1h所示,通常等于第一半导体材料24的上部的宽度42)可以在约5纳米(5nm)和约20纳米(20nm)之间。在其他实施例中,其他尺寸是可能的。
图3a至图3i共同示出形成用于FinFET器件的鳍结构的工艺的另一个实施例。在实施如之前所描述的图3a至3c的步骤之后,使第一半导体材料24凹进,并且如图3d所示,形成硬掩模层52。此后,如图3e所示,实施CMP工艺以生成嵌入STI区14中的硬掩模28。此后,实施之前所描述的图3f至图3i的步骤。
图4a至图4f共同示出形成用于FinFET器件的鳍结构的工艺的另一个实施例。如图4a所示,在衬底16上方生长或沉积第一半导体材料24的覆盖层。此后,如图4b所示,蚀刻掉第一半导体材料24的一部分并且通过STI区14代替。在图4b中,也蚀刻第一半导体材料24,以提供用于在其上形成硬掩模26的空间。此后,执行如之前所描述的图4c-4f的步骤。
图5a至图5g共同示出使用例如图1a至图1h、图3a至图3i或图4a至图4f中共同示出的生成鳍结构10的工艺之一形成FinFET器件12的工艺的实施例。如图5a所示,在半导体材料24上方形成通过STI区14包围的硬掩模28。此后,在图5b中,去除STI区14的上部以暴露第一半导体材料24的侧壁30。注意,硬掩模28仍然存在。接下来,如图5c所示,第二半导体材料34在侧壁30上和上方并且在STI区14上方外延生长。
一旦形成第二半导体材料34,就去除硬掩模28,然后去除第一半导体材料24的上部(即,在STI区14上方设置的第一半导体材料24的一部分),从而保留鳍结构10。如上所述,相对于第二半导体材料34选择性地去除第一半导体材料24。如图5d所示,去除第一半导体材料24的上部留下第一鳍36和第二鳍38,第一鳍36和第二鳍38彼此间隔等于第一半导体材料24的宽度的距离。鳍36、38由第二半导体材料34形成。
如图5e所示,栅极层54形成在STI区14的一部分、第一鳍36的一部分、第一半导体材料24的顶面26的一部分、第二鳍38的一部分、以及STI区14的附加部分上方。如图5f至图5g所示,形成隔离件56和源极/漏极接触件58。为了便于说明,在图5g中仅示出了隔离件56之一和源极/漏极接触件58之一。然而,本领域技术人员应该理解,可以形成附加隔离件56和附加源极/漏极接触件58并且通过FinFET器件12利用附加隔离件56和附加源极/漏极接触件58。在一个实施例中,源极/漏极接触件58通过外延生长工艺形成。
现在,参考图6,提供形成FinFET器件的方法60。在框62中,第一半导体材料24在衬底上形成。在框64中,STI区14在衬底16和第一半导体材料24的下部上方形成。在框66中,沿着第一半导体材料24的上部32的侧壁30外延生长第二半导体材料。在框68中,选择性地蚀刻掉第一半导体材料的上部以形成第一鳍36和第二鳍38,第一鳍36和第二鳍38彼此间隔第一半导体材料24的宽度。
一种用于鳍式场效应晶体管(FinFET)器件的鳍结构。该器件包括衬底、设置在衬底上的第一半导体材料、设置在衬底上方并且形成在第一半导体材料的相对两侧上的浅沟槽隔离(STI)区、以及形成在STI区上设置的第一鳍和第二鳍的第二半导体材料、第一鳍与第二鳍间隔第一半导体材料的宽度。
一种场效应晶体管(FinFET)器件。该器件包括:衬底;设置在衬底上的第一半导体材料;设置在衬底上方并且形成在第一半导体材料的相对两侧上的浅沟槽隔离(STI)区;形成在STI区上设置的第一鳍和第二鳍的第二半导体材料,其中,第一鳍与第二鳍间隔第一半导体材料的宽度;以及在第一鳍上方、设置在第一鳍和第二鳍之间的第一半导体材料的顶面上方、以及第二鳍上方形成的栅极层。
一种形成鳍式场效应晶体管(FinFET)器件的方法。该方法包括:在衬底上形成第一半导体材料;在衬底和第一半导体材料的下部上方形成浅沟槽隔离(STI)区;沿着第一半导体材料的上部的侧壁外延生长第二半导体材料;以及选择性地蚀刻掉第一半导体材料的上部以形成第一鳍和第二鳍,第一鳍与第二鳍间隔第一半导体材料的宽度。
虽然本公开内容提供了示例性实施例,但是该说明书不旨在解释为限制意义。当参考说明书时,示例性实施例以及其他实施例的多种修改和结合对于本领技术人员来说是显而易见的。因此,目的是所附权利要求包含任何这种修改或实施例。

Claims (10)

1.一种用于鳍式场效应晶体管(FinFET)器件的鳍结构,包括:
衬底;
第一半导体材料,设置在所述衬底上;
浅沟槽隔离(STI)区,设置在所述衬底上方并形成在所述第一半导体材料的相对侧上;以及
第二半导体材料,形成在所述STI区上设置的第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度。
2.根据权利要求1所述的鳍结构,其中,能够相对于所述第二半导体材料选择性地蚀刻所述第一半导体材料。
3.根据权利要求1所述的鳍结构,其中,所述第一半导体材料的顶面通常与所述第一鳍和所述第二鳍的底面共面。
4.根据权利要求1所述的鳍结构,其中,所述第一鳍和所述第二鳍在所述第一半导体材料的顶面上方竖直凸出。
5.根据权利要求1所述的鳍结构,其中,所述第一半导体材料是IV族、III-V族以及II-VI族半导体材料中的一种。
6.根据权利要求1所述的鳍结构,其中,所述第二半导体材料是IV族、III-V族以及II-VI族半导体材料中的一种。
7.根据权利要求1所述的鳍结构,其中,所述第一半导体材料是第一硅锗(SiGe)合金,以及所述第二半导体材料是第二SiGe合金。
8.根据权利要求1所述的鳍结构,其中,所述第一半导体材料是锗,以及所述第二半导体材料是硅。
9.一种场效应晶体管(FinFET)器件,包括:
衬底;
第一半导体材料,设置在所述衬底上;
浅沟槽隔离(STI)区,设置在所述衬底上方并形成在所述第一半导体材料的相对侧上;
第二半导体材料,形成在所述STI区上设置的第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度;以及
栅极层,形成在所述第一鳍、在所述第一鳍和所述第二鳍之间设置的所述第一半导体材料的顶面以及所述第二鳍的上方。
10.一种形成鳍式场效应晶体管(FinFET)器件的方法,包括:
在衬底上形成第一半导体材料;
在所述衬底和所述第一半导体材料的下部上方形成浅沟槽隔离(STI)区;
沿着所述第一半导体材料的上部的侧壁外延生长第二半导体材料;以及
选择性地蚀刻掉所述第一半导体材料的所述上部以形成第一鳍和第二鳍,所述第一鳍与所述第二鳍间隔所述第一半导体材料的宽度。
CN201210362410.1A 2012-03-27 2012-09-25 用于FinFET器件的鳍结构 Active CN103367440B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/431,727 US8987835B2 (en) 2012-03-27 2012-03-27 FinFET with a buried semiconductor material between two fins
US13/431,727 2012-03-27

Publications (2)

Publication Number Publication Date
CN103367440A true CN103367440A (zh) 2013-10-23
CN103367440B CN103367440B (zh) 2016-06-08

Family

ID=49154845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210362410.1A Active CN103367440B (zh) 2012-03-27 2012-09-25 用于FinFET器件的鳍结构

Country Status (5)

Country Link
US (4) US8987835B2 (zh)
KR (2) KR20130109920A (zh)
CN (1) CN103367440B (zh)
DE (1) DE102013100857B4 (zh)
TW (2) TWI594435B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355576A (zh) * 2014-08-19 2016-02-24 中国科学院微电子研究所 一种沟道替换工艺的监测方法
CN105428394A (zh) * 2014-09-04 2016-03-23 台湾积体电路制造股份有限公司 鳍部件的结构及其制造方法
CN105448844A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105448696A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN106206438A (zh) * 2015-02-11 2016-12-07 台湾积体电路制造股份有限公司 用于FinFET器件的方法和结构

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
US9293587B2 (en) 2013-07-23 2016-03-22 Globalfoundries Inc. Forming embedded source and drain regions to prevent bottom leakage in a dielectrically isolated fin field effect transistor (FinFET) device
US9761449B2 (en) * 2013-12-30 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Gap filling materials and methods
US9224841B2 (en) 2014-01-23 2015-12-29 Globalfoundries Inc. Semiconductor fins on a trench isolation region in a bulk semiconductor substrate and a method of forming the semiconductor fins
US9508713B2 (en) * 2014-03-05 2016-11-29 International Business Machines Corporation Densely spaced fins for semiconductor fin field effect transistors
FR3023058B1 (fr) * 2014-06-30 2017-09-29 Commissariat Energie Atomique Procede de realisation d'un dispositif microelectronique
US9601377B2 (en) * 2014-10-17 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET formation process and structure
US9583626B2 (en) 2015-04-29 2017-02-28 International Business Machines Corporation Silicon germanium alloy fins with reduced defects
WO2016209253A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Transistor fin formation via cladding on sacrifical core
KR102352157B1 (ko) 2015-09-01 2022-01-17 삼성전자주식회사 집적회로 소자
US9595599B1 (en) * 2015-10-06 2017-03-14 International Business Machines Corporation Dielectric isolated SiGe fin on bulk substrate
KR102323943B1 (ko) 2015-10-21 2021-11-08 삼성전자주식회사 반도체 장치 제조 방법
US9455314B1 (en) 2016-02-05 2016-09-27 International Business Machines Corporation Y-FET with self-aligned punch-through-stop (PTS) doping
US9953883B2 (en) 2016-04-11 2018-04-24 Samsung Electronics Co., Ltd. Semiconductor device including a field effect transistor and method for manufacturing the same
US9704859B1 (en) * 2016-05-06 2017-07-11 International Business Machines Corporation Forming semiconductor fins with self-aligned patterning
US11107908B2 (en) 2016-07-01 2021-08-31 Intel Corporation Transistors with metal source and drain contacts including a Heusler alloy
EP3300117B1 (en) 2016-09-22 2024-07-17 IMEC vzw Method for manufacturing a high aspect ratio channel semiconductor device
US10062577B1 (en) 2017-07-11 2018-08-28 United Microelectronics Corp. Method of fabricating III-V fin structures and semiconductor device with III-V fin structures
KR102466356B1 (ko) 2017-08-30 2022-11-15 삼성전자주식회사 반도체 소자 및 그 제조방법
US11557658B2 (en) * 2017-12-27 2023-01-17 Intel Corporation Transistors with high density channel semiconductor over dielectric material
US11049774B2 (en) 2019-07-18 2021-06-29 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid source drain regions formed based on same Fin and methods forming same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048727A1 (en) * 2003-09-03 2005-03-03 Advanced Micro Devices, Inc. Formation of finfet using a sidewall epitaxial layer
US20060138555A1 (en) * 2004-11-09 2006-06-29 Kiyotaka Miyano Semiconductor device and method of fabricating the same
CN1913162A (zh) * 2005-06-24 2007-02-14 国际商业机器公司 集成电路及其形成方法
US20080121935A1 (en) * 2006-11-29 2008-05-29 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US20080157130A1 (en) * 2006-12-29 2008-07-03 Chang Peter L D Expitaxial fabrication of fins for FinFET devices
CN101853882A (zh) * 2009-04-01 2010-10-06 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
CN102104058A (zh) * 2009-12-16 2011-06-22 中国科学院微电子研究所 半导体材料鳍片

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664582B2 (en) * 2002-04-12 2003-12-16 International Business Machines Corporation Fin memory cell and method of fabrication
US6970373B2 (en) 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell
KR100578130B1 (ko) * 2003-10-14 2006-05-10 삼성전자주식회사 핀 전계효과 트랜지스터를 위한 다중 실리콘 핀 및 그형성 방법
JPWO2005122272A1 (ja) * 2004-06-08 2008-04-10 日本電気株式会社 歪みシリコンチャネル層を有するmis型電界効果トランジスタ
US7638381B2 (en) * 2005-10-07 2009-12-29 International Business Machines Corporation Methods for fabricating a semiconductor structure using a mandrel and semiconductor structures formed thereby
US7462538B2 (en) * 2005-11-15 2008-12-09 Infineon Technologies Ag Methods of manufacturing multiple gate CMOS transistors having different gate dielectric materials
US7264743B2 (en) * 2006-01-23 2007-09-04 Lam Research Corporation Fin structure formation
JP4490927B2 (ja) 2006-01-24 2010-06-30 株式会社東芝 半導体装置
US7923337B2 (en) 2007-06-20 2011-04-12 International Business Machines Corporation Fin field effect transistor devices with self-aligned source and drain regions
US7879659B2 (en) * 2007-07-17 2011-02-01 Micron Technology, Inc. Methods of fabricating semiconductor devices including dual fin structures
US20090020792A1 (en) * 2007-07-18 2009-01-22 Rafael Rios Isolated tri-gate transistor fabricated on bulk substrate
JP2009032955A (ja) * 2007-07-27 2009-02-12 Toshiba Corp 半導体装置、およびその製造方法
FR2932788A1 (fr) * 2008-06-23 2009-12-25 Commissariat Energie Atomique Procede de fabrication d'un composant electromecanique mems / nems.
KR101002131B1 (ko) * 2008-07-29 2010-12-16 주식회사 동부하이텍 이미지센서 및 그 제조방법
US9008212B2 (en) * 2008-08-07 2015-04-14 Trex Enterprises Corp. High data rate millimeter wave radio
US8116121B2 (en) * 2009-03-06 2012-02-14 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing methods with using non-planar type of transistors
US8362572B2 (en) 2010-02-09 2013-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. Lower parasitic capacitance FinFET
US8395195B2 (en) * 2010-02-09 2013-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Bottom-notched SiGe FinFET formation using condensation
US8361907B2 (en) * 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
JP2012235059A (ja) * 2011-05-09 2012-11-29 Toshiba Corp 半導体装置および半導体装置の製造方法
US9761666B2 (en) * 2011-06-16 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel field effect transistor
JP5713837B2 (ja) * 2011-08-10 2015-05-07 株式会社東芝 半導体装置の製造方法
US8604518B2 (en) * 2011-11-30 2013-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Split-channel transistor and methods for forming the same
US8698199B2 (en) * 2012-01-11 2014-04-15 United Microelectronics Corp. FinFET structure
US9583398B2 (en) * 2012-06-29 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit having FinFETS with different fin profiles
US8768271B1 (en) * 2012-12-19 2014-07-01 Intel Corporation Group III-N transistors on nanoscale template structures
US8716156B1 (en) * 2013-02-01 2014-05-06 Globalfoundries Inc. Methods of forming fins for a FinFET semiconductor device using a mandrel oxidation process
US9076842B2 (en) * 2013-08-27 2015-07-07 Globalfoundries Inc. Fin pitch scaling and active layer isolation
US9373706B2 (en) * 2014-01-24 2016-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices, including forming a semiconductor material on a fin, and related semiconductor devices
US9142418B1 (en) * 2014-05-19 2015-09-22 Globalfoundries Inc. Double/multiple fin structure for FinFET devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048727A1 (en) * 2003-09-03 2005-03-03 Advanced Micro Devices, Inc. Formation of finfet using a sidewall epitaxial layer
US20060138555A1 (en) * 2004-11-09 2006-06-29 Kiyotaka Miyano Semiconductor device and method of fabricating the same
CN1913162A (zh) * 2005-06-24 2007-02-14 国际商业机器公司 集成电路及其形成方法
US20080121935A1 (en) * 2006-11-29 2008-05-29 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US20080157130A1 (en) * 2006-12-29 2008-07-03 Chang Peter L D Expitaxial fabrication of fins for FinFET devices
US8017463B2 (en) * 2006-12-29 2011-09-13 Intel Corporation Expitaxial fabrication of fins for FinFET devices
CN101853882A (zh) * 2009-04-01 2010-10-06 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
CN102104058A (zh) * 2009-12-16 2011-06-22 中国科学院微电子研究所 半导体材料鳍片

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355576A (zh) * 2014-08-19 2016-02-24 中国科学院微电子研究所 一种沟道替换工艺的监测方法
CN105355576B (zh) * 2014-08-19 2018-06-01 中国科学院微电子研究所 一种沟道替换工艺的监测方法
CN105448844A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105448696A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105448696B (zh) * 2014-08-26 2018-09-07 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105448844B (zh) * 2014-08-26 2018-09-07 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN105428394A (zh) * 2014-09-04 2016-03-23 台湾积体电路制造股份有限公司 鳍部件的结构及其制造方法
CN106206438A (zh) * 2015-02-11 2016-12-07 台湾积体电路制造股份有限公司 用于FinFET器件的方法和结构
CN106206438B (zh) * 2015-02-11 2019-05-21 台湾积体电路制造股份有限公司 用于FinFET器件的方法和结构

Also Published As

Publication number Publication date
TW201630190A (zh) 2016-08-16
US8987835B2 (en) 2015-03-24
DE102013100857B4 (de) 2020-10-01
US20130256759A1 (en) 2013-10-03
KR101633225B1 (ko) 2016-06-23
TWI594435B (zh) 2017-08-01
DE102013100857A1 (de) 2013-10-02
KR20130109920A (ko) 2013-10-08
CN103367440B (zh) 2016-06-08
US20190131413A1 (en) 2019-05-02
KR20150091027A (ko) 2015-08-07
US20170069728A1 (en) 2017-03-09
US20150132920A1 (en) 2015-05-14
TW201340321A (zh) 2013-10-01
US10510853B2 (en) 2019-12-17
TWI540727B (zh) 2016-07-01
US10164031B2 (en) 2018-12-25
US9502541B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
US10510853B2 (en) FinFET with two fins on STI
US10699941B2 (en) MOSFETs with channels on nothing and methods for forming the same
US11664456B2 (en) Semiconductor structures and methods of forming thereof
US10971406B2 (en) Method of forming source/drain regions of transistors
US10096710B2 (en) Method of forming strained structures of semiconductor devices
US9590085B2 (en) Method and structure for III-V FinFET
US9865709B2 (en) Selectively deposited spacer film for metal gate sidewall protection
CN110854195B (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant