CN103347455A - 用于rf和微波传递的电手术设备 - Google Patents

用于rf和微波传递的电手术设备 Download PDF

Info

Publication number
CN103347455A
CN103347455A CN2011800672906A CN201180067290A CN103347455A CN 103347455 A CN103347455 A CN 103347455A CN 2011800672906 A CN2011800672906 A CN 2011800672906A CN 201180067290 A CN201180067290 A CN 201180067290A CN 103347455 A CN103347455 A CN 103347455A
Authority
CN
China
Prior art keywords
microwave
signal
radiation
channel
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800672906A
Other languages
English (en)
Other versions
CN103347455B (zh
Inventor
克里斯托弗·保罗·汉考克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creo Medical Ltd
Original Assignee
Creo Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creo Medical Ltd filed Critical Creo Medical Ltd
Publication of CN103347455A publication Critical patent/CN103347455A/zh
Application granted granted Critical
Publication of CN103347455B publication Critical patent/CN103347455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/0019Moving parts vibrating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/128Generators therefor generating two or more frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1876Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with multiple frequencies

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Clinical Laboratory Science (AREA)
  • Surgical Instruments (AREA)

Abstract

一种用于电手术设备的控制系统,其中,传递至探针的RF EM辐射和微波EM辐射两者的能量传递剖面基于传送至探针的RF能量的采样电压和电流信息和/或传送至探针和从探针传出的用于微波能量的采样前向和反射功率信息来设置。用于RF EM辐射的能量传递剖面用于组织切割(不需要锋利刀片),并且用于微波EM辐射的能量传递剖面用于止血或封闭或凝固或组织的切除。RF EM辐射和微波EM辐射可分开或同时施加。

Description

用于RF和微波传递的电手术设备
技术领域
本发明涉及使用射频和微波频率能量来治疗生物组织的电手术设备。特别地,本发明涉及能够产生用于切割组织的射频(RF)能量和用于止血(即,通过促进血液凝固来封闭(seal)破裂的血管)的微波频率能量,和/或与气流一起,使用RF能量和微波频率能量来撞击并保持等离子体(其可用于切割或消毒组织)的手术设备。
本发明的背景技术
手术切除是一种从人体或动物体内去除具有大量血管的器官的部分的方式,例如,肝脏或脾脏。当切割(分割或横切)组织时,被称为细动脉的小血管损伤或破裂。开始出血后是凝血级联(coagulation cascade),此时使血液变成凝块,以尝试堵住出血点。在手术过程中,希望患者损失尽可能少的血液,因此已经开发了多种尝试提供无血切割的装置。
例如,
Figure BDA00003646536100011
热手术刀系统(http://www.hemostatix.com)将锋利的刀片与止血系统组合。该刀片涂有塑性材料,并与控制刀片的温度的加热单元连接。加热的刀片旨在当切割组织时烧灼该组织。
其他已知的同时切割并止血的装置不使用刀片。一些装置使用射频(RF)能量来切割和/或凝固组织。其他装置(例如超声刀)使用快速振动的尖端来切割组织,并可提供一定程度的凝固。
使用RF能量切割的方法使用这样的原理来操作:当电流通过组织基质时(在细胞的离子成分的帮助下),阻止电子在组织上流动会产生热量。当对组织基质施加纯正弦波时,在细胞内产生足够的热量,以使组织的水分蒸发。因此,细胞的内部压力急剧上升,其无法由细胞膜控制,导致细胞破裂。当这在广大区域上出现时,可以看到,组织已被横切。
尽管以上原理在非脂肪组织中非常起作用,但其在脂肪组织中不太有效,因为存在更少的离子成分来帮助电子通过。这意味着,使细胞的成分蒸发所需要的能量大得多,因为脂肪蒸发的潜热比水的潜热大得多。
RF凝固通过对组织施加不太有效的波形来起作用,由此细胞成分被加热至大约65℃,而非被蒸发。这通过干燥来使组织变干,并且这还使血管壁和组成细胞壁的胶原中的蛋白质变性。使蛋白质变性用作对凝血级联的刺激,从而增强凝固。同时,使壁中的胶原变性,并且从杆状分子变成盘状,这导致血管收缩并减小尺寸,为凝块提供锚定点和更小的堵住面积。
然而,当存在脂肪组织时,RF凝固不太有效,因为会减小电效应。因此,会非常难以使肥胖的易出血者止血。与具有干净的白色边缘相反,组织具有变黑的、烧焦的外观。在血管器官(例如肝脏)中,还具有散热效应,因为通过组织灌注大量流体。
实际上,RF装置可使用具有中间波峰因数的波形来操作,该中间波峰因数位于切割和凝固输出之间的中间。
肝脏是具有大量血管的,对于在体内某处具有肿瘤的患者来说,其通常变成继发肿瘤的位置。必须切除大肿瘤或受许多较小肿瘤影响的区域,以阻止癌症在器官中扩散,可能由于施加化学治疗剂而已经危及器官的功能。由于肝脏中的血管收缩,所以手术通常伴有大量失血,需要输入大量血液。一旦在肝脏中开始出血,便难以停止。氩气凝血器是已知的可用来尝试止血的装置的一个实例,此装置产生表面凝固。
WO 2008/044000公开了适于同时切割并封闭具有大量血管的组织(例如肝脏或脾脏)的手术切除设备。该设备包括与手术器械接合的微波辐射源,该手术器械具有与用于切割生物组织的刀片相连的天线,其中,天线布置为将微波能量可控地从源传递至刀片切入组织的区域。微波能量可使血液凝固,以有效地封堵切割区域处的血流。WO 2008/044000建议使用高微波频率(例如,10GHz或更高),由于辐射能量的有限穿透深度和使得小锋利刀片结构通过在能够切入组织以去除患病组织或癌组织的部分的同时能够沿着刀片的长度产生均匀的场而将能量有效地辐射至组织中以封堵血流的能力,其提供比使用已知的较低微波频率系统和射频(RF)系统更好的特殊优点。
还已经注意到,通过提前治疗来防止出血,即,治疗组织以在横切之前封闭血管。在一种已知的装置中,将两行发出RF能量的针插入肝组织中,以执行嵌入封闭。理想地,RF能量足以在肝脏的整个厚度中封闭组织。因此,有效地切断对正在被横切的区域的供血。当接下来用刀片切入组织时,不出血。
在还可施加压力的装置中,也可用RF能量来封闭直径达到7mm的血管。将血管保持在夹紧装置(例如镊子等)中。施加于血管上的压力导致横向地推出血管壁的成分,由此一侧的外壁和内壁接近另一侧的内壁和外壁。在此点施加RF能量会使壁基质的胶原变性,并且当使组织完全变干时,壁基质的胶原在锁定在位之前混合。当释放压力时,新形成的狭窄留在原处,意味着,可通过使用锋利刀片等切入传出侧上的血管来分割血管。在缠结块中出现新的胶原生长,因此狭窄留在原处。
US6,582,427公开了一种电手术系统,其布置为产生用于在切割模式或凝固模式中操作的RF能量(典型地,具有1MHz的频率)和微波能量(典型地,具有2.45GHz的频率)。
本发明的概要
在其最一般的方面中,本发明提出了一种用于电手术设备的控制系统,其中,传递至探针的RF能量和微波能量的能量传递剖面(profile,分布)在传送至探针的RF能量的样本电压和电流信息以及传送至探针和从探针传出的用于微波能量的样本前向和反射功率信息的基础上来设置。特别地,控制系统可从RF能量的样本电压和电流信息得到(即,提取或以其他方式确定)表示RF能量的电压幅值和电流幅值的信息(例如,峰值和平均值)。类似地,控制系统可从微波能量的样本前向和反射功率信息得到(即,提取或以其他方式确定)表示所传递的功率幅值的信息。还可从RF能量的样本电压和电流信息得到表示RF能量的电压和电流分量之间的相差的信息。类似地,控制系统可从微波能量的样本前向和反射功率信息得到表示其间的相差的信息。
在这里,能量传递剖面可表示波形在电压/电流、RF能量的时间、功率级以及微波能量的时间方面的形状。控制能量传递剖面允许实现一定范围的治疗应用。
因此,本发明可提供用于生物组织的切除的电手术设备,该设备包括:射频(RF)信号发生器,用于产生具有第一频率的RF电磁(EM)辐射;微波信号发生器,用于产生具有第二频率的微波EM辐射,第二频率比第一频率高;探针,布置为从其远端分开或同时传递RF EM辐射和微波EM辐射;供给结构,用于将RF EM辐射和微波EM辐射传送至探针,供给结构包括用于将探针与RF信号发生器连接的RF信道、以及用于将探针与微波信号发生器连接的微波信道;RF信号检测器,用于在RF信道上采样电流和电压,并由此产生表示电流和电压的RF检测信号;微波信号检测器,用于在微波信道上采样前向和反射功率,并由此产生表示由探针传递的微波功率的微波检测信号;以及控制器,与RF信号检测器和微波信号检测器连通,以接收RF检测信号和微波检测信号,其中,控制器可操作成在所接收的RF检测信号和/或微波检测信号的基础上选择用于RFEM辐射和微波EM辐射的能量传递剖面,用于RF EM辐射的能量传递剖面用于组织切割,用于微波EM辐射的能量传递剖面用于止血或封闭或凝固或者组织的切除。
因此,该系统可构造为提供对电手术设备的进一步控制,该电手术设备能够发出用于切割生物组织的射频电磁辐射、以及用于止血或封闭或凝固或者组织的切除的微波电磁辐射。
控制器可操作成在所接收的RF检测信号和/或微波检测信号的基础上,例如,以实时响应的方式,或者从与已知的组织作用相关的一个或多个能量传递剖面的列表中,选择能量传递剖面。例如,预置的用于组织切割的能量传递剖面可包括在30W的功率级下传递具有400V的峰值幅值的连续波(CW)RF EM能量。在另一实例中,预置的用于凝固的能量传递剖面可包括在25W的功率级下传递连续波(CW)微波EM能量。
更一般地,为了在干燥环境中实现组织切割,可必须传递具有幅值为400V的峰值电压和40W的功率设置的500kHz连续波正弦波形,而为了在湿润环境中实现组织切割,可必须传递具有4000V的峰值电压的一个或多个500kHz脉冲能量,其具有200W的峰值功率和10%的占空比,其可设置为使得接通时间是10ms且断开时间是90ms的形式。此类型的脉冲能量传递剖面可确保能量到达组织,而不是导致周围流体的不希望有的加热。为了在干燥组织中有效地使组织凝固,可在30W的RMS功率级下将CW微波功率传递至组织中。为了在湿润环境中凝固,微波功率可以是脉冲的,例如,具有100W的峰值功率和30%的占空比。
其他产生希望有的治疗组织作用的波形可包括以与上述那些相似的以CW和脉冲形式传递的RF和微波能量的组合。在微波能量调制RF能量的情况下,可同时传递RF和微波能量。例如,可用10W CW5.8GHz微波信号来调制400V峰值500kHz CW RF剖面,以在切除过程中产生一定程度的组织凝固,从而当去除器官或器官的部分时减少出血。
控制系统可包括专用的测量信道,其用于在低功率级(例如,10mW或更小)下传递能量(优选地为微波能量)。因此,该系统可从不传递治疗作用的信道得到可用的测量信号,即,可在低功率测量(使用不涉及传递治疗组织作用的信道进行)的基础上控制传递至组织中的波形或能量。测量信道可使用与微波信道相同的源。该系统可以是可切换的,使得通过测量信道传递微波能量(在“测量模式”中),或者通过微波信道传递微波能量(在“治疗模式”中)。或者,微波信道可在低功率模式(用于测量)和高功率模式(用于治疗)之间切换。在此设备中,不需要单独的测量信道。
在测量模式中,使用微波信道,可希望传输连续波(CW)形式的低功率信号,例如,10mW(10dBm)或更小,并检查反射能量信号,从该反射能量信号中可提取与组织的当前状态或和探针接触的组织的类型相关的相位和大小信息(例如,通过微波测量信号检测器,其用于在测量信道上采用前向和反射功率,并由此产生表示由探针传递的微波功率的大小和相位的微波检测信号)。在将较高功率的RF能量(例如,在50W(47dBm)或更大)传递至组织中以产生治疗作用的同时,可提取此测量信息。可使用该测量信息来确定将使用的最佳RF能量传递剖面,以确定何时必须将较高功率的微波功率(例如,在40W(46dBm))传递至组织中,例如,以使破裂的血管凝固。
该系统可构造为供应能量,以同时切割并凝固组织(例如,混合或混杂模式),或者可独立操作,由此在手动用户控制下(例如,基于脚踏开关踏板的操作)将RF和微波能量传递至探针,或者基于从RF和/或微波信道测量的相位和/或大小信息自动地传递。可使用该系统来执行组织切除和切割。在同时传递微波和RF能量的情况中,可在高功率或低功率下使用返回至相应发生器的RF和微波能量中的任一者或两者,以控制能量传递剖面。在此情况中,当能量传递形式是脉冲的时,可希望在断开时间期间进行测量。
在与治疗能量明显不同(即,至少相差4个数量级)的频率下进行返回能量的测量的一个优点是可有效地阻止(例如,使用滤波器)来自传递治疗作用的源的能量进入测量信道。例如,为了确保高功率,RF能量信号不会影响低功率微波测量系统,高通或带通滤波器包括在该系统中并位于测量信道的输入处。此滤波器将允许将低功率微波信号传输至组织中,并在检测器处接收反射微波信号,但是将阻止高功率RF信号。希望滤波器具有明显滚降,即,每十年或更多60dB至80dB,以确保排斥尽可多的RF能量。
测量信道可包括单独的低功率收发器(或低功率发射器和外差接收器),其用于从测量信号提取相位和/或大小信息。当不使用高功率微波源时,此单元可在微波信道上接通。
在一个实施方式中,本发明可包括射频匹配网络,其用于促使将射频电磁辐射有效地传送至组织中。因此,可提供一种能量传递系统,其中,使用固定频率源来产生RF和微波能量,并且其中,采用可变元件调谐将RF能量匹配到生物组织中。可使用来自测量信道的信息来确定调谐元件在微波或RF信道上的调节(当在电手术系统的特殊布置中包括调谐时),以在探针(能量传递系统)和组织之间提供动态功率匹配,这确保在电手术系统和生物组织之间有效且可控地传递能量。
在另一改进中,根据本发明的设备还可具有这样的能力:在作为用于射频电磁辐射的优选返回路径的一部分的治疗位置处撞击并保持等离子体,即,一旦撞击,等离子体的阻抗便较低,并提供用于RF电流流动的优选返回路径。当使用等离子体来切割组织时,施加器的顶端接近组织的表面,而当使用RF能量来切割组织时,施加器与组织接触。还可使用由在本发明中公开的发生器产生的等离子体来凝固并蒸发组织,例如,施加器的远端和组织的表面之间的距离可以是0.5cm至1.5cm,以执行有效的表面凝固。能够供应微波和RF能量的组合,使得高水平地控制在施加器的远端产生的热等离子体或非热等离子体。
该系统可包括能量输送结构,其布置为发射和接收微波和RF信号,以允许将RF和微波能量沿着一个信道(电缆组件)输送至一个施加器(探针),并允许以待检测并到达控制器(其形成电手术系统的一部分)的所选择的RF和微波频率控制信号,从而使得传递至生物组织中的RF和微波能量能够有效地以可控的方式传递。
探针的远端可包括双极发射结构,其包括空间上与第二导体隔开的第一导体,第一和第二导体布置为:分别用作激活和返回电极,用于通过传导来传送RF EM辐射;以及用作天线,用于辐射微波EM辐射。因此,该系统可布置为对RF能量提供局部返回路径,即,用于在第一和第二导体之间传送的RF能量的低阻抗路径。例如,使导体分离的电介质可提供局部返回路径,或者可在导体附近产生等离子体,以提供局部返回路径。可通过使第一和第二导体分离的固定电介质材料来产生RF组织切割,此时,电介质材料的厚度较小,即,小于1mm,并且介电常数较高,即,大于空气的介电常数。此设备可提供必要的优选返回路径,以使电流流过。如在下面更详细地说明的,此设备还可部分地用空气或气体(或气体的混合物)填充,并且包含气体供给管道,以允许空气或气体进入该结构(并可能地留下来),从而使得能够形成非热等离子体,以消毒组织,或者使得能够形成热等离子体,以执行表面凝固/切除或组织切割。在WO2009/060213中公开了为了产生等离子体的目的而能够接收气体的探针,将其也通过引证结合于此。或者,也可使用气体供给管道将盐水(或其他流体)传递至治疗位置。
该系统可通过以不同方式“查看”施加器来操作,这取决于是将RF还是将微波能量传递至此。因此,RF信道(特别是在控制器的控制下的RF调谐器)可将施加器视为集总元件,例如,使用传统的电路理论来分析的电容器。相反地,微波信道可将施加器视为使用EM场分析和适当的场模拟工具来建模的分布元件。如下面所讨论的,微波信道可具有其自己的调谐器(例如,阻抗调节器),或者可预先与天线的阻抗匹配。RF调谐器可以是调节传递至组织中的电压和电流以确保在干燥和湿润环境中都出现有效的组织切割的装置。
如上所述,供给结构可包括使得能够将RF和微波能量两者沿着一个信道传递至施加器中的网络。在此情况中,RF信道和微波信道可包括分别与RF信号发生器和微波信号发生器物理地分隔开的分开信号路径,RF信道上的分开信号路径与微波EM辐射隔离,并且微波信道上的分开信号路径与RF EM辐射隔离。可通过RF信道上的适当构造的低通滤波器和微波信道上的适当构造的高通滤波器来提供该隔离。
在具有分开信道的情况下,供给结构可包括组合电路(例如,信号组合器或双工器-双信器单元),具有:第一输入,与RF信道上的分开的信号路径连接;第二输入,与微波信道上的分开的信号路径连接;以及输出,与公共信号路径连接,用于将RF EM辐射和微波EM辐射沿着一个信道分开或同时传送至探针。例如,可使用双向双工器或双工器-双信器电路。信号组合器(例如,双向双工器)可实现为微带开路(open microstripcircuit)。可将低通滤波器和/或高通滤波器集成在微带电路中,以分别防止微波EM辐射从第一输入漏出、以及防止RF EM辐射从第二输入漏出。在一个实施方式中,信号组合器可包括开关装置,例如,继电器开关设备或同轴开关设备,其将RF信道或微波信道与探针连接。在此实施方式中,保持RF EM辐射和微波EM辐射彼此分离。开关装置可布置为快速交替,由此探针接收RF EM辐射和微波EM辐射的交替的短脉冲。这种信号可被认为是几乎同时的。
通过此设备,RF信道和微波信道可共享公共部分。信号组合器可布置为以两个分开的频率(即,RF频率能量和微波频率能量)接收信号,并从一个输出信道(例如,电缆组件,诸如共轴电缆,波导组件(柔性/可扭曲)或双绞线)输出这些信号(增加到一起或分开地)。信号组合器可在两个方向上操作,即,其可使得前向信号(来自RF和微波能量源)能够传播至探针,并且为了信号管理和系统控制的目的,即,为了识别与和手术天线的辐射部分接触的生物组织相关的信息,或者为了控制传递至生物组织中的能量的剂量,即,为了留下安全余量,可允许包含与反射能量相关的信息的信号在相反方向上传播。可使用该信息来启动功率减小,即,在短持续时间(即1ms)内从100%到10%,以防止在治疗位置出现不需要的损伤。由控制器处理往回传播至发生器的信息,例如,以检测与前向传播信号相比的反射信号的大小(电压、电流、前向或反射功率)和/或相位。可使用此信息来控制系统,例如,以确保传递至组织中的功率与用户希望的功率级相同和/或执行共轭匹配,以确保在源处可获得的功率与传递至组织负载中的功率相同(较小的系统损耗,即,电缆组件和探针等的插入损耗)。
该设备可具有动态RF调谐器,其通过调节集总元件调谐网络的电抗(电感和/或电容)来操作。RF调谐器的目的是产生匹配网络,在该匹配网络中,设备的体积阻抗(在探针的远端观看)是组织阻抗的共轭复数。当出现匹配时,可最大化/优化传送至组织中的功率,由此最大化/优化组织切割功能/作用的效率。本发明中的匹配的原理可基于将额定串联RLC电路与额定并联RLC匹配,其中,可调节串联电抗和并联电抗,并且其中,串联电阻代表设备阻抗的实部,并联电阻代表组织阻抗的实部。通过调节电抗本身,可使用固定频率源来操作设备,这可改进信号稳定性和整体控制。
信号组合器可允许将不同(即,不连续)频率下的RF和微波信号从一个端口(双工器作用)朝着探针分开或同时传送。可通过同时传递两种不同频率的能量来产生优选的组织作用,即,来自一个源的场可积极地或消极地增加,以产生增强的组织作用。这些可包括:同时切割并凝固,以在切除过程中使破裂的血管立即止血,或者高幅值脉冲(或脉冲群),以使得能够在湿润环境中有效地切割/凝固,其中,较小幅值的CW波形可仅导致出现流体加热。
在一个实例中,RF信道可包括与信号组合器耦合的RF功率源,该信号组合器可包括:低通滤波器,防止高频微波能量回到较低频率的RF功率源中,以及高通滤波器,防止较低频率的RF能量回到较高频率的微波能量源中,其可另外导致在RF和微波源的设计中使用的输出级晶体管损坏。
该装置可在一般手术(开放或腹腔镜检查)中使用,其中,使用来自RF级的电压和/或电流信息以及来自微波级的反射和/或前向功率信息来控制由RF和微波能量传递级产生的能量传递剖面。例如,如果在微波信道上测得的返回损耗在-6dB和-10dB之间(在RF切割过程中使用低功率微波收发器测得),那么控制器可识别表示出血的微波检测信号。作为响应,可接通微波源,并且微波功率级和/或占空比增加,直到已经止血为止(如由从微波信道上的反射信号测得的返回损耗和/或来自RF级的电压/电流信息的变化所表示的)。还可通过在切割过程中使用RF级测得的电压/电流信息(例如,峰值和平均值)来提供开始出血的表示。在此情况中,一旦测得表示出血的所测量的电压/电流的变化,可补偿RF能量,并且微波能量增加,直到已经成功地止血为止。同时传递RF和微波能量可以是优选的,其中,一个能量源在低功率测量模式中操作,另一源产生治疗组织作用并提供测量信息,以对控制器提供更多信息,从而使得控制器能够对能量传递剖面进行必要的调节。当传递脉冲波形以产生治疗组织作用时,可在断开时间期间进行低功率组织测量。或者,当执行组织状态测量时,可中断CW能量传递波形。
本发明可特别适合于胃肠(GI)手术,例如,去除肠子上的息肉,即,用于内窥镜子粘膜切除。本发明还可使其自身适合于精确的内窥镜手术,即,精确的内窥镜切除,并可在耳部、鼻部和喉部手术和肝脏切除中使用。
信号检测器可包括用于RF和微波EM辐射的独立检测器。可使用来自RF信号检测器的输出仅来控制RF调谐器的可调节电抗。RF信号检测器可在RF信道上,并可布置为测量RF信道上的RF EM辐射的电压和电流(可从中提取表示幅值(例如,峰值和平均值)的RF检测信号和/或相位,并用于控制能量传递源)。RF信号检测器可布置为将RF信号信息传送至控制器,该信息表示RF EM辐射的电压和电流以及电压和电流之间的相位关系,控制器布置为基于RF信号信息来改变RF调谐器的可调节电抗。可根据相差来测量电压和电流之间的关系,并可使用此信息来表示何时出现匹配状态或达到谐振点,即,何时相差是0°,何时电压和电流同相,这意味着,容抗与感抗的值在大小上相等,但是符号相反,即,-jωC=+jωL,其中,C是电容(单位是法拉),L是电感(单位是亨利),并且,ω=2πf,其中,f是频率(单位是赫兹),因此,谐振频率是
Figure BDA00003646536100121
在这里公开的调谐设备中,谐振频率是所选择的工作频率,即,100kHz或500kHz,因此调节L和C的值,以保持谐振点,甚至当组织负载的值在组织切割过程中变化时。可使用模拟解决方案来实现控制器,其中,将与RF EM辐射的电压和电流成比例的信号输入至相位比较器,以产生与电压和电流之间的相差成比例的信号。控制器可包括自调节反馈回路,该自调节反馈回路布置为动态地改变可调节电抗,以将相差减到最小。或者,可调节(例如,钳压、滤波和/或整流)与RF EM辐射的电压和电流成比例的信号以及与电压和电流之间的相差成比例的信号,以适当地作为微处理器或微控制器的输入信号。因此,控制器可包括微处理器,该微处理器布置为接收RF信号信息,确定对可调节电抗的调节,以及产生并输出用于导致调节的一个或多个控制信号。
RF信号检测器可布置为在RF调谐器的输入和/或输出处或在RF输出变换器(其可形成RF功率源的输出级)处测量RF信道上的电压和电流。可使用电阻或电抗分压器来测量电压,或者通过解开(分接)RF输出变换器的初级和次级来测量电压,或者通过在变换器的初级侧上包括单独的绕组来测量电压。优选地,RF信号检测器可包括分压器,该分压器包括布置为允许测量RF信号信息的一对电抗元件(例如,电容器或线圈),该信息表示RF EM辐射的电压。这具有可以是实际上无损耗的设备的优点(当然,尽管由于电容器的等效串联电阻(ESR)的原因而将总是存在一些损耗,但是只要使用低损耗电介质,这将是可以忽略的)。
此外,RF调谐器的可调节电抗可包括这对电抗元件的总电抗。换句话说,RF调谐器和RF信号检测器可共享公共部件。这对电抗元件的总电抗可以是可变的,以辅助RF调谐器的功能,然而保持这对电抗元件的电抗之间的比例,以提供基本上无损耗的分压器的功能。
RF信号检测器可包括位于RF信道上的电流变换器,以允许测量RF信号信息,该信息表示传递至组织中的电流。电流变换器(CT)将(在RF输出变换器的初级或次级侧上)与输出串联,并可包括:由包装铁粉或铁氧体制成的小环芯;作为CT的初级绕组的一圈电线;作为CT的次级绕组的多圈电线;以及次级绕组上的负载电阻。
可调节电抗可包括:串联地连接在RF信道上的第一可变电抗;以及与RF信道并联地连接的第二可变电抗。第一可变电抗可以是纯电感或电容的。第二可变电抗可以是纯电感或电容的。优选地,第一可变电抗是电感的,第二可变电抗是电容的,并包含上述分压器。可变并联电抗可在可变串联电抗之前或之后连接。或者,可变(或固定)并联的电抗可在可变串联电抗之前和之后连接(提供一种可替代的调谐设备或滤波器设计)。可变电容可这样实现:通过改变平行板电容器的板之间的距离,通过改变两个板之间的材料的相对电容率(或介电常数)的值(例如,通过对材料施加电场),通过改变板的表面积,即,通过用分隔板的空气或介电材料来使可移动板在固定板上滑动,通过在两个板之间产生等离子体并接通和断开等离子体,或通过移动旋转可变电容的翼片。
可这样获得合成作用:通过使用一片材料来分隔两个板(这片材料在片的面积上具有不均匀的介电常数(或者通过将片制造成具有各种介电常数的各个材料部分来产生片的面积上的介电常数的分布)),并将这片材料固定至一个金属板,同时改变在其上第二金属板与介电材料/第一板接触的面积。可通过改变板和所沉积的这片不均匀介电常数材料、以及在第一板上移动的片之间的分隔距离来获得另一变型。
可变电感可这样来实现:通过将具有比整体大的相对渗透率的磁性材料移动到线性线圈绕组中和从线性线圈绕组中移出,通过改变包含在电线的感应线圈内的材料的相对渗透率,通过改变感应线圈上的电线的圈数,通过缩短或切换进入和离开的圈数,通过改变线圈的横截面面积,或者通过打开和关闭线性线圈的绕组,即,通过改变线圈的长度以增加或减小电线的相邻绕组或圈之间的距离。控制当改变上述参数时电感L如何变化的等式是
Figure BDA00003646536100141
其中,μ0是自由空间的渗透率,μr是相对渗透率,N是电线的圈数,A是横截面面积(m2),l是感应线圈的长度(m)。可从上述自调节反馈回路得出用于可变电容或可变电感的控制信号。
可替代地或附加地,第一和第二可变电抗中的每个均可包括多个电抗元件,每个电抗元件具有固定电抗,并可根据来自控制器的相应控制信号独立地切换成与RF信道连接或断开,即,可使用电控开关使形成感应线圈的一圈或多圈电线短路,或者使布置在并联或串联结构中的电容器组的平行板短路。此设备可适合于数字控制器的使用。也就是说,控制器可包括数字微处理器,该数字微处理器被编程为基于来自信号检测器的RF信号信息确定每个相应控制信号的状态,并与那些确定的状态相应地输出相应的控制信号。
为了确保将可从RF源获得的功率有效地传递至组织负载中,可在RF输出变换器的初级或次级线圈上连接分路电容(固定或可变的并手动或自动地调节),以执行功率因数校正,其中,通过引入电抗以移动电压或电流的相位来校正负载处的电压和电流之间的相差,即,以减小至最小值(理想地,电压和电流波形应是同相的)。电压和电流之间的相差取决于负载,因此,这可通过使用一种上述方法改变电容的值来动态地校正。优选地,调节电容,使得电压和电流是同相的。
RF信道可包括RF信号发生器,该RF信号发生器具有任何适当的用于输出具有稳定频率(其适合于组织切割)的RF信号的设备。例如,RF信号发生器可包括振荡器(例如,克拉普振荡器),其用于产生稳定的RF振荡,然后该RF振荡可被RF放大器放大。为了便于放大,振荡器可布置为驱动开关单元,以产生稳定的RF脉冲信号。放大器可布置为放大RF脉冲信号。放大器可包括变换器,其中,开关单元布置为在变换器的初级线圈上快速地切换接通/断开电压。切换的电压可代表RF脉冲信号。变换器的次级线圈可布置为输出放大形式的RF脉冲信号。然而,变换器不需要提供放大功能。其可在发电机和用户之间提供DC隔离,即,形成电流或DC隔离势垒。放大器可包括(除了变换器之外或者代替变换器)单端或推挽或半桥或全桥设备,例如,使用功率MOSFET、双极结晶体管(BJT)、绝缘栅双极晶体管(IGBT)等实现。
如果振荡器和放大器设备操作成产生RF脉冲(例如方波)信号,那么信号发生器优选地包括低通滤波器,其用于从基频下的切换的或方波信号提取单个正弦输出,即,去除谐波,例如第三、第五、第七等等,以产生方波。所提取的正弦输出可代表从信号发生器输出至供给结构的RF EM辐射。在一个实施方式中,RF EM辐射包括在500kHz下以连续波的形式传递的200-400V的峰值对峰值电压。
信号检测器可包括位于微波信道上的反射微波信号检测器,其用于测量在探针和微波信号发生器之间传送的微波EM辐射,微波信号检测器布置为将表示反射微波EM辐射的大小和/或相位的微波信号信息传送至控制器,控制器布置为基于微波信号信息改变调谐器的可调节电抗。如果在系统中不包括调谐器,那么可将RF和微波信道两者上的电压或电流或功率级增加至其最大值,即,如果在探针的顶端处要求的功率是50W且反射功率(考虑电缆和探针损耗)是30W,那么这意味着,探针顶部处的功率是20W,因此必须将放大器处的功率增加30W,以在探针顶部产生所需的50W。如果电缆和探针的插入损耗等于25W,这意味着,从源传递50W到组织中所需的功率是105W。
可选地,微波信道可包括可调谐部分,其用于将设备的微波信道阵形的阻抗与在探针的远端看到的负载匹配。因此,微波信道可包括阻抗调节器,该阻抗调节器在微波信号发生器和探针之间连接在微波信道上,阻抗调节器具有可调节复阻抗,可基于反射和/或前向前进的微波辐射的检测到的相位和/或大小来控制该复阻抗。信号检测器可进一步包括位于微波信道上的前向微波信号检测器,其用于测量在微波信号发生器和探针之间传送的微波EM辐射。可使用与在WO 2008/044000中公开的设备相应的设备。例如,阻抗调节器可包括一个或多个调谐短截线、功率变容二极管、或PIN二极管、或一个沿着微带、带状线或同轴线移动的可变长度微带、或带状线或同轴线调谐短截线,其中,沿着线的运动和调谐短截线的长度的变化达到微波EM辐射的频率下的半波长。
可使用集成微波收发器来测量前向和反射微波EM辐射的大小和/或相位信息,例如,由Maxim集成产品公司制造的MAX2829ETN。此方法的一个优点在于,可不需要独立地产生单独的局部振荡器信号,以缩混(mix down)检测到的微波EM辐射的频率。还可使用集成收发器来产生用于微波功率放大器的源频率,即,在5.8GHz或14.5GHz下。可使用单独的收发器来测量前向和反射辐射,或者可将相同的收发器集成电路构造为通过接通和断开不同的信道来执行此功能。微波收发器可布置为从一个或多个方向耦合器接收输入,所述耦合器布置为将微波信道上的固定比例(即,1%或10%)的前向或反射微波EM辐射与代表足够低的频率(即,10MHz)下的反射和/或前向微波EM辐射的大小和相位信息的输出I(同相)和Q(正交相位)信号耦合,形成DSP单元或标准微控制器的部分的标准模数转换器可使用该频率,其又代表与探针远端接触的生物组织的状态。控制器可在输出I和Q信号的基础上控制阻抗调节器。阻抗调节器可以是波导调谐器,其包含可由金属或介电材料制成的一个或多个机械调谐短截线或杆。将这些杆移动至波导腔体中和从波导腔体中移出,以将生物组织的阻抗与辐射施加器(或天线)的阻抗匹配。
第一频率可以是范围在10kHz至300MHz内的稳定的固定频率,第二频率可以是范围在300MHz至100GHz内的稳定的固定频率。第一频率应足够高,以防止能量导致神经刺激,并且应足够低,以防止能量导致组织发烫或对组织结构的不必要的热余量或损伤。第一频率的优选点频包括以下频率中的任何一个或多个:100kHz、250kHz、500kHz、1MHz、5MHz。第二频率的优选点频包括915MHz、2.45GHz、5.8GHz、14.5GHz、24GHz。
如上所述,在可同时对探针提供RF EM辐射和微波EM辐射的情况下,其可以互补的方式使用,以产生可帮助设备的切割功能和/或封闭功能和/或消毒功能的等离子体。特别地,RF信道可构造为在探针的远端处产生高压EM场,其适合于撞击等离子体,然后可通过微波EM辐射来保持等离子体。两个板(或两个同轴地布置在同轴施加器中的导体)之间的距离可以是这样的,即,使得由微波场在两个板(或其他导体设备)之间设置的电场(V/m)足够高,以撞击并保持等离子体。通过在此区域中提供可控气流(例如,空气或惰性气体,例如氩气),可撞击并保持可控的等离子体。所产生的用于对RF电流提供局部返回路径的等离子体可以是热或非热等离子体。
因此,该设备可包括连接成对探针的远端供应气流的气体供给装置,其中,如果存在气流,那么RF EM辐射调节成在探针的远端处撞击第一和第二导体之间的导电气体等离子体,并且微波EM辐射布置为保持气体等离子体。在某些情况中,可仅需要RF或微波场。
以可控的方式在探针的第一和第二导体之间局部地产生等离子体可在可靠性和RF能量分布的控制方面提供优点,即,在传统的系统中,通常使用盐水在双极设备的激活和返回电极之间产生返回路径或导电路径。这在实现时是不可靠的、杂乱的且通常是不切实际的。
与本发明的系统一起使用的探针包括双极天线,而不是单极设备。单极RF系统由于以下原因而是不受欢迎的:
-患者形成返回路径的一部分,这会导致在除了治疗位置以外的位置处灼伤或损伤健康组织,
-所需电压高于使用双极设备需要的电压,即,与400V峰值相比,是4kV峰值,
-单极系统所需的外部衬垫或板可与患者分离,因此使传递至组织中的能量中断或完全停止,以及
-当组织变得烧焦时,电流停止流过组织,因此组织切割或切除或凝固或干燥中止。单极操作由于RF电流需要通过肠壁(这会导致穿孔)而在胃肠手术中是特别不希望有的。而且,无法控制将能量传递至敏感的薄壁结构(例如肠子)是非常不希望有的。当在难以接触的身体区域中使用该装置时,本发明的自包含等离子体返回路径提供明显的好处。
探针的双极发射结构可包括天线结构,其中,从探针的远端处的出口排出气体,或者该结构可包含两个管道,其连接至与微波/RF能量进入结构(即近端)的地方相同的端部。在此设备中,气体管道和出口可集成在探针结构中。在封闭或密封的设备中,可使用第一管道将气体供应至结构中,并使用第二管道提取或循环,即,也可使气体围绕探针的圆周或在导体之间循环,并返回至第二入口,即,使气体在封闭系统中循环。气压和/或出口结构可布置为在探针的远端边缘处沿着探针的边缘产生一行等离子体。探针可部分地或完全地包围等离子体,这可确保将其保持在所有组织环境中。在将等离子体部分地或完全地暴露于生物组织的情况下,其可帮助切割动作、或用来执行表面凝固(如果其是热等离子体)或消毒组织(如果其是非热等离子体),因此可在三种操作模式中使用探针,即:切割组织、凝固或切除组织、以及消毒组织。还可使用该装置来导致血管壁收缩。
在一个实施方式中,双极发射结构可包括介电材料(例如,陶瓷或石英)的平面块(planar block),第一和第二导体是设置于平面块的相对表面上的导电层。此结构可在探针的远端处具有一个边缘,其包括一对由介电材料隔开的导电线。此边缘可代表器械的“切割”边缘。该边缘可是钝的,例如,圆形的,以避免偶然或不需要地物理地切开组织。
可使用导电气体等离子体来解决与传统的单极RF电手术系统相关的问题,其中,患者的身体形成电路的一部分,并且电流(位移)通过身体。为了达到此效果,患者必须与地面或返回路径连接,例如,经由可附接至患者的衬垫,或者经由患者可位于其上的导电片。如果患者仅部分地连接在组织中,或效率低地RF能量耦合在组织中,那么这些传统的系统可导致局部灼伤。
当将该结构经由自然孔口(即,口部、尿道、肛门(其可包含细菌))插入然后通过胃部、引道、膀胱或大肠(其也可包含细菌)中的内部切口时,该系统消毒的能力可以是特别有用的,此手术技术被称为经自然腔道内镜手术(NOTES)。这些结构在经肛门内镜显微手术(TEMS)中使用时也可以是有用的,这是去除异常直肠生长的一种相对无痛的方法。此治疗不需要进行切割,并且适合于治疗某些早期直肠癌或良性直肠息肉。这些结构也可用于执行单孔腹腔镜手术,其是通过患者的脐部中的一个端口或进行切割来执行的手术,并且是最小伤害的腹腔镜手术的一种形式,但是仅进行一次切割。
由RF或微波场与惰性气体(或空气)一起在第一和第二导体之间导致的电离放电可足以产生必要的组织消毒作用。RF或微波产生的等离子体独自可足以产生组织切割作用。
因此,本发明可允许使用RF能量、微波能量和气体(或空气)的组合来产生非热等离子体、热等离子体、RF组织切割、组织凝固、组织切除、组织消毒、或表面凝固。
在本发明的一个方面中,可使用该设备来切入血管。在此方面中,使用从公共器械传递的微波和RF能量的组合在RF能量之前施加微波能量,以使血管中的血液凝固,使得在施加RF切割能量之前使其有效地封闭。在此方面中,可以这样的方式将微波和RF能量从探针传递至组织中,即,使得微波能量(例如,用于凝固)一开始穿透(即,有效地实现凝固或组织分离)至2x的深度,然后,RF能量(例如,用于切割)穿透(即,有效地实现组织分离)至x的深度。可优选的是,同时产生微波和RF能量的剖面,以确保实现最有效的封闭作用,即,在进行RF切割的同时保持微波封闭作用。在手术过程中,可必须夹紧并保持血管。
此技术可与具有一个辐射边缘(包括双极发射结构)的探针一起使用,例如,其可用在开口或键孔(腹腔镜)装置中,用于切入具有大量血管的组织。组合(例如,连续地或同时地)使用这些模式可确保无血切割的安全系数。必须在血管的端部处形成堵塞物,该堵塞物产生确保永久封闭血管的结构。或者,可在夹具状探针的相对表面上设置第一和第二导体。
总而言之,这里公开的设备可提供以下功能和优点中的一个或多个:
-辐射可控且集中的微波能量,以有效地凝固(以有效率且有效果地处理大血管和脂肪组织);
-传导可控且集中的RF能量,以不使用锋利刀片的情况下有效地进行组织切割(产生与手术刀片所产生的热余量相似的热余量);
-用于微波和/或RF能量源的动态调节结构,以使得能够将能量集中在生物组织中,即使当组织阻抗急剧变化时也是这样(使得由于精确地知道传递至组织中的能量的剂量而能够有效地传送能量、有效地操作装置、并有效地量化最终组织作用);
-布置为在前向和反向方向上对一个电缆结构传送微波和RF能量的部件的基础结构,以使得能够对治疗模式和信号测量模式有效地传递能量,从而精确地控制系统;
-施加器结构(即探针),其使得能够将微波和RF能量组合并传递至包含在探针的远端处的辐射/传导元件中(用于RF能量的集总元件和用于微波能量的分布元件),其与目标组织接触,并使得能够将RF和/或微波能量有效地耦合在组织中;
-将气体引入探针中,以促使产生等离子体,可使用等离子体对RF电流提供局部返回路径,和/或产生非热等离子体,以消毒组织,和/或产生热等离子体,以切割组织和/或凝固组织的表面。
除了在上述血管上使用之外,本发明还可用来阻止例如空气在肺中的血管中的流动,在此,可希望其封闭气囊。
操作上述系统的步骤可包括:
-引入RF能量,以撞击非热或热等离子体(优选地为非热);
-引入微波能量,以保持等离子体(实际上,可同时以脉冲的形式施加微波场和RF场,其中,微波脉冲的前缘触发更短的高压RF脉冲,以撞击等离子体,即,在100ms的30W微波脉冲的窗口内,100μs的2kV脉冲);
-在使探针处的等离子体稳定的同时去除RF能量(例如,断开RF信道),以在两个导体之间设置低阻抗路径;
-引入适合于组织切割的RF能量,即,具有处于100kHz和500kHz之间的频率下和400V的峰值对峰值电压的连续波波形,以导致通过由等离子体设置的局部返回路径或通过将实际情况布置为平行板结构设置的局部返回而出现组织切割或切开,在板之间具有小间隔距离,即,小于1mm,并具有填充板之间的间隙的高电容率材料。
在等离子体撞击的过程中,还可存在更长时间的RF场,例如,10ms,而不是100μs,此时,RF场将重叠在微波场的顶部上,以产生优选的组织作用,例如,氩气凝血器,在此,需要可控的热等离子体来凝固组织的表面,例如,以处理溃疡或组织表面上的其他生长或凝固血液。在存在RF和微波场但是不撞击等离子体(即,不存在气体,或设置电场的导体之间的距离不允许撞击等离子体)的情况中,传递至组织中的能量将是适合于切割和凝固的非电离能量,因此重叠的RF和微波场可产生混合模式作用,其中,可同时凝固并切割血管。合成的RF和微波场可产生主要切割并具有部分凝固,以防止出血。
所述发明可与在本申请人早期的2009年7月20日提交的英国专利申请0912576.6中公开的电手术探针一起使用,将该专利申请通过引证包含于此。英国专利申请0912576.6描述了一种压舌板形式的电手术探针,其包括用于传送微波能量的平面传输线路,由一片第一介电材料和第二介电材料形成,第一介电材料在其相对表面上具有第一和第二导电层,与同轴电缆连接的平面传输线路布置为将微波能量传递至平面传输线路,同轴电缆包括内导体和与内导体一起的外导体,第二介电材料分隔外导体和内导体,内导体和外导体在连接界面处延伸超过第二介电材料,以与传输线路的相对表面重叠,并分别与第一导电层和第二导电层电接触。第一导电层与传输线路的与同轴电缆邻接的端部隔开,以将外导体与第一导电层电绝缘,并且第一和第二导电层的宽度选择为在传输线路和同轴电缆之间产生阻抗匹配。在英国专利申请0912576.6中阐述的压舌板结构可在同轴馈线和端部辐射部分之间提供所需的插入损耗,同时当分别与空气和生物组织接触时还对压舌板的边缘提供所需的返回损耗特性。在英国专利申请0912576.6中讨论的探针旨在从平面传输线路的边缘辐射微波能量,以导致局部组织切除。
英国专利申请0912576.6还公开了上述压舌板可具有与其集成的RF切割部分。可通过使用上述第一和第二导电层作为RF能量的激活和返回电极来形成RF切割部分。此设备可利用这样的事实:激活和返回电极彼此接近,从而设置优选的返回路径,以使得能够不需要在两个电极之间存在远程返回衬垫或非常导电的液体(即盐水)的情况下出现局部组织切割作用。
附图的简述
下面将参考附图详细地讨论本发明的实例,其中:
图1是根据本发明的一个实施方式的电手术设备的整体系统示意图;
图2是根据本发明的另一实施方式的电手术设备的示意图,其包括气体供给装置,由此该设备能够将RF能量、微波能量和热/非热等离子体传递至组织中;
图3是在本发明的一个实施方式中使用的RF信道上的RF信号发生器的电路示意图;
图4是在本发明的一个实施方式中使用的RF信道上的RF调谐器和RF信号检测器的电路示意图;
图5是改变在本发明的实施方式中使用的可变元件调谐器的电感的装置的电路示意图;
图6是改变在本发明的实施方式中使用的可变元件调谐器的电感的另一装置的电路示意图;
图7是在本发明的实施方式中使用的微波信道上的阻抗调节器和微波信号检测器的电路示意图;
图8是适合于在本发明的实施方式中使用的阻抗调节器的另一实例的电路示意图;
图9是适合于在本发明的实施方式中使用的阻抗调节器的又一实例的电路示意图;
图10是作为集总元件的整个RF能量传递信道的示意图;
图11是作为分布元件电路的整个微波能量传递信道的示意图;
图12是可在本发明的实施方式中使用的探针的顶部透视图;
图13是图12所示的探针的底部透视图;
图14是根据本发明的一个实施方式的具有单独的测量信道的电手术设备的系统示意图;
图15是根据本发明的一个实施方式的具有单独的测量信道和用于接通RF及微波信道两者的装置的电手术设备的系统示意图;
图16是双工器单元的结构示意图;
图17是用于图16所示的双工器单元的微带径向短截线的图示;
图18是示出了用于图16所示的双工器单元的径向短截线的微带布局的地形图;以及
图19是示出了用于图16所示的双工器单元的高低阻抗截面滤波器的微带布局的地形图。
详述;其他选择和优选
在这里的实施方式中描述的设备用于产生并组合适合于凝固/封闭、切割并消毒生物组织的集中的微波和RF能量。本发明基于检测到的表示探针的远端处的负载(即生物组织)的性质的信号信息来提供传递至组织中的RF和微波EM辐射的能量剖面(例如,功率级和/或波形)的控制。以下讨论的一些实施方式还包含动态组织匹配技术,以确保在一定范围的阻抗内将最大的能量传递至组织中,该范围可从小于10Ω变化至大于100kΩ。优选地,该设备与构造为对RF切割电流产生优选返回路径的探针一起使用,并且其使得能够使用开放接触和最小伤害(内窥镜、腹腔镜或键孔)的手术技术不出血地执行有效的外科切除手术。
特别地,这些实施方式提出了一种新的电手术发生器,其使得能够以比用目前可用的基于RF、激光或超声频率的技术有效率且有效果得多的方式来执行开放和键孔手术切除、血管封闭、NOTES、TEMS和其他外科手术。该设备可特别适合于胃肠和耳部、鼻部、喉部手术。该设备可特别适合于在执行内窥镜子粘膜切除(ESR)和其他与肠内的息肉或生长相关的手术中使用。
图1示出了电手术系统100的整体系统图,其是本发明的一个实施方式。可在任何临床或外科手术中使用这里示出的系统,这些临床或外科手术包括:组织切割、组织凝固、组织切除、组织干燥和组织消毒。
可将该系统构造为产生分别用于表面凝固和组织消毒的热和冷的等离子体。具有这些可用选择使得该系统特别适合于包括NOTES的应用,其中,将施加器通过自然孔口引入身体中。
系统100包括RF阵形(line-up)102和微波阵形104,其分别形成RF信道和微波信道的一部分。
RF阵形102包含用于产生并控制具有适合于治疗(例如,切割或干燥)生物组织的功率级的RF频率电磁信号的部件。在此实施方式中,其包括RF振荡器1001、功率控制器1002、放大器单元(这里包括驱动放大器1003和功率放大器1004)、变换器1005和RF信号检测器1006。可选地,RF阵形102包括集总元件阻抗匹配子系统,可通过该集总元件阻抗匹配子系统调节RF信道的电抗。下面参考图2更详细地讨论此选择。
微波阵形104包含用于产生并控制具有适合于治疗(例如,凝固或切除)生物组织的功率级的微波频率电磁信号的部件。在此实施方式中,其包括锁相振荡器1007、信号放大器1008、可调节信号衰减器(例如,模拟或数字二极管衰减器)1009、放大器单元(这里是驱动放大器1010和功率放大器1011)、前向功率耦合器1012、循环器1013和反射功率耦合器1014。循环器1013将前向信号与反射信号隔离,以减小存在于耦合器1012、1014处的不希望有的信号成分,即,其增加耦合器的方向性。可选地,微波阵形包括具有可调节阻抗的阻抗匹配子系统。下面参考图2更详细地讨论此选择。
在此上下文中,将RF能量定义为达到300MHz的频率的能量,即,100kHz、500kHz、5MHz等等,并将微波能量定义为任何超过300MHz的频率的能量,即,2.45GHz、5.8GHz、24GHz等等。
RF阵形102和微波阵形104与控制器106连通,控制器106可包括信号调节和普通接口电路108、微控制器110和监视器1015。监视器1015可监视电压误差状态的范围,这会导致系统不执行其预期作用,即,该系统由于输出或治疗时间大于用户希望的输出或治疗时间而将错误剂量的能量传递至患者组织中。监视器1015包括微处理器,该微处理器与微控制器110独立,以确保微控制器正确地起作用。例如,监视器1015可监测DC电源的电压级或由微控制器110确定的脉冲的定时。控制器106布置为将控制信号传送至RF阵形102和微波阵形104中的部件。在此实施方式中,微处理器110编程为分别对功率控制器1002和可调节信号衰减器1009输出RF控制信号CRF和微波控制信号CM。这些控制信号分别用来设置从RF阵形102和微波阵形104输出的RF EM辐射和微波EM辐射的能量传递剖面。特别地,功率控制器1002和可调节信号衰减器1009能够控制输出辐射的功率级。此外,功率控制器1002和可调节信号衰减器1009可包括能够设置输出辐射的波形(例如,脉冲宽度、占空比等等)的开关电路。
微处理器110编程为基于来自RF信号检测器1006和前向及反射功率耦合器1012、1014的信号信息而输出RF控制信号CRF和微波控制信号CM。RF信号检测器1006输出一个信号或多个信号SRF,所述信号表示RF信道上的RF EM辐射的电压和电流(以及可选地为电压和电流之间的相位)。在此实施方式中,可仅用相位信息的测量结果来控制RF和微波发生器,该相位信息可从RF信道(从样本电流和电压信息)或微波信道(从样本前向和反射功率信息)获得。前向功率耦合器1012输出信号SM1,其表示前向功率级,反射功率耦合器1014输出SM2,其表示反射功率级。信号SRF、SM1、SM2从RF信号检测器1006和前向及反射功率耦合器1012、1014传送至信号调节和普通接口电路108,其中,它们适应于适合到达微处理器110的形状。
用户界面112(例如,触摸屏面板、键盘、LED/LCD显示器、薄膜小键盘、脚踏开关等)与控制器106连通,以对用户(例如外科医生)提供与治疗相关的信息,并允许手动地选择或控制治疗的各种方面(例如,传递至患者的能量的量,或能量传递剖面),例如经由适当的用户指令。可用传统的脚踏开关1016来操作该设备,该脚踏开关也与控制器106连接。
将分别由RF阵形102和微波阵形104产生的RF和微波信号输入至信号组合器114,该信号组合器将RF和微波EM辐射分开或同时沿着电缆组件116传送至探针118。在此实施方式中,信号组合器114包括双工器-双信器单元,其允许将微波和RF频率下的能量沿着电缆组件116(例如双轴电缆)传送至探针(或施加器)118,由此传递至(例如辐射至)患者的生物组织中。在其他实施方式中,信号组合器114可包括开关装置,例如能够使供应至探针118的信号在RF和微波EM辐射之间交替的继电器开关或同轴开关。开关装置可具有适于快速地在RF和微波之间交替的开关速度,使得它们在探针118处几乎同时被接收。下面讨论了探针118的实例。
信号组合器114还允许从探针118沿着电缆组件116返回的反射能量进入微波和RF阵形102,104中,例如,以由其中包含的检测器检测到。如下所述,该设备可包括位于RF信道上的低通滤波器146以及位于微波信道上的高通滤波器166,使得仅是反射的RF信号进入RF阵形102中,并且仅是反射的微波信号进入微波阵形104中。
最后,该设备包括电源单元1017,其从外部源1018(例如主电源)接收功率,并将其转变成用于设备中的部件的DC电源信号V1-V6。因此,用户界面接收功率信号V1,微处理器110接收功率信号V2,RF阵形102接收功率信号V3,微波阵形接收功率信号V4,信号调节和普通接口电路108接收功率信号V5,监视器1015接收功率信号V6
图2是根据本发明的另一实施方式的电手术系统101的系统图。示出了RF阵形102和微波阵形104的子元件,在此实施方式中,包括调谐元件,如下所述。与图1中相同的部件具有相同的参考数字并且不再描述。
在此实施方式中,该系统还包括气体供应装置120(例如,一罐压缩空气或惰性气体,例如氩气),气体供应装置120将气体供应至气体控制器122(例如,一个或多个流量开关和/或阀),该气体控制器在从控制器106接收的指令下操作。与气体控制器122连接,以允许将气体选择性地传递至探针118,其中,其可在非热或热等离子体的形成中使用,如下所述。在本发明中使用的气体供应系统可与在WO 2009/060213中公开的气体控制系统相似,将该专利通过引证结合与此。
因此,探针118可接收RF能量、微波能量和气体,并允许RF能量切割组织,微波能量凝固和/或切除组织,非热等离子体消毒组织,例如,以杀死留在自然孔口内或有引入身体内部的外来体(例如金属插入物)导致的细菌,和/或热等离子体切割组织或执行表面凝固,例如,用于治疗组织表面上的溃疡。
微控制器110和信号调节及普通接口电路108还可用来对气体控制器122提供控制信号,以根据在探针118产生所需要的等离子体,控制流速、气体混合物和对探针118的气体传递剖面,即,控制器122可根据是否需要非热等离子体(例如,提供局部返回路径或消毒组织)或是否需要热等离子体(例如,切割组织或执行组织表面切除)来建立气体传递条件。为了消毒且为了提供局部返回,可使用高电压状态脉冲(例如,400V峰值,1ms)来启动等离子体,然后是10ms持续时间的微波脉冲,具有10%的占空比和30W的幅值。对于热等离子体,可将占空比增加至60%,并将幅值增加至60W。
RF阵形102包括RF信号发生器128,其用于产生具有第一稳定的固定频率的RF EM辐射,在此实施方式中,该频率是500kHz。RF信号发生器可包括振荡器,例如,克拉普振荡器等,其输出第一频率的低电压(功率)RF信号。在一个替代实施方式中,可不需要单独的振荡器;可直接从控制器中的微控制器产生RF信号,因为已知的微控制器装置能够输出直到300kHz的模拟信号。将信号发生器128的输出用作用于驱动RF放大器130的低功率信号,RF放大器130在适合于组织切割的电压和电流级下输出RF EM辐射。由功率级控制器和调制器单元132来控制RF放大器130输出的功率,该功率级控制器和调制器单元可包括可调节电压源和接通/断开开关,例如,使用一个或多个MOSFET晶体管的输出级的漏极电压中的变化,即,一个单端MOSFET,两个布置为半桥的MOSFET,或四个布置为全桥的MOSFET。如果可调节电压源可足够快地将其电压减小至零,即,在大约1μs内,那么可省略接通/断开开关。在使用接通/断开开关的情况下,其可采用串联MOSFET晶体管的形式。来自振荡器128的输出可驱动开关装置,例如,功率MOSFET等,以对RF放大器130施加脉冲输入。
由第一测量单元134接收来自RF放大器130的输出,将第一测量单元134布置为测量RF放大器130产生的RF EM辐射输出的电流和电压。第一测量单元134可提取(例如,耦合或采样)分别与测得的电流和电压相应(例如,成比例)的信号IRF1、VRF1。由第一检测单元136接收输出信号IRF1、VRF1,可将第一检测单元136布置为处理和/或调节输出信号IRF1、VRF1,以提取表示相关大小(以及可选地,相位)的信息。将此信息输入至控制器106,以用于控制系统100的操作。
将来自第一测量单元134的输出输入至RF调谐器138,所述RF调谐器具有存在于RF阵形102上的可调节电抗,以将设备的阻抗与探针118远端的负载(例如,生物组织)匹配。通过处于控制器106的控制下的调谐网络调节机构140(例如,一排开关、线性或步进电机、PZT装置或磁致伸缩(例如,基于镝铽铁合金的执行机构))来实现RF调谐器的可调节电抗。RF调谐器138可具有可调节电感和可调节电容,其可由控制器106独立地控制。下面参考图4讨论此设备的具体实例。
由第二测量单元142接收来自RF调谐器138的输出,将第二测量单元142布置为测量RF调谐器138产生的RF EM辐射输出的电流和电压。第二测量单元142可提取(例如,耦合或采样)分别与所测量的电流和电压相应(例如,成比例)的信号IRF2、VRF2。由第二检测单元144接收输出信号IRF2、VRF2,可将第二检测单元144布置为处理和/或调节输出信号IRF2,VRF2。将产生的信息输入至控制器106,以用于控制设备100的操作。
第一检测单元136和第二检测单元144可每个均采用零交叉检测器和最大/最小检测器的形式,可将其构造为检测电压和电流波形何时彼此同相(电容电抗与电感电抗大小相等,符号相反),或检测峰值电压/电流值,即,电压最大值和电流最小值表示高阻抗负载。可使用模拟元件实现零交叉检测器和最大/最小检测器,即,运算放大器,或可在软件中实现。可基于运算放大器产生这些功能的电路对于模拟电路设计的领域中的人来说是已知的。
可在RF调谐器138之前和之后使用电压/电流检测器,以量化对调谐器的输入和从调谐器的输出的功率级,从而确保在调谐网络本身中不损失功率,即,由于调谐网络内的非理想(有损耗的)电感器和电容器所致。可仅在输出处检测电压和电流测量结果,因为当将所有源能量传递至组织负载中时,将在调谐器的输入侧上检测不到反射电压/电流。
在RF放大器130包括两个在半桥结构中连接的晶体管和四个在全桥结构中连接的晶体管的情况中,可希望测量晶体管上的电压和流过晶体管的电流,即,在调谐网络之前,并使用此信息控制晶体管的开关,以确保最佳操作,即,实现零电压或零电流交叉,即,在装置中的功率耗散理论上为零的情况下。在此设备中,可使用控制器106基于检测到的电压和电流信息来检测何时接通或断开RF放大器130中的功率晶体管。
对于RF级,通过将电压除以电流并测量二者之间的相差来发现阻抗,使得可提取复阻抗。或者,可仅使用相位信息来控制系统,即,当检测到相位超前/滞后时,调节“C”或“L”的值。高电压值和低电流值表示高阻抗值,相反,低电压值和高电流值表示低阻抗值。
在一个实际的实现方式中,将首先测量电压、电流和/或二者之间的相角的值,然后,将调节RF调谐器138内的电容(C)或电感(L)的值,以建立电压/电流和相位的大小的变化。如果增加相角,那么可调节相同的元件,使其回到原始位置(L或C的值),然后在相反方向上移动(更高或更低的L或C),或者,可优选地,回到起始位置,然后改变网络中的其他部件(L或C)的值。此调谐过程是重复的。
或者,可使用查找表,由此基于电压、电流和/或相角的测量值对L或C或L和C的值进行调节。对机电执行机构、半导体开关、磁性材料上的DC偏压等的控制信号将改变调谐网络中的L和/或C的值,并且由控制器106提供这些信号。
对于串联或并联谐振电路,电压和电流是同相的,即,二者之间的相角是零,并且该系统的电容电抗(包括传递电缆116、施加器118和组织)的大小与电感电抗(其将包括传递电缆116和施加器118)的大小相同,二者是90°异相的。因此,当相角是零时,实现谐振状态,并且将把最大值的电压或电流传递至组织中,可通过所使用的特殊结构(考虑网络内的磁性、介电和电阻损耗)中的电路元件来实现该最大值的电压或电流。用来检测电压和电流之间的相差的电路可以是基于简单异或(EXOR)门的相位检测器,其具有适当的用来限制进入检测器的信号幅值的电压/电流的缩放/限制,即,如果这是TTL装置,那么幅值应不超过5V。
将来自第二测量单元142的输出输入至低通滤波器146,该低通滤波器操作成仅在其中传输RF能量,从而确保仅朝着探针从RF信号发生器传输RF EM辐射,并防止任何可从探针反射或通过信号组合器(例如,双工器-双信器单元)114传送至RF输入口的微波EM辐射到达RF阵形102上的部件,即,导致输出级损坏。
微波阵形104包括微波频率源148(例如,微波信号发生器),该微波频率源用来产生第二频率的低功率信号,第二频率比第一频率(例如,5.8GHz)高(例如,至少高一个数量级,优选地,高两个、三个或更多个数量级)。频率源148可以是电压控制的振荡器(VCO)、介电谐振振荡器(DRO)、耿氏二极管振荡器等。由功率级控制器和调制器单元150接收频率源148的输出。功率级控制器和调制器单元150可包括:调制开关,布置为使得能够在脉冲模式中操作微波信道;以及功率控制衰减器,布置为使得用户能够控制传递至组织中的功率级。
由放大器和保护单元152接收功率级控制器和调制器单元150的输出,放大器和保护单元152布置为将低功率信号的功率放大至适合于封闭或凝固或切除生物组织的级别。放大器和保护单元152可包括:驱动放大器,放大频率源产生的输出信号级别;以及功率放大器,将驱动放大器产生的信号放大至适合于导致组织封闭或凝固或切除的级别。为了保护放大器和源不受到高级别的反射微波能量,可将来自功率放大器的输出与微波循环器连接。循环器仅允许微波功率在顺时针方向上流动,因此如果循环器是三端口装置,那么任何回到功率放大器中的反射功率将由断电负载吸收,其中,第一端口从放大器获得输出功率。第二端口将此功率输出至电缆组件和探针中,并且当探针与组织的阻抗不匹配时,从探针和电缆组件接收回功率。将第三端口与能够吸收反射功率的功率负载连接,并且第三端口与循环器的阻抗非常好地匹配。优选地,匹配负载的阻抗与系统的阻抗相同,即,50+j0Ω。可使方向耦合器连接在循环器的第三端口和匹配负载的输入之间,以使得能够对反射功率进行采样。
将放大器和保护单元152的输出输入至第一功率耦合单元154,其可包括布置为对微波信道上的前向和反射微波能量进行采样的前向方向耦合器和反射方向耦合器。将采样的前向和反射功率级分别输入至前向和反射第一功率检测单元156,例如,使用二极管检测器或外差/零差检测器在第一功率检测单元156中检测功率级,以对前向和反射功率的一部分进行采样,并使得能够从采样的信号中提取大小信息、或大小和相位信息、或仅是相位信息。将由第一功率检测单元156产生的信号输入至控制器106,以使得能够用前向和反射功率的级别和/或相位来计算传递至组织中的净功率,并确定进入功率级控制器和调制器150中的需要的输入信号,以确保实际传递的功率或能量等于所要求的功率或能量。
此实施方式使用动态阻抗匹配系统,以使放大器和保护单元152具有的微波能量能够在阻抗方面与对探针118的远端提供的负载匹配,该负载代表生物组织的状态。本发明不限于对微波功率传递系统使用自动调谐机构,即,可使探针(辐射器)的远端与操作频率下的一个特殊生物组织类型/状态匹配,或者可机械地调节探针的阻抗,即,通过包括在机头中的机构,以在探针阻抗和与探针接触的组织的阻抗之间提供匹配级别。由调谐网络158接收第一功率耦合单元154的输出,调谐网络158在微波阵形10上具有可调节阻抗,其在控制器106的控制下基于从第一功率检测单元156和第二功率检测单元164得到的信息由调谐网络调节机构160的状态决定。
将调谐网络158的输出输入至第二功率耦合单元162,可将第二功率耦合单元以与第一功率耦合单元154相似的方式构造,以从微波阵形104采样前向和反射功率级,并将它们分别输入至第二前向和反射功率检测单元164,所述第二前向和反射功率检测单元将检测到的功率级和/或相位信息转发至控制器106。
可比较可通过第一和第二功率检测单元156,164获得的信息,以确定使得能够将电源与组织负载的阻抗匹配而需要对调谐网络158进行的调节。
将来自第二功率耦合单元162的输出输入至高通滤波器166,该高通滤波器操作成仅在其中传输微波能量,从而确保从微波信号发生器仅朝着探针传输微波EM辐射,并防止任何可从探针反射的RF EM辐射到达微波阵形104上的部件。高通滤波器可以是互补装置,使得其能够在两个方向上通过信号。
下面参考图7至图9讨论微波信道的更详细的实例。
在使用中,控制器106操作成在供应RF能量的过程中控制RF调谐器138的调谐元件的电容和电感的值,并在供应微波能量的过程中控制调谐网络158的分布调谐元件的电容和电感的值,以将相应信道的阻抗与探针118的远端处的负载匹配。实际上,调谐元件可分别是可变电容/电感(集总元件)和可变短截线/微带传输线或功率PIN/变容二极管(分布元件)。可同时传送RF能量和微波能量,因此,可用控制器106执行同步匹配。低通和高通滤波器确保,用于调谐的返回信号仅包含特殊源的频率的能量。在本上下文中,阻抗匹配指的是,通过源(即设备)与组织负载的复数共轭匹配,将传送至组织中(通过RF能量的传导和微波能量的辐射)的能量最大化。可需要指出,微波源可通过辐射和传导传递能量,但是,微波电流的返回路径是局部的。当用微波能量产生等离子体以设置RF电流流过的优选返回路径时,可需要同时传递RF和微波能量。在此情况中,可用RF能量切割组织。还可希望将RF和微波能量同时传递至组织中,以实现增强的组织作用,即,可用微波能量调节RF能量,以导致微波场的同时凝固和切割,从而,当组织变得烧焦时,帮助切入脂肪组织或取代切割。
可优选地,振荡器128和148锁相至稳定温度补偿晶体参考源,以使RF和微波频率的能量处于固定频率下。在RF振荡器128的情况中,可用微控制器106产生信号,微控制器将被称为用于定时的稳定源振荡器,即,温度补偿晶体振荡器等。
气体控制器122操作成控制进入气体供应管道124中的气流,气体供应管道124将气体供给装置120与探针118连接。在探针的远端处,气体供应管道124具有出口设备126,用于在探针118的远端区域中产生一行气流。将这行气流的位置布置为与使用RF能量或微波能量或二者的组合设置的高电压电场重合。高电压电场(其可仅存在较短的持续时间,例如,10ms或更少的脉冲)可用来从这行气流撞击等离子体。一旦撞击,可用来自设备的微波EM辐射保持等离子体,例如,通过将微波阵形104的阻抗与等离子体匹配,从而与微波能量有效地耦合。例如,可使用微波阵形104中的阻抗调节器动态地实现匹配,或者,当其中存在导电气体或等离子体时,例如,可通过使施加器118的阻抗与微波阵形104的阻抗非常好地匹配来预先布置该匹配。可使用更低频率的能量源来产生高电压撞击,即,在500kHz下运行的RF源。
由微波功率发生器产生的电场可足以撞击并保持等离子体,因此可不需要RF源或微波阻抗调节器来产生并保持对RF电流产生优选返回路径所需的等离子体。例如,可使用80W的5.8GHz的微波功率来撞击等离子体,并且一旦已经撞击,便可使用20W的5.8GHz的功率来保持等离子体。与在本申请中使用的探针相关的小几何形状意味着,存在高电场,即,两个电极之间的间隔可小于1.5mm。在此情况中,可使用RF能量来切割组织,并可使用阻抗调节器来确保与组织接触的微波能量和组织的阻抗非常好地匹配,以确保实现最大能量传递,并确保可很好地量化从施加器的辐射部分传递的能量,即,考虑传递电缆和施加器的插入损耗,可以高度确信来实现10W的用户需求10秒,以将100J的能量传递至目标组织中,即使当组织的阻抗在凝固或切除过程中变化时也是这样。
在一个实施方式中,探针118可包括平面双极天线结构或包括两个导电层的平行板传输线,该导电层在垂直于结构的平面的方向上在空间上彼此隔开。在使用中,导电层彼此平行。导电层包括:第一(激活)电极,与同轴馈线116的内导体连接;以及第二(返回)电极,与同轴馈线116的外导体连接。将每个电极的边缘暴露于探针的远端,从而,在使用中,形成一对彼此隔离的平行导电线路。间隔可较小,例如,2mm或更小。在平行板传输线路的一个特殊实施方式中,激活板的宽度是2.0mm,激活板的长度是12.7mm,返回板的宽度是2.2mm,返回板的长度是13.2mm,并且,将两个板分开的基板材料的厚度是0.6mm。在另一实施方式中,宽度可是1.3mm,长度是5mm,并且,两个板之间的间隔可是0.3mm。基板材料是Z切石英,具有4.0的相对电容率,并且,通过沉积一层铜且然后是一层金来产生每个板。金属化层的厚度在3μm和5μm之间。金层保护铜不氧化,并且其也是可在身体内使用的材料。该板还可仅是一层金或银。
将两个电极分开的介电材料也可暴露于探针118的远端。出口设备126可包括位于所暴露的电极边缘的一端的非常小的管道。可将该管道集成在探针118中,例如,包含在介电材料中。
在另一实施方式中,电极可延伸超过介电材料,以在探针的远端限定腔体。该腔体可由安装在电极的远端边缘之间的盖(例如,石英窗)封闭,例如,与组织负载隔开。可在腔体中形成等离子体,由此其部分地(没有盖)或完全地(存在盖)封闭在天线结构内。这可确保将等离子体保持在所有组织环境中;即,其不会被湿的组织影响,并且可分别发射用于表面凝固和孔口消毒的热等离子体和非热等离子体。
图3示出了可在上述实施方式中使用的RF信道的一个实例的部件。在此实例中,使用脉冲源170作为初级振荡器。将脉冲振荡器布置为产生具有稳定(例如固定)频率(范围是从10KHz到100MHz)和占空比(小于1%至大于90%)的脉冲(例如方波)输出。使用脉冲输出来接通/断开功率MOSFET172,其运算状态决定电流是否流过变换器175的初级线圈174。总线或电源电压VDD的大小可以是可调节的(例如,通过设备控制器调节),以控制输出RF能量或测量信号的电压的大小。脉冲源170的VDD和/或占空比的调节可提供一种适当的控制发电机所产生的RF功率的级别的方式。
脉冲源170的输出可不足以驱动功率MOSFET172,因此可连接栅极驱动器176,以放大脉冲源输出电压,并提供足够的电流,以对功率MOSFET172的输入电容充电/放电,从而使得能够以有效的方式接通和断开装置,即,使用以下等式将可从MOSFET驱动器获得的电流I与装置的输入电容C联系起来:I=C dvgs/dt,其中,dvgs是接通/断开装置所需的栅极源电压,dt是接通/断开装置的时间(上升/下降时间+接通/断开延迟)。可用半桥设备或全桥设备代替单端MOSFET设备,该半桥设备包括两个串联的晶体管,该全桥设备包括四个以“H”结构连接的晶体管。这些结构对于具有开关模式电源设计的领域中的经验的RF工程师来说是已知的。
将变换器175的次级线圈178经由RF调谐器180连接在同轴传输介质182的内导体184和外导体186之间,该同轴传输介质在图3中用代表性电抗元件示出。此阵形的集总元件等效电路是串联电感和分路(并联)电容。在此实例中,RF调谐器180执行两个功能:过滤次级线圈178的脉冲输出,以提取正弦RF信号(基频),用于传送至探针188并提供用来将设备的阻抗与组织负载190匹配的电抗。为了简单起见,将图3中的RF调谐器180示出为包括与次级线圈178串联的可变电感192以及在发电机的输出上并联(分路)的可变电容194。可将此设备改变为可变的串联电容且然后是可变的并联电感。优选地,可使用一个固定值调谐元件(L或C)和一个可变调谐元件(C或L),而不是两个可变调谐元件。优选地,可将并联调谐元件放在串联调谐元件的前面(或其之前)。优选地,可在网络中使用额外的调谐元件,即,并联电容且然后是串联电感而然后是第二并联电容。还可互换电感和电容。优选地,可用连接在输出变换器上的一个并联电容代替调谐网络,其用来调节电压和电流之间的相角,以提供功率因数校正。
施加器188可是平行板电容器(或用于微波频率分析的平行板传输线路),其包括两个由一层介电材料(例如,石英或陶瓷)隔开的金属板(激活和返回),其中,每个金属层是4μm的铜,然后是2μm的金,板尺寸是2mm×12mm。
图4示出了图3所示的RF信道的更详细的形式,其中,示出了实现上述RF调谐器的功能的部件。对具有与图3相同的功能的部件赋予相同的参考数字并且不再描述。
在图4中,将变换器的次级线圈与低通滤波器196连接,低通滤波器196从脉冲RF输出提取基础正弦信号。将低通滤波器196的输出输入至可变电容器198,该可变电容器与变换器175的次级线圈串联。在此实例中,可变电容器198包括多个(在此情况中,是四个)电容器201,其可独立地接入或切断信道。每个电容器201具有旁通开关202,当通过使板一起短路来接通时,可用旁路开关202切断相应的电容器。用由控制器106产生的相应控制信号C1-C4来操作旁路开关202。电容器201可具有不同的电容,例如,布置在1×、2×、4×和8×基本电容的二进制序列中。
类似地,将可变电感器204在电容器链201的远端与变换器175的次级线圈并联(分路)。在此实例中,可变电感器204包括多个(在此情况中是四个)电感器206,其可独立地接入或切断信道。每个电感器206具有与其相连的旁路开关208,以使得能够启动和结束任何绕组206的一起短路或旁通。用来自控制器106的相应控制信号C5-C8来操作旁路开关208。电感器208可具有不同的电感,例如,布置在1×、2×、4×和8×基本电感的二进制序列中,以提供负载阻抗的尽可大的变化,使得系统可尽可地与史密斯圆图匹配,即,覆盖尽可多的史密斯圆图。
图5示出了可变电感器207的一个替代实现方式。这里,将电线209的螺线管线圈缠绕在磁性材料杆211周围,以形成用于调谐电路的电感器。可变电感器207通过改变将杆211插入线圈209内的距离,而机械地操作。杆的磁性材料具有高相对渗透率(通量乘法器),以使得杆211的小运动能够产生线圈209的电感的明显变化。可使杆211在一对螺线管或一个螺线管和控制电路(其使得能够沿着绕组在两个方向上驱动电流)的控制下,沿着其轴向前后移动。或者,可使用基于磁致伸缩或压电(PZT)材料的执行机构来移动杆。
在图5中,从DC(或低频)电流源213对杆施加偏压电流(I)。该电流设置磁化力(H),其中,H=圈数(N)×电流(I)除以螺线管或绕组的长度(l),其用来改变相对渗透率或磁化强度的值,以产生电感(L)的变化。此设备假设,磁化强度(M)与相对渗透率成比例,其是H的函数,并且,磁化强度剖面是非线性的,即,“S”形的,因此,L=f(H)或L=f(I)。
在图5中,使用电感器215来阻止更高频率的RF信号进入电流源213。隔离电感器215的电感比调谐电感器211的电感大得多,这产生足够高的电感电抗,以阻止RF信号。将DC隔离电容器217与调谐电路的输出串联,以确保由电流源213产生的DC电流无法沿着电缆组件流过施加器并进入患者体内。放置在调谐线圈211内的磁性材料209在工作频率下应该是低损耗的,即,可使用铁粉或铁氧体,并且磁性材料209可对所施加的场表现出非线性磁化强度响应,以使得能够使用此设备调节电感。DC或低频偏压场将设置RF信号的工作点。
图6示出了可在RF调谐电路中使用的可变电感器219的另一实施方式。此设备类似图5,除了用环芯221代替磁性材料的杆209以外,并且用单独的感应绕组223对材料施加DC或低频AC场,以改变磁化强度或工作点,从而产生调谐电感的值的变化,用来调节电路或执行匹配功能。
回到图4,可变电容器198和可变电感器204的位置可是相反的。本发明还可对与变换器的次级线圈并联和串联的电感器和电容器起作用,只要可独立地调节串联电抗和并联电抗。
在一些实施方式中,可希望进一步放大从变换器的次级线圈输出的RF信号。为此,可提供一个或多个额外的变换器电路。可替代地或附加地,可在次级线圈和可调节电抗(可变电感或电容)之间提供功率放大器,例如,推挽式放大器、半桥、全桥等。
图4还示意性地示出了如何测量RF信号的电压和电流的一个实例。检测变换器(或电流变换器)210可具有与变换器175(即,在RF信道本身上)的次级线圈串联的初级线圈。还可在变换器175的初级侧上与电流变换器210连接。可将检测变换器的次级线圈接地,使得(RF信道上的)初级线圈中的电流在次级线圈中激励信号。这被称为电流变换器(CT),其中,初级绕组通常是一圈,以将CT对主电路的性能的影响减到最小,即,其将仅引入小电感,(必要时)这可用在其上连接的适当的值的电容来调谐。负载电阻器通常也在CT的次级线圈上连接,使得可提取与在电路中流动的电流成比例的电压级。在调节之后(在此情况中,使用缓冲放大器212和限压齐纳二极管214),将激励信号的电压VA(其与电流变换器210的初级线圈中的电流成比例)传送至控制器106。可使用与变换器175的次级线圈并联的电抗分压器220(在此实例中,使用电容器216,218执行)测量电压。在调节之后(在此情况中,使用缓冲器222和限压齐纳二极管224),将与分压器耦合的电压VB传送至控制器106。在将其输入至控制器之前,可对电压VA,VB均施加进一步调节,例如,过滤和整流。
在另一实施方式中,可将分压器220集成在并联的可调节电抗204中,即,在可调节总并联电抗的同时,可包括一个或两个固定元件,以提供用来控制系统的测量信号。分压器220的另一实施方式是两个串联的电阻器,其中,将值选择得较高,即,大于10kΩ,以将电路上的负载减到最小。电阻器在工作频率下还应是非感应的,例如,金属薄膜电阻器可是最适当的候选对象。在又一实施方式中,还可通过在初级或次级侧上从输出变换器175抽出绕组,或通过插入额外的串联电感,来测量电压。在输入至微控制器或接口板中之前,可需要过滤并钳位此电压。
可将保护性低通滤波器226连接在可调节电抗和探针之间,以防止反射的微波信号进入RF信道,否则,这可导致输出晶体管损坏,或导致电路突然以与所需工作频率不同的频率出现振荡。滤波器还可去除工作频率的RF或微波范围周围的不希望有的频率的能量。
图7示出了微波信道的部件的示意图。微波源228输出具有稳定(例如固定)频率的微波信号。将来自微波源228的输出输入至可变衰减器230,该可变衰减器基于来自控制器(未示出)的控制信号C9控制输出的大小。将来自可变衰减器230的输出输入至开关单元232,该开关单元基于来自控制器的控制信号C10调节输出。实际上,可通过使用具有响应时间(当收到新的数字输入信号时改变信号衰减的时间)的可变衰减器,将单元230和232组合成一个单元,该响应时间足够快,以允许装置用作调制器,或允许系统在脉冲模式中操作,即,如果衰减器的响应时间是100ns且系统将在脉冲模式中操作(其中,需要脉冲的宽度是5ms且脉冲之间的停止时间是20ms),那么此装置可非常容易用来满足两个目的。用功率放大器234接收开关单元232的输出,功率放大器234将微波信号放大至适合于产生有用的治疗作用的功率级。将来自功率放大器234的输出输入至循环器236的第一端口。循环器236将放大器与从探针返回的反射信号隔离。引导任何在循环器的第二端口接收回的反射信号从第三端口离开并进入断电负载238中。
将来自放大器的前向信号从循环器的第二端口输出,循环器与前向耦合器240连接,前向耦合器将前向信号的一部分耦合在检测器242中。将检测器242的输出与控制器连接。将前向耦合器240的输出输入至反向耦合器244,反向耦合器将任何反射信号的一部分耦合在检测器246中。将检测器246的输出与控制器连接。将反向耦合器244的输出输入至具有可调节阻抗的微波调谐网络248。将调谐网络248的输出输入至前向耦合器250和反向耦合器252,用于以前向和反向耦合器240、244相似的方式分别将前向和反射信号的一部分耦合在检测器254、256中。将检测器254、256的输出与控制器连接。本发明不限于使用二极管检测器,即,可使用日志大小检测器、零差相位和大小检测器、外差相位和大小检测器或简单异或(EXOR)门相位检测器来执行242、246、254和256。在能够精确地调节RF和微波调谐网络的方面,提取相位信息和大小信息的能力是有利的,在可匹配的可接入阻抗的方面,提供更大程度的控制并改进匹配系统的性能,但是本发明不限于需要提取相位和大小信息来控制系统。可通过仅测量相位信息来得到RF和/或微波信道上的测量信息。
控制器可使用来自二极管检测器(或其他类型的检测器)242、246、254、256的输出来确定传递至负载(例如,组织或气体等离子体)的功率的量,和/或用作一种控制调谐网络248的阻抗(以将反射功率减到最小,并将发电机产生的能量与组织负载的变化阻抗匹配,从而提供将能量传递至组织中的最佳效率,并在由于返回至发电机的能量而最小化部件加热和精确地量化传递至目标组织中的能量方面,提供最佳系统性能)的装置。
图7中的调谐网络248包括三个PIN二极管开关258,所述PIN二极管开关与微波信道并联。每个PIN二极管开关258具有独立的DC或相对低的频率,即,直到10kHz,用于控制其状态的电压控制信号C11-C13(由控制器产生)。PIN二极管开关操作成将相应的并联电容260(其可由传输线路的一部分形成,即,微带或同轴的)接入微波信道中。将串联电感器262(其也可是传输线路的一部分)示出为连接在并联元件之间。并联电容和串联电感的组合形成调谐网络或滤波器,并且将形成电容或电感的全部值的各个元件接入和断开可允许网络用作可变调谐滤波器。为了增加调谐范围,可增加网络中的元件的数量。可对组成调谐网络的全部值的并联电容的固定值加权,即,二元加权,以提供尽可大的变化范围。可使形成调谐网络的电感器和电容器的位置互换,即,可使电感器并联,并使电容器串联。可通过在并联元件之间和/或在传输线路与在调谐元件上并联的开关之间插入可变长度的传输线路来实现在网络中使用的电容和电感的值,即,等于引导波长的八分之一的物理长度的传输线路的长度将产生值等于传输线路的特征阻抗的感抗。
可以其他方式实现调谐网络248。图8示出了一个替代设备,其中,将多个第一变容二极管(或功率PIN二极管)264串联在微波信道上,并且将多个第二变容二极管(或功率PIN二极管)266与微波信道并联。可施加可控的DC偏压信号C14-C19,以控制每个变容二极管264、266上的电压,从而改变耗尽区域的长度,这又会改变电容。隔离电感器268防止微波能量回到DC源中。在微带中实现这些电感器,即,印刷电感器或小电线圈。以此方式,串联的变容二极管用作传输线路的一部分,其具有可改变达到
Figure BDA00003646536100441
的电气长度,其中,λ是微波能量的波长。并联的变容二极管可用作短截线,其具有可改变达到
Figure BDA00003646536100442
的电气长度。将DC隔离电容器270在调谐网络和探针之间连接,以防止将DC或低频AC电流传递至患者体内,即,其提供DC患者隔离势垒。
图9示出了用微带短截线实现的用于调谐网络的另一替代设备。在此实例中,将三个具有不同长度的微带短截线272在微波信道上与微带线路连接。可在DC信号C20-C22的控制下使用PIN二极管(或电机)开关274使每个短截线272在短路(开关触点或接头闭合)和开路(开关或信道断开)之间独立地切换。可将形成短截线272的传输线路设置为一定的长度,其代表电抗(电容或电感)或阻抗的范围。图9所示的设备使得能够选择八个不同的调谐位置,即,23。如图7的实例所示,将电感器276示出为在并联短截线之间串联。这里,将这些电感器示出为通过将线路印刷在介电材料上而在微带线路中实现的薄传输线路,其比形成传输线路的特征阻抗的线路窄。也可使用其他传输线路结构,其中,线路的宽度/直径和/或长度使得,能够实现工作频率下的所需电感的电感器。此结构不限于使用电感器276,即,可将微带线路的宽度增加得比形成线路(其具有等于传输线路的特征阻抗的阻抗)所需的宽度大,以产生调谐电容,而不是调谐电感。
在另一实例中,可使用传输线路短截线或形成短截线的波导(矩形或圆柱形)部分代替微带短截线,并且可实现同轴伸缩喇叭结构,以改变相位。
图10和图11分别示出了用于RF信道的集总元件电路300和用于微波信道的分布电路302,其可用来分析电手术设备的操作。
图10示出了具有与集总元件调谐电路连接的源阻抗306的RF发生器304,集总元件调谐电路包括可变串联电容器308且然后是可变并联电感器310。用并联电容器312代表传输线路(即,同轴电缆组件),并用另一并联电容器314代表探针。将组织负载示出为并联电阻316。如果同轴电缆组件是半柔线86(其是灏讯公司的2.2mm直径的半刚性电缆组件),那么,每米的电容是95pF,因此,如果同轴电缆组件是2m长,那么其电容是190pF。在实现本发明所感兴趣的RF频率下,可将探针作为平行板电容器。如果使用具有以上简述的结构的平行板传输线路施加器,其中,间隔距离是0.6mm,宽度是2mm,长度是12.7mm,并将具有4.1的相对电容率的石英夹在两个板之间,那么,其电容是1.53pF。可在用于RF切割的模型中使用的代表性组织阻抗是1kΩ和100kΩ之间的电阻,因此,在图10所示的集总元件RF调谐系统中,可变调谐网络必须将源阻抗与值191.53pF的电容(其与1kΩ和100kΩ之间的可变电阻值并联)匹配。
图11所示的微波信道的分析以阻抗的分布网络为基础,其中,用复阻抗代表每个元件。将微波发生器318示出为,与发生器的阻抗320串联,并且,额定是50Ω。将源阻抗与分布元件微波调谐器连接,该调谐器包括四个串联的固定阻抗322,324,326,328和三个并联的可变阻抗330,332,334,其在上述串联阻抗的远端和近端之间连接。将调谐网络的输出与同轴电缆组件连接,其具有50Ω的额定阻抗336。将同轴电缆组件的远端与探针连接,将其模拟成平行板传输线路,其阻抗338由以下表达式给出:
Figure BDA00003646536100451
其中,h是介电材料的厚度,w是平行板的宽度,εr是介电材料的相对电容率。在用来实现本发明的一个特殊实施方式中,w=2mm,h=0.6mm,εr=4.2,其得出55.19Ω的施加器阻抗Z探针
可使用在感兴趣的频率下测量或计算的介电常数和电导率的值,来计算感兴趣的微波频率下的代表性组织类型(在此情况中是肝脏和结肠)的阻抗340。下面,在表1中给出了三个感兴趣的频率下的介电特性:
Figure BDA00003646536100461
表1:用于实现本发明的感兴趣的微波频率下的代表性生物组织的介电特性
为了获得感兴趣的微波频率下的组织的阻抗,可假设无限介质中的体积值或TEM平面波传输。对于吸收性的介电材料,计算阻抗的表达式如下所述:
Z = - jωμ ρ - jωϵ ,
其中,Z是阻抗,单位是欧姆(Ω),ω是角频率(2πf),其中,f是频率,单位是赫兹(Hz),μ=μ0μr是自由空间的渗透率乘以磁性材料的相对渗透率,ε=ε0εr是自由空间的电容率乘以介电材料的相对电容率,ρ是生物材料的密度,单位是kg/m3
形成方波,然后将在之前的表达式中给出的阻抗的方波分成实部和虚部给出:
Z 2 = ω 2 μ 0 ϵ 0 ϵ r ρ 2 + ω 2 ϵ 0 2 ϵ r 2 - j ωρ μ 0 ρ 2 + ω 2 ϵ 0 2 ϵ r 2
如果由此表达式计算模数,并取平方根,那么可对各种感兴趣的频率下的代表性组织模型确定阻抗的大小。下面,在表2中给出了此信息。
Figure BDA00003646536100472
表2:感兴趣的频率下的肝脏和结肠的阻抗的大小
可通过解出Z的实部和虚部,来计算阻抗值。下面,在表3中给出了这些阻抗:
Figure BDA00003646536100473
表3:感兴趣的微波频率下的肝脏和结肠的阻抗的实部和虚部
探针还可通过使探针的电学长度等于奇数个四分之一的工作频率的加载波长,而采用四分之一波变换器的形式。可用此设备在50Ω(或其他固定阻抗的传输线路和能量源)的传输线112和非50Ω的组织阻抗451之间产生静态阻抗匹配。
从图11所示的用阻抗值和可变/固定线路长度的范围代表的分布元件微波调谐系统,当将同轴电缆组件(具有阻抗336)和探针(具有阻抗338)在调谐器的输出口和与探针接触的组织之间连接时,调谐网络内的可变元件330、332、334必须将源阻抗320与组织阻抗340匹配。
图12和图13示出了具有可与本发明一起使用的双极天线结构的探针342的一个实例的视图。探针342具有0.6mm厚的与同轴电缆346连接的平行板传输线路344。探针适合于在2.45GHz、5.8GHz和14.5GHz下操作。同轴电缆346包括内导体348、外导体350、以及将内导体348和外导体350隔开的介电材料352。在同轴电缆346的远端处,内导体348和外导体350具有伸出部分354、356,其远离介电材料352地延伸。将平行板传输线路344夹在伸出部分354、356之间,使得其近端与同轴电缆的远端邻接。将内导体的伸出部分356布置为与传输线路344的上导电层358接触,并将外导体的伸出部分354布置为与传输线路344的下导电层360接触。
在上导电层的近端边缘和同轴电缆的远端之间设置间隙362,以在感兴趣的频率下执行一定程度的静态阻抗匹配,并防止内导体和外导体之间的短路。
将塑料管道支撑部364安装在传输线路344和同轴电缆346之间的接头上。管道支撑部364的内径比同轴电缆346的外径大,以使得,能够将其套在电缆上。与同轴电缆接触的管道的端部在转角处可是锥形的或圆形的,以防止其在插入和/或去除过程中损坏手术内窥镜(或其他用来将装置引入体内的手术装置)的器械通道的内壁。将安装结构368(例如胶水等)连接在同轴电缆346和管道支撑部364之间,以将电缆固定在原处。类似地,将安装块366(例如胶水或固体材料)连接在传输线路344和管道支撑部364之间,以将传输线路固定在原处,并防止湿气或组织进入结构的内部。
在一个特殊实施方式中,传输线路可包括0.61mm厚的TRF-41(介电常数4.1,损耗角正切0.0035)的片368或具有类似的介电常数和损耗角正切的硬质石英材料或适当的低损耗微波陶瓷。同轴电缆346具有大约2.2mm的外径和0.574mm的管脚直径。在该实施方式中使用的同轴电缆346是UT85C-LL(Micro-Coax公司的),但是,该装置不限于此特殊的电缆组件,即,也可使用来自灏讯公司的半柔线86来提供类似的整体装置性能。
平行板传输线路344上的导电层358、360直接延伸至片368的远端,并且是2.002mm宽。这些导电层可由一层铜且然后是一层金形成,可仅由一层金形成,或者,可仅由一层银形成。可将金属化层直接沉积在基板上。在该特殊实施方式中,片368是2.6mm宽。此结构叫做平行板传输线路,其中,用以上给出的等式计算特征阻抗Zo。对于具有4.2的介电常数,0.6mm的电介质厚度和2mm的宽度的石英电介质,结构的特征阻抗是55.19Ω。如果施加器结构将包含无限地平面,即,金属化顶层(激活层)的宽度比金属化底层(返回层)的宽度窄得多,那么,该结构将叫做微带线路,而不是平行板线路。也可考虑用其他已知的传输线路结构来实现此装置,例如,共面线路、悬浮带状线等等。支撑管364可是具有3.1mm的外径的聚丙烯管道,并且应在具有2.6mm的内径的手术内窥镜内良好地滑动配合。这使得具有大约0.25mm的壁厚。材料和厚度并不是关键的;可使用尼龙或聚乙烯、或许多其他塑料。可将传输线路的边缘切成斜面,使得探针将位于管道直径的正下方。
管道沿着传输线路344的长度变成5mm。与同轴电缆的重叠这里是5mm,但是可根据需要一样长。优选地,应将界面斜切,即,以45°的角度。管道可足够短,以通过弯曲的内窥镜。管道的主要目的是支撑探针,并将其稳固地保持在内窥镜的端部中。实际上,管道可直到60mm或比60mm长,因为可希望器械(辐射刀片)从器械通道的端部伸出一定距离,该距离等于或大于50mm,同时,根据需要保持一定程度的硬度或强度,以使得能够将辐射部分不弯曲或扭曲地推入组织中。在一些情况中,管道根本不应该从器械通道的端部伸出,因为这可使得看不见,并使得难以操作器械。
安装结构368和安装块366可由几乎任何可用来将结构保持在原处的材料制成,因为,如果保持远离探针边缘和同轴电缆的管脚,那么,此材料不会影响装置的性能。
上导电层358和同轴电缆之间的间隙362是0.5mm。此间隙是关键的,因为其在探针的辐射部分和与装置的端部接触的代表性生物组织之间提供静态阻抗匹配,该端部将所选择的微波频率(即5.8GHz)的能量辐射至组织中。
探针的中心与同轴电缆的中心偏离大约0.5mm(0.53mm)。外管的轴线在探针中心的上方大约0.3mm,但是,仅需要套在组件上并将部件保持在原处。
介电片368的长度可正好超过工作频率下的四分之一或四分之三的波长(考虑由介电材料导致的加载),使得驻波将不会与探针底部附近的支撑塑料管强烈地耦合。这意味着,对管道选择材料在其电学性能方面并不是关键的,即,介电常数的损耗因数。可将该结构的长度延伸至感兴趣的频率的任何奇数个四分之一的加载波长。
图14示出了根据本发明的一个实施方式的电手术设备400的整个系统图,其具有单独的测量信道。在此实施方式中,微波信道具有:微波频率源402;功率控制模块,包括由控制器406经由控制信号V10控制的可变衰减器404,和由控制器406经由控制信号V11控制的信号调制器408;以及放大器模块,包括驱动放大器410和功率放大器412,用于产生从探针420传递的处于适于治疗的功率级的前向微波EM辐射。在放大器模块之后,微波信道以微波信号耦合模块(其是微波信号检测器的一部分)继续,所述微波信号耦合模块包括:所连接的循环器416,以将微波EM能量沿着其第一和第二端口之间的路径从源传递至探针;位于循环器416的第一端口处的前向耦合器414;以及位于循环器416的第三端口处的反射耦合器418。在通过反射耦合器之后,在断电负载422中吸收来自第三端口的微波EM能量。微波信号耦合模块还包括开关415,所述开关由控制器406经由控制信号V12操作,用于将前向耦合信号或反射耦合信号与外差接收器连接,以进行检测。
在此实施方式中,为了产生测量信道,用功率分配器424(例如,3dB的功率分配器)将来自源402的信号分成两个分支。在一个替代实施方式中,可省略功率分配器424,并使用单独的源作为测量信道。来自功率分配器424的一个分支形成微波信道,并且具有连接在其上的上述部件。另一分支形成测量信道。测量信道绕过微波信道上的放大阵形,并由此将其布置为从探针传递低功率信号。在此实施方式中,由控制器406经由控制信号V13控制的初级信道选择开关426操作成从微波信道或测量信道选择信号,以传递至探针。将高带通滤波器427连接在初级信道选择开关426和探针420之间,以使微波信号发生器没有低频RF信号。
此实施方式中的测量信道包括布置为检测从探针反射的功率的相位和大小的部件,其可产生与存在于探针的远端的材料(例如生物组织)相关的信息。测量信道包括所连接的循环器428,以将来自源402的微波EM能量沿着其第一和第二端口之间的路径传递至探针。将从探针返回的反射信号引入循环器428的第三端口中。使用循环器428在前向信号和反射信号之间提供隔离,以便于进行精确的测量。然而,因为循环器在其第一和第三端口之间不提供完全隔离,即,一部分前向信号可穿透并到达第三端口并干扰反射信号,所以使用载波取消电路,所述载波取消电路使一部分(来自前向耦合器430的)前向信号(经由注射耦合器432)回到从第三端口产生的信号中。载波取消电路包括相位调节器434,以确保注入部分与任何从第一端口进入第三端口中的信号具有180°的相差,以将其取消掉。载波取消电路还包括信号衰减器436,以确保注入部分的大小与任何通过的信号相同。
为了补偿前向信号中的任何漂移,在测量信道上设置前向耦合器438。将前向耦合器438的耦合输出和来自循环器428的第三端口的反射信号与开关440的相应输入端子连接,开关440由控制器406经由控制信号V14操作,以将耦合的前向信号或反射信号与外差接收器连接,以进行检测。
将开关440的输出(即,来自测量信道的输出)和开关415的输出(即,来自微波信道的输出)与次级信道选择开关442的相应输入端子连接,开关442与初级信道选择开关一起由控制器406经由控制信号V15操作,以确保当测量信道对探针供应能量时将测量信道的输出与外差接收器连接,并且当微波信道对探针供应能量时将微波信道的输出与外差接收器连接。
使用外差接收器从由次级信道选择开关442输出的信号提取相位和大小信息。在图14所示的实施方式中,使用一个外差接收器。必要时,可使用双外差接收器(包含两个局部振荡器和混合器),在信号进入控制器之前,双外差接收器将源频率缩混两次。外差接收器包括局部振荡器444和混合器448,用于将由次级信道选择开关442输出的信号缩混。这样选择局部振荡器信号的频率,即,使得来自混合器448的输出处于适合于在控制器406中接收的中间频率。提供带通滤波器446、450,以使局部振荡器444和控制器406没有高频微波信号。
控制器406接收外差接收器的输出,并从其确定(提取)表示微波或测量信道上的前向和/或反射信号的相位和大小的信息。可使用此信息来控制微波信道上的高功率微波EM辐射或RF信道上的高功率RF EM辐射的传递。用户可经由用户界面452与控制器406相互作用,如上所述。
图14所示的RF信道包括与门驱动器456连接的RF频率源454,用控制器406经由控制信号V16控制门驱动器456。门驱动器456对RF放大器458供应操作信号,在此实施方式中,RF放大器458是半桥设备。可经由可变DC电源460控制半桥设备的漏极电压。输出变换器462将所产生的RF信号传送至线路,以传递至探针420。将低带通滤波器464在该线路上连接,以使RF信号发生器没有高频微波信号。
将电流变换器466连接在RF信道上,以测量传递至组织负载的电流。用分压器468(可将其从输出变换器抽出)来测量电压。以上参考图4讨论了用于测量电压和电流的这些机构。在由相应的缓冲放大器470、472和电压箝位齐纳二极管474、476、478、480调节之后,将来自分压器468和电流变换器466的输出信号(即,表示电压和电流的电压输出)与控制器406直接连接(在图14中示出为信号B和C)。
为了得出相位信息,还将电压和电流信号(B和C)与相位比较器482(例如,EXOR门)连接,用RC电路484求其输出电压的积分,以产生电压输出(在图14中示出为A),其与电压和电流波形之间的相差成比例。将此电压输出(信号A)与控制器406直接连接。
将微波/测量信道和RF信道与信号组合器114连接,所述信号组合器将两种类型的信号分开或同时沿着电缆组件116传送至探针420,如上面参考图1讨论的。
图15示出了用于电手术设备500的整个系统图,其与图14所示的系统相似,但是还包括与微波和RF信道上的信号匹配或调节该信号的部件。对图14和图15之间公共的部件赋予相同的参考数字并且不再描述。
在微波信道上,将阻抗调节器502连接在放大器模块和探针之间。用控制器406经由控制信号V17控制阻抗调节器502。循环器504用作放大器模块和阻抗调节器502之间的隔离器,以使功率放大器412没有反射信号。连接在功率放大器412和循环器504之间的前向耦合器506耦合掉功率放大器监测信号。将前向耦合器508和反射耦合器510连接在循环器504和阻抗调节器502之间,以在阻抗调节器502之前提供与微波信道上的前向和反射功率信号相关的信息。将前向耦合器512和反射耦合器514连接在阻抗调节器502和探针420之间,以在阻抗调节器502之后提供与微波信道上的前向和反射功率信号相关的信息。组合地,耦合器508、510、512、514可提取这样的信息,其允许控制器406确定从探针传递的功率和阻抗调节器502中的功率损耗。后者是可选的,因此可仅需要一对耦合器512、514。可用控制器406经由控制信号V12操作的信号选择开关516将耦合器506、508、510、512、514的输出中的一个与外差接收器连接,由此将其发送至控制器406,以提供微波信号信息。
在RF信道上,将RF调谐网络518与输出变换器462的次级线圈连接,并可用控制器406经由控制信号V18操作。在此实施方式中,RF调谐网络518包括可调节串联电感和可调节并联电容,例如,与以上参考图4讨论的设备相反的设备。
可使用可从RF和微波信道获得的相位和大小信息来控制包含在RF调谐网络518和阻抗调节器502内的可变元件,以将从RF和微波信道传递的能量的效率增到最大。
图16是示出了用作本发明中的信号组合器的双工器单元530的结构图。使用“开微带”结构的电路来构造双工器单元530。来自微波信道的微波EM辐射在第一输入口532进入单元530,并且来自RF信道的RF EM辐射在第二输入口534进入单元。相应的传输线路将第一和第二输入口与公共的(或初级)“T形”接头536的相对的输入口连接。用另一传输线路将初级T形接头536的第三(正交)端口与单元530的输出口538连接。
在图16所示的实例中,单元530具有整体形成的闭塞滤波器540,以将微波功率与第二输入口隔离。有效地,闭塞滤波器是“低通”滤波器,例如,在微波EM辐射的频率(例如5.8GHz)下是反射性的,同时允许低频RF EM辐射(例如,500kHz)通过。为了确保微波信号在微波输入和输出口之间经历低传输损耗,将滤波器定位成使得在接头处不增加额外的电抗。
可将双工器单元530的电路印刷在微波质量基板上。基于装有陶瓷的PTFE的材料(例如,由Rogers公司制造的RT/杜罗艾德铬合金钢类型6006)可用于此目的。基板厚度可在0.635mm和1.27mm之间。为了形成双工器单元,基板材料在具有大约34μm的厚度的两侧上涂有电沉积铜。此厚度可适应微波频率下所需的高功率级。
为了提供闭塞滤波器的功能,可使用具有图17所示的结构的电路元件。此电路元件的地形布局可叫做“径向短截线”。其包括在其窄底部与微带传输线路544“并联”的扇形短截线542。通过此结构,径向短截线将其弯曲边缘处的开路改变成传输线路处的短路。因此,在短路处引起微波功率的反射。对于微波频率,可使用已知的模拟技术来确定径向短截线的物理尺寸。
图18示出了可用来实现闭塞滤波器的微带图案546的一个实例。微带图案546包括次级T形接头548,将所述次级T形接头的相对输入连接在低频输入534和初级T形接头536之间。将次级T形接头的正交输入与微带传输线路550(即金属化轨道)连接,所述微带传输线路具有三个沿着微带线路放置在T形接头和输出口之间的径向短截线。使用一个以上的径向短截线来增加隔离。可使用模拟技术来优化相邻的径向短截线之间的间隔。
图19示出了用于闭塞滤波器的一个可替代的微带图案554,其中,用具有重复顺序的高阻抗和低阻抗部分的微带线路556代替径向短截线。高阻抗部分558的特征在于窄传输线路,而低阻抗部分560的特征在于宽传输线路。
可选地,微带双工器单元可具有与其整体形成的高通滤波器。高通滤波器可用来阻止来自低频端口534的RF EM辐射进入微波发生器中(即,从微波输入532漏出)。为了提供此功能,微带图案可包括在微波输入532和初级T形接头536之间与微带传输线路并联的矩形短截线。短截线的目的是提供与地平面的短路,并且有效地,此短截线的长度是微波EM辐射的频率(例如5.8GHz)下的引导波长的四分之一。结果,在将短截线与微带传输线路的边缘连接的位置处将短路阻抗转变成开路阻抗。

Claims (27)

1.用于生物组织的切除的电手术设备,所述设备包括:
射频(RF)信号发生器,用于产生具有第一频率的RF电磁(EM)辐射;
微波信号发生器,用于产生具有第二频率的微波EM辐射,所述第二频率比所述第一频率高;
探针,布置为从所述探针的远端分开或同时传递所述RF EM辐射和所述微波EM辐射;
供给结构,用于将所述RF EM辐射和所述微波EM辐射传送至所述探针,所述供给结构包括用于将所述探针连接至所述RF信号发生器的RF信道、以及用于将所述探针连接至所述微波信号发生器的微波信道;
RF信号检测器,用于在所述RF信道上采样电流和电压并由此产生表示所述电流和所述电压的RF检测信号;
微波信号检测器,用于在所述微波信道上采样前向功率和反射功率,并由此产生表示由所述探针传递的微波功率的微波检测信号;以及
控制器,与所述RF信号检测器和所述微波信号检测器通信,以接收所述RF检测信号和所述微波检测信号,
其中,所述控制器能操作成基于接收到的RF检测信号和/或微波检测信号来选择用于所述RF EM辐射的能量传递剖面和用于所述微波EM辐射的能量传递剖面,用于所述RF EM辐射的所述能量传递剖面用于组织切割,而用于所述微波EM辐射的所述能量传递剖面用于止血或封闭或凝固或组织的切除。
2.根据权利要求1所述的电手术设备,其中,所述供给结构包括用于传递处于10mW或更小的功率级下的能量的测量信道。
3.根据权利要求2所述的电手术设备,其中,所述测量信道连接成从所述微波信号发生器接收测量信号,并且其中,所述设备是能切换的,使得所述微波EM辐射通过所述测量信道或所述微波信道传递至所述探针。
4.根据权利要求3所述的电手术设备,其中,所述微波信号检测器包括外差或双外差检测器。
5.根据权利要求2所述的电手术设备,其中,如果用于所述RF EM辐射和/或所述微波EM辐射的所述能量传递剖面包括脉冲波形,那么所述设备布置为在所述脉冲波形的断开时间期间将能量沿着所述测量信道传递至所述探针。
6.根据任一前述权利要求所述的电手术设备,其中,所述控制器布置为通过调节所述RF EM辐射和所述微波EM辐射的波形和/或功率来设置所述能量传递剖面。
7.根据任一前述权利要求所述的电手术设备,其中,所述控制器包括数字微处理器,所述数字微处理器编程为输出用于所述RF信号发生器的RF控制信号和用于所述微波信号发生器的微波控制信号,其中,所述控制器布置为分别基于接收到的RF检测信号和微波检测信号来确定所述RF控制信号和所述微波控制信号的状态。
8.根据任一前述权利要求所述的电手术设备,其中,所述探针的所述远端包括双极发射结构,所述双极发射结构包括在空间上与第二导体隔开的第一导体,所述第一导体和所述第二导体布置成:
分别用作激活电极和返回电极,用于通过传导来传送所述RFEM辐射,以及
用作天线,用于辐射所述微波EM辐射。
9.根据权利要求8所述的电手术设备,包括连接成对所述探针的所述远端供应气流的气体供给装置,其中,如果存在所述气流,那么所述RF EM辐射能控制为在所述探针的所述远端处撞击所述第一导体与所述第二导体之间的导电气体等离子体,并且所述微波EM辐射布置为保持所述气体等离子体。
10.根据任一前述权利要求所述的电手术设备,其中,所述RF信道和所述微波信道包括分别与所述RF信号发生器和所述微波信号发生器物理地隔开的分开信号路径,所述RF信道上的所述分开信号路径与所述微波EM辐射隔离,并且所述微波信道上的所述分开信号路径与所述RF EM辐射隔离。
11.根据权利要求10所述的电手术设备,其中,所述供给结构包括组合电路,所述组合电路具有:第一输入,连接至所述RF信道上的所述分开信号路径;第二输入,连接至所述微波信道上的所述分开信号路径;以及输出,连接至公共信号路径,用于所述将RF EM辐射和所述微波EM辐射分开或同时沿着单个信道传送至所述探针。
12.根据权利要求11所述的电手术设备,其中,所述组合电路包括:开关装置,用于将所述RF信道或所述微波信道连接至所述公共信号路径。
13.根据权利要求11所述的电手术设备,其中,所述开关装置包括继电器或同轴开关。
14.根据权利要求11所述的电手术设备,其中,所述组合电路包括双向双工器,所述双向双工器布置为允许:
将前向RF EM辐射从所述第一输入传送至所述输出,
将反射RF EM辐射从所述输出传送至所述第一输入,
将前向微波EM辐射从所述第二输入传送至所述输出,以及
将反射微波EM辐射从所述输出传送至所述第二输入。
15.根据权利要求12所述的电手术设备,其中,所述双向双工器包括T形微带开路,所述T形微带开路具有与之整体地形成的低通滤波器,以防止微波EM辐射从所述第一输入漏出。
16.根据任一前述权利要求所述的电手术设备,其中,来自所述RF信号检测器的所述RF检测信号表示所述RF EM辐射的电压和电流。
17.根据权利要求16所述的电手术设备,包括:RF调谐器,连接在所述RF信道上,用于控制通过所述RF EM辐射传递到组织中的能量,其中,所述RF调谐器具有能调节的电抗,所述能调节的电抗能由所述控制器基于所述RF检测信号来控制。
18.根据权利要求17所述的电手术设备,其中,所述RF调谐器的所述能调节的电抗包括多个电抗元件,每个电抗元件具有固定电抗并能根据来自所述控制器的相应控制信号独立地接通或断开与所述RF信道的连接。
19.根据权利要求17所述的电手术设备,其中,所述RF调谐器的所述能调节的电抗包括多个电抗元件,每个电抗元件具有能改变的电抗,所述能改变的电抗能根据来自所述控制器的相应控制信号独立地控制。
20.根据权利要求17所述的电手术设备,其中,所述RF调谐器的所述能调节的电抗通过能改变的电容器和/或能改变的电感器来提供,并且所述控制器包括自调节反馈回路,所述自调节反馈回路布置为产生用于设置所述能改变的电容器和/或能改变的电感器的电抗的信号。
21.根据任一前述权利要求所述的电手术设备,其中,所述微波检测信号表示所述微波信道上的反射功率的大小。
22.根据权利要求21所述的电手术设备,包括在所述微波信号发生器与所述探针之间连接在所述微波信道上的阻抗调节器,所述阻抗调节器具有能由所述控制器基于所述微波检测信号控制的能调节的复阻抗。
23.根据任一前述权利要求所述的电手术设备,其中,所述RF信号发生器包括:
振荡器,耦合至开关单元,用于产生稳定的RF输出;
放大器,用于放大所述稳定的RF输出;以及
输出变换器,
其中,所述放大器布置为放大所述变换器的初级线圈上的电压,并且所述开关单元布置为接通/断开所述输出变换器的所述初级线圈上的电压。
24.根据任一前述权利要求所述的电手术设备,其中,所述第一频率是在10kHz到300MHz范围内的稳定的固定频率,所述第二频率是在300MHz到100GHz范围内的稳定的固定频率。
25.根据权利要求8所述的电手术设备,其中,所述双极发射结构包括介电材料的平面块,所述第一导体和所述第二导体是设置在所述平面块的相对表面上的导电层。
26.根据权利要求8所述的电手术设备,其中,所述双极发射结构包括:两个相对的夹紧表面,用于将生物组织夹在所述夹紧表面之间,所述第一导体设置在一个所述夹紧表面上,并且所述第二导体设置在另一个夹紧表面上。
27.根据任一前述权利要求所述的电手术设备在与以下各项中的任何一个相关的临床手术中的使用:经自然腔道内镜手术(NOTES)、经肛门内镜显微手术(TEMS)、以及单切口腹腔镜手术。
CN201180067290.6A 2010-12-10 2011-12-07 用于rf和微波传递的电手术设备 Active CN103347455B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1021032.6A GB201021032D0 (en) 2010-12-10 2010-12-10 Electrosurgical apparatus
GB1021032.6 2010-12-10
PCT/GB2011/001693 WO2012076844A1 (en) 2010-12-10 2011-12-07 Electrosurgical apparatus for rf and microwave delivery

Publications (2)

Publication Number Publication Date
CN103347455A true CN103347455A (zh) 2013-10-09
CN103347455B CN103347455B (zh) 2015-09-30

Family

ID=43567043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180067290.6A Active CN103347455B (zh) 2010-12-10 2011-12-07 用于rf和微波传递的电手术设备

Country Status (11)

Country Link
US (1) US9333034B2 (zh)
EP (1) EP2648636B1 (zh)
JP (1) JP5768140B2 (zh)
CN (1) CN103347455B (zh)
AU (1) AU2011340307B2 (zh)
CA (1) CA2858297C (zh)
DK (1) DK2648636T3 (zh)
ES (1) ES2529669T3 (zh)
GB (2) GB201021032D0 (zh)
PT (1) PT2648636E (zh)
WO (1) WO2012076844A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797285A (zh) * 2014-12-30 2016-07-27 中国科学院深圳先进技术研究院 一种高强聚焦超声系统及功率检测方法
CN105848604A (zh) * 2013-12-09 2016-08-10 科瑞欧医疗有限公司 用于产生射频能量和微波能量以传递到生物组织中的电外科装置
CN106551722A (zh) * 2017-01-03 2017-04-05 中国科学院化学研究所 一种射频治疗系统
CN106992696A (zh) * 2017-03-15 2017-07-28 华南理工大学 一种基于复阻抗压缩技术的高效率整流电路
CN108702146A (zh) * 2016-02-29 2018-10-23 脉冲生物科学有限公司 高压模拟电路脉冲器和脉冲发生器放电电路
CN109196960A (zh) * 2016-05-31 2019-01-11 东京毅力科创株式会社 匹配器及等离子体处理装置
CN109475381A (zh) * 2016-05-23 2019-03-15 科瑞欧医疗有限公司 用于促进生物组织中的止血的电外科设备和方法
CN110946642A (zh) * 2019-12-13 2020-04-03 天津市鹰泰利安康医疗科技有限责任公司 一种高频双极性不可恢复电穿孔系统
CN111494001A (zh) * 2020-05-12 2020-08-07 北京天星博迈迪医疗器械有限公司 用于生成等离子的医用设备控制电路及等离子医用设备
CN112153930A (zh) * 2018-06-06 2020-12-29 直观外科手术操作公司 跨电气隔离屏障进行高速数据传输的系统和方法
CN112806981A (zh) * 2021-02-05 2021-05-18 北京大学口腔医学院 一种膝关节健康管理健身裤
CN113164198A (zh) * 2018-12-10 2021-07-23 科瑞欧医疗有限公司 模块化电外科系统和用于所述系统的模块
CN113520575A (zh) * 2020-04-14 2021-10-22 厄比电子医学有限责任公司 用于凝固和解剖生物组织的装置和方法
CN113616321A (zh) * 2015-10-19 2021-11-09 科瑞欧医疗有限公司 电外科仪器
CN113662650A (zh) * 2021-08-10 2021-11-19 苏州艾科脉医疗技术有限公司 用于导管的高压发生电路及消融工具
CN113820531A (zh) * 2020-06-19 2021-12-21 拓荆科技股份有限公司 一种射频系统状态受控的半导体设备

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10379168B2 (en) * 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
GB2487199A (en) 2011-01-11 2012-07-18 Creo Medical Ltd Electrosurgical device with fluid conduit
US11745026B2 (en) 2011-04-01 2023-09-05 The Bioregentech Institute, Inc. Laser assisted wound healing protocol and system
US11389663B2 (en) 2011-04-01 2022-07-19 Bioregentech, Inc. Laser assisted wound healing protocol and system
US11730760B2 (en) 2011-04-01 2023-08-22 The Bioregentech Institute, Inc. Laser assisted wound healing protocol and system
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US8852186B2 (en) * 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US8943744B2 (en) * 2012-02-17 2015-02-03 Nathaniel L. Cohen Apparatus for using microwave energy for insect and pest control and methods thereof
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9048232B2 (en) * 2012-04-30 2015-06-02 Dialog Semiconductor B.V. Package with integrated pre-match circuit and harmonic suppression
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
DE102012013534B3 (de) 2012-07-05 2013-09-19 Tobias Sokolowski Vorrichtung für repetitive Nervenstimulation zum Abbau von Fettgewebe mittels induktiver Magnetfelder
US9445729B2 (en) * 2012-07-20 2016-09-20 Resmed Sensor Technologies Limited Range gated radio frequency physiology sensor
GB2506377A (en) * 2012-09-27 2014-04-02 Creo Medical Ltd Electrosurgical apparatus comprising an RF generator, microwave generator, combining circuit and waveguide isolator
BR112015007010B1 (pt) 2012-09-28 2022-05-31 Ethicon Endo-Surgery, Inc Atuador de extremidade
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
JP6009931B2 (ja) * 2012-12-19 2016-10-19 株式会社ダイヘン 高周波電源装置
CN103040519B (zh) * 2012-12-21 2015-01-14 成都美创电子科技有限公司 应用在手术中的低温等离子体发生器及受其控制的刀系统
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9519021B2 (en) * 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9498275B2 (en) * 2013-03-14 2016-11-22 Covidien Lp Systems and methods for arc detection and drag adjustment
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US9336995B2 (en) * 2013-04-26 2016-05-10 Mks Instruments, Inc. Multiple radio frequency power supply control of frequency and phase
GB2513872A (en) 2013-05-08 2014-11-12 Creo Medical Ltd Electrosurgical apparatus
GB2514100B (en) 2013-05-08 2020-04-01 Creo Medical Ltd Apparatus for Controlling Power Delivered by Electrosurgical Probe
GB201308558D0 (en) * 2013-05-13 2013-06-19 Creo Medical Ltd Electrosurgical apparatus
EP3039348A4 (en) * 2013-08-29 2017-05-10 NXP USA, Inc. Integrated solid state microwave power generation modules
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) * 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
WO2015100111A1 (en) 2013-12-23 2015-07-02 Hologic, Inc. Power modulated endometrial lining tissue ablation
GB2521611B (en) 2013-12-23 2020-02-12 Creo Medical Ltd Electrosurgical apparatus and electrosurgical device
GB201322844D0 (en) * 2013-12-23 2014-02-12 Creo Medical Ltd Electrosurgical device
GB201323171D0 (en) 2013-12-31 2014-02-12 Creo Medical Ltd Electrosurgical apparatus and device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US10363085B2 (en) * 2014-01-30 2019-07-30 Fulmer Instruments, Llc Surgical cutting device
WO2015118083A1 (de) * 2014-02-06 2015-08-13 FARIN GüNTER Plasma-applikator für plasmachirurgische verfahren
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
DE102014220640B4 (de) * 2014-08-18 2022-11-10 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Schaltbarer Frequenzfilter
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US9736920B2 (en) * 2015-02-06 2017-08-15 Mks Instruments, Inc. Apparatus and method for plasma ignition with a self-resonating device
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US20180140824A1 (en) * 2015-05-19 2018-05-24 Plasmacure B.V. Non-thermal plasma device
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
DE102015212359A1 (de) * 2015-07-01 2017-01-05 Olympus Winter & Ibe Gmbh Hochfrequenzelektrochirurgieinstrument
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
CN108366823B (zh) * 2015-08-13 2021-04-27 柯惠股份公司 具有变化刚度的捕获部件的电动外科手术方法和装置
US10128874B2 (en) * 2015-08-28 2018-11-13 Qorvo Us, Inc. Radio frequency coupler circuitry
US10357309B2 (en) * 2015-09-21 2019-07-23 Biosense Webster (Israel) Ltd. Ablation current measurement
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
MX2018003941A (es) * 2015-09-30 2018-11-09 Ethicon Llc Generador para generar digitalmente formas de onda de señal eléctrica para instrumentos quirúrgicos ultrasónicos y electroquirúrgicos.
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
GB2545465A (en) 2015-12-17 2017-06-21 Creo Medical Ltd Electrosurgical probe for delivering microwave energy
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
CN105634512A (zh) * 2016-01-18 2016-06-01 南京理工大学 一种基于相关检测技术的微波侦听装置
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
GB2552921A (en) 2016-04-04 2018-02-21 Creo Medical Ltd Electrosurgical probe for delivering RF and microwave energy
US10656233B2 (en) 2016-04-25 2020-05-19 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
GB2552925A (en) 2016-05-17 2018-02-21 Creo Medical Ltd Electrosurgical instrument
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
GB2551117A (en) 2016-05-31 2017-12-13 Creo Medical Ltd Electrosurgical apparatus and method
US10498569B2 (en) * 2016-06-23 2019-12-03 University Of Massachusetts Systems and methods for backscatter communication
US10026592B2 (en) * 2016-07-01 2018-07-17 Lam Research Corporation Systems and methods for tailoring ion energy distribution function by odd harmonic mixing
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
JP6864995B2 (ja) * 2016-07-07 2021-04-28 東京計器株式会社 マイクロ波プラズマ生成装置及びマイクロ波プラズマ生成方法
GB2552169A (en) * 2016-07-11 2018-01-17 Creo Medical Ltd Electrosurgical generator
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
JP6919161B2 (ja) * 2016-08-05 2021-08-18 日産自動車株式会社 絶縁検出装置及び検出システム
JP6994027B2 (ja) * 2016-10-13 2022-01-14 キャスビジョン アーペーエス 電気生理学的信号を記録するためのフィルタリング装置
US20180103991A1 (en) * 2016-10-18 2018-04-19 Btl Holdings Limited Device and method for tissue treatment by combination of energy and plasma
US11654293B2 (en) 2016-11-10 2023-05-23 The Bioregentech Institute, Inc. Laser assisted wound healing protocol and system
WO2018094159A1 (en) * 2016-11-17 2018-05-24 Bovie Medical Corporation Electrosurgical apparatus with dynamic leakage current compensation and dynamic rf modulation
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11751943B2 (en) * 2017-01-26 2023-09-12 State University Research Method for monitoring bronchoscopic-based microwave ablation and related system
GB201705171D0 (en) 2017-03-30 2017-05-17 Creo Medical Ltd Elecrosurgical instrument
GB2561167A (en) 2017-03-30 2018-10-10 Creo Medical Ltd Electrosurgical energy conveying structure and electrosurgical device incorporating the same
GB2560973A (en) 2017-03-30 2018-10-03 Creo Medical Ltd Electrosurgical instrument
DE102017108747A1 (de) * 2017-04-24 2018-10-25 IfP Privates Institut für Produktqualität GmbH Adaptiver halbleiter-mikrowellengenerator zum präzisen erhitzen von objekten und chemischen proben
GB2563377A (en) 2017-05-04 2018-12-19 Creo Medical Ltd Electrosurgical apparatus and method of tissue ablation
GB2563203A (en) 2017-06-01 2018-12-12 Creo Medical Ltd Electrosurgical apparatus
US10716619B2 (en) * 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
GB2564392A (en) * 2017-07-05 2019-01-16 Creo Medical Ltd Apparatus and methods for thermally treating ligaments
GB2565573A (en) 2017-08-17 2019-02-20 Creo Medical Ltd Interface joint for an electrosurgical apparatus
GB2565575A (en) 2017-08-17 2019-02-20 Creo Medical Ltd Electrosurgical apparatus for delivering RF and/or microwave energy into biological tissue
GB2567469A (en) 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical apparatus
GB2567480A (en) 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical resector tool
GB2569812A (en) 2017-12-27 2019-07-03 Creo Medical Ltd Electrosurgical ablation instrument
GB2569811A (en) * 2017-12-27 2019-07-03 Creo Medical Ltd Electrosurgical apparatus
US11523866B2 (en) * 2018-02-14 2022-12-13 Urocam Inc. Multi-carrier ablation generator
US10553400B2 (en) * 2018-03-30 2020-02-04 Applied Materials, Inc. Methods and apparatus for frequency generator and match network communication
GB2573288A (en) * 2018-04-27 2019-11-06 Creo Medical Ltd Microwave amplifier
GB2573823A (en) 2018-05-19 2019-11-20 Creo Medical Ltd Electrosurgical ablation instrument
GB2574219A (en) 2018-05-30 2019-12-04 Creo Medical Ltd Electrosurgical instrument
GB2576481B (en) * 2018-05-30 2022-07-20 Creo Medical Ltd Electrosurgical instrument
US11963717B2 (en) * 2018-06-08 2024-04-23 Nova-Tech Engineering, Llc Energy delivery system using an electric field
WO2019236939A1 (en) * 2018-06-08 2019-12-12 Boston Scientific Scimed, Inc. Systems and methods for tissue coagulation
WO2019241242A1 (en) * 2018-06-13 2019-12-19 Intuitive Surgical Operations, Inc. Systems and methods for powering an antenna
GB2575484A (en) 2018-07-12 2020-01-15 Creo Medical Ltd Electrosurgical instrument
GB2575485A (en) 2018-07-12 2020-01-15 Creo Medical Ltd Electrosurgical instrument
RU2698852C2 (ru) * 2018-07-27 2019-08-30 Сергей Алексеевич Шинкарев Способ гибридной трансанальной резекции прямой кишки
GB2575984B (en) 2018-07-30 2022-09-14 Creo Medical Ltd Electrosurgical instrument
GB2577706A (en) 2018-10-03 2020-04-08 Creo Medical Ltd Electrosurgical instrument
SG11202102457WA (en) 2018-10-18 2021-04-29 Aah Holdings Llc Inductive applicator coil arrangement for therapeutically treating human and animal bodies
GB2578576B (en) 2018-10-30 2022-08-24 Creo Medical Ltd Electrosurgical instrument
GB2579084A (en) 2018-11-20 2020-06-10 Creo Medical Ltd An interface joint for interconnecting an electrosurgical generator and an electrosurgical instrument
GB2579561B (en) 2018-12-03 2022-10-19 Creo Medical Ltd Electrosurgical instrument
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
CA3116569C (en) 2019-04-11 2023-08-15 Btl Medical Technologies S.R.O. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
GB2588070B (en) 2019-04-29 2022-11-16 Creo Medical Ltd Electrosurgical system
GB2583491A (en) 2019-04-30 2020-11-04 Creo Medical Ltd Microwave amplification apparatus for an electrosurgical instrument
GB2583490A (en) 2019-04-30 2020-11-04 Creo Medical Ltd Electrosurgical system
GB2583492B (en) 2019-04-30 2022-11-23 Creo Medical Ltd Electrosurgical instrument with non-liquid thermal transfer
GB2583715A (en) 2019-04-30 2020-11-11 Creo Medical Ltd Electrosurgical system
CN110290611B (zh) 2019-06-06 2022-04-08 恩智浦美国有限公司 加热电器的检测器
GB2587031A (en) * 2019-09-16 2021-03-17 Creo Medical Ltd Electrosurgical apparatus for treating biological tissue with microwave energy, and method for controlling microwave energy
GB2590078A (en) 2019-11-28 2021-06-23 Creo Medical Ltd Electrosurgical resector tool
GB2589589A (en) 2019-12-03 2021-06-09 Creo Medical Ltd Electrosurgical instrument
GB2594438A (en) 2019-12-05 2021-11-03 Creo Medical Ltd Electrosurgical instrument, generator and apparatus
GB2590424A (en) 2019-12-17 2021-06-30 Creo Medical Ltd Electrosurgical instrument and apparatus
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US20210196364A1 (en) * 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument for delivering blended energy modalities to tissue
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
GB2594233A (en) 2019-12-30 2021-10-27 Creo Medical Ltd Electrosurgical generator for delivering microwave energy at multiple frequencies
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
RU199430U1 (ru) * 2020-02-06 2020-09-01 Общество с ограниченной ответственностью фирма "ТЕХНОСВЕТ" Универсальная установка для комплексного разрушения биоткани
US20210259759A1 (en) * 2020-02-20 2021-08-26 Covidien Lp Electrosurgical system and methods of switching between distinct modes and power settings
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
GB2594500A (en) 2020-04-30 2021-11-03 Creo Medical Ltd Sterilisation apparatus for producing plasma and hydroxyl radicals
GB2594501A (en) 2020-04-30 2021-11-03 Creo Medical Ltd Sterilisation apparatus for producing plasma and hydroxyl radicals
CA3173876A1 (en) 2020-05-04 2021-11-11 Tomas SCHWARZ Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
GB2595720A (en) * 2020-06-05 2021-12-08 Creo Medical Ltd Electrosurgical apparatus
GB2597751A (en) 2020-08-03 2022-02-09 Creo Medical Ltd Electrosurgical apparatus, and methods for cutting and coagulation
GB2597769A (en) 2020-08-05 2022-02-09 Creo Medical Ltd Sterilisation apparatus for producing hydroxyl radicals
GB2597795A (en) 2020-08-07 2022-02-09 Creo Medical Ltd Modular apparatus for robot-assisted electrosurgery
GB2600959A (en) 2020-11-12 2022-05-18 Creo Medical Ltd Electrosurgical resector tool
CN112543525B (zh) * 2020-12-14 2023-07-28 湖南顶立科技有限公司 一种中频感应加热炉自适应调频方法及系统
GB2602122A (en) 2020-12-18 2022-06-22 Creo Medical Ltd Electrosurgical resector tool
JP2022117669A (ja) * 2021-02-01 2022-08-12 東京エレクトロン株式会社 フィルタ回路及びプラズマ処理装置
US20220265347A1 (en) * 2021-02-19 2022-08-25 Medtronic Advanced Energy Llc Microwave sealer device and generator
GB202114861D0 (en) 2021-10-18 2021-12-01 Creo Medical Ltd An interface joint for an electrosurgical apparatus
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
GB202117879D0 (en) 2021-12-10 2022-01-26 Creo Medical Ltd Electrosurgical resector tool
GB202118160D0 (en) 2021-12-15 2022-01-26 Creo Medical Ltd Electrosurgical system for identifying and treating biological tissue
GB202119001D0 (en) 2021-12-24 2022-02-09 Creo Medical Ltd Surgical instrument
GB202119002D0 (en) 2021-12-24 2022-02-09 Creo Medical Ltd Fluid delivery apparatus for a surgical instrument
GB202119000D0 (en) 2021-12-24 2022-02-09 Creo Medical Ltd Electrosurgical instrument
EP4206695A1 (en) * 2021-12-28 2023-07-05 Atanas Pentchev Methods and systems for complex rf parameters analysis in rf and mw energy applications
GB202203053D0 (en) 2022-03-04 2022-04-20 Creo Medical Ltd Energy conveying device, generator device, electrosurgical apparatus, and method for reducing leakage a current with an energy conveying device
GB202208971D0 (en) 2022-06-17 2022-08-10 Creo Medical Ltd Interface joint
GB202210323D0 (en) 2022-07-14 2022-08-31 Creo Medical Ltd Electrosurgical instrument for conveying and emitting microwave electromagnetic energy into biological tissue for tissue treatment
US11621587B1 (en) * 2022-07-18 2023-04-04 Caps Medical Ltd. Configurable plasma generating system
US11627652B1 (en) * 2022-07-18 2023-04-11 Caps Medical Ltd. Plasma generating system
GB202211410D0 (en) 2022-08-04 2022-09-21 Creo Medical Ltd Torque transfer unit
US20240056036A1 (en) * 2022-08-15 2024-02-15 Spreadtrum Communications Usa Inc. Tunable matching network for pushpull power amplifier
GB202213582D0 (en) 2022-09-15 2022-11-02 Creo Medical Ltd A coaxial cable
GB202213947D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Joint and articulation mechanism
GB202213951D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213944D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213954D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213952D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Surgical instrument
GB202213942D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213950D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instruments
GB202213948D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus
GB202213953D0 (en) 2022-09-23 2022-11-09 Creo Medical Ltd An apparatus for sensing a biological tissue
WO2024108102A1 (en) * 2022-11-17 2024-05-23 Applied Medical Resources Corporation Impedance matching in electrosurgery
CN115799791A (zh) * 2022-11-30 2023-03-14 西北核技术研究所 一种基于多路铁氧体非线性传输线的高功率微波产生系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582427B1 (en) * 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US20060155270A1 (en) * 2002-11-27 2006-07-13 Hancock Christopher P Tissue ablation apparatus and method of ablating tissue
WO2008044000A1 (en) * 2006-10-10 2008-04-17 Medical Device Innovations Limited Surgical antenna
WO2009060213A1 (en) * 2007-11-06 2009-05-14 Microoncology Limited Microwave plasms sterilisation system and applicators therefor
US20100082083A1 (en) * 2008-09-30 2010-04-01 Brannan Joseph D Microwave system tuner
US20100286686A1 (en) * 2007-09-25 2010-11-11 Christopher Paul Hancock Surgical resection apparatus
EP2253286A1 (en) * 2009-05-19 2010-11-24 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1184158B (de) 1959-11-11 1964-12-23 Zahnradfabrik Friedrichshafen Schleifringlose elektromagnetisch betaetigte Klauen- oder Zahnkupplung
JP2828817B2 (ja) * 1991-12-05 1998-11-25 日本商事株式会社 手術器切換装置
GB9314391D0 (en) * 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US20080167649A1 (en) * 1994-08-12 2008-07-10 Angiodynamics, Inc. Ablation apparatus and method
JP3947577B2 (ja) * 1995-07-31 2007-07-25 オリンパス株式会社 処置システム
US5735847A (en) * 1995-08-15 1998-04-07 Zomed International, Inc. Multiple antenna ablation apparatus and method with cooling element
GB9905210D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgical system
US8696662B2 (en) * 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
GB0624584D0 (en) * 2006-12-08 2007-01-17 Medical Device Innovations Ltd Skin treatment apparatus and method
KR101124419B1 (ko) * 2009-02-18 2012-03-20 포항공과대학교 산학협력단 마이크로파 플라즈마 생성을 위한 휴대용 전력 공급 장치
US8382750B2 (en) * 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582427B1 (en) * 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US20060155270A1 (en) * 2002-11-27 2006-07-13 Hancock Christopher P Tissue ablation apparatus and method of ablating tissue
WO2008044000A1 (en) * 2006-10-10 2008-04-17 Medical Device Innovations Limited Surgical antenna
US20100286686A1 (en) * 2007-09-25 2010-11-11 Christopher Paul Hancock Surgical resection apparatus
WO2009060213A1 (en) * 2007-11-06 2009-05-14 Microoncology Limited Microwave plasms sterilisation system and applicators therefor
US20100082083A1 (en) * 2008-09-30 2010-04-01 Brannan Joseph D Microwave system tuner
EP2253286A1 (en) * 2009-05-19 2010-11-24 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848604A (zh) * 2013-12-09 2016-08-10 科瑞欧医疗有限公司 用于产生射频能量和微波能量以传递到生物组织中的电外科装置
CN105797285A (zh) * 2014-12-30 2016-07-27 中国科学院深圳先进技术研究院 一种高强聚焦超声系统及功率检测方法
CN105797285B (zh) * 2014-12-30 2018-12-04 中国科学院深圳先进技术研究院 一种高强聚焦超声系统及功率检测方法
CN113616319A (zh) * 2015-10-19 2021-11-09 科瑞欧医疗有限公司 电外科仪器
CN113616321A (zh) * 2015-10-19 2021-11-09 科瑞欧医疗有限公司 电外科仪器
CN108702146A (zh) * 2016-02-29 2018-10-23 脉冲生物科学有限公司 高压模拟电路脉冲器和脉冲发生器放电电路
CN108702146B (zh) * 2016-02-29 2022-04-05 脉冲生物科学有限公司 高压模拟电路脉冲器和脉冲发生器放电电路
CN109475381B (zh) * 2016-05-23 2021-09-24 科瑞欧医疗有限公司 用于促进生物组织中的止血的电外科设备和方法
CN109475381A (zh) * 2016-05-23 2019-03-15 科瑞欧医疗有限公司 用于促进生物组织中的止血的电外科设备和方法
CN109196960A (zh) * 2016-05-31 2019-01-11 东京毅力科创株式会社 匹配器及等离子体处理装置
CN106551722A (zh) * 2017-01-03 2017-04-05 中国科学院化学研究所 一种射频治疗系统
CN106992696B (zh) * 2017-03-15 2023-05-23 华南理工大学 一种基于复阻抗压缩技术的高效率整流电路
CN106992696A (zh) * 2017-03-15 2017-07-28 华南理工大学 一种基于复阻抗压缩技术的高效率整流电路
CN112153930A (zh) * 2018-06-06 2020-12-29 直观外科手术操作公司 跨电气隔离屏障进行高速数据传输的系统和方法
CN112153930B (zh) * 2018-06-06 2024-04-23 直观外科手术操作公司 跨电气隔离屏障进行高速数据传输的系统和方法
CN113164198A (zh) * 2018-12-10 2021-07-23 科瑞欧医疗有限公司 模块化电外科系统和用于所述系统的模块
CN110946642A (zh) * 2019-12-13 2020-04-03 天津市鹰泰利安康医疗科技有限责任公司 一种高频双极性不可恢复电穿孔系统
CN113520575A (zh) * 2020-04-14 2021-10-22 厄比电子医学有限责任公司 用于凝固和解剖生物组织的装置和方法
CN111494001B (zh) * 2020-05-12 2021-04-27 北京天星博迈迪医疗器械有限公司 用于生成等离子的医用设备控制电路及等离子医用设备
CN111494001A (zh) * 2020-05-12 2020-08-07 北京天星博迈迪医疗器械有限公司 用于生成等离子的医用设备控制电路及等离子医用设备
CN113820531A (zh) * 2020-06-19 2021-12-21 拓荆科技股份有限公司 一种射频系统状态受控的半导体设备
CN112806981A (zh) * 2021-02-05 2021-05-18 北京大学口腔医学院 一种膝关节健康管理健身裤
CN113662650B (zh) * 2021-08-10 2024-01-23 苏州艾科脉医疗技术有限公司 用于导管的高压发生电路及消融工具
CN113662650A (zh) * 2021-08-10 2021-11-19 苏州艾科脉医疗技术有限公司 用于导管的高压发生电路及消融工具

Also Published As

Publication number Publication date
GB2486343A (en) 2012-06-13
PT2648636E (pt) 2015-02-12
AU2011340307A1 (en) 2013-07-04
EP2648636A1 (en) 2013-10-16
EP2648636B1 (en) 2014-12-03
US9333034B2 (en) 2016-05-10
ES2529669T3 (es) 2015-02-24
WO2012076844A1 (en) 2012-06-14
GB2486343B (en) 2013-03-13
JP2014507175A (ja) 2014-03-27
DK2648636T3 (en) 2015-02-02
GB201121071D0 (en) 2012-01-18
CA2858297A1 (en) 2012-06-14
CA2858297C (en) 2019-01-15
JP5768140B2 (ja) 2015-08-26
GB201021032D0 (en) 2011-01-26
US20130267943A1 (en) 2013-10-10
CN103347455B (zh) 2015-09-30
AU2011340307B2 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
CN103347455B (zh) 用于rf和微波传递的电手术设备
CN103329347B (zh) 利用双射频和微波电磁能量的电手术器械
CN107550560B (zh) 用于切除生物组织的电外科设备的隔离电路
CN105848604A (zh) 用于产生射频能量和微波能量以传递到生物组织中的电外科装置
JP7402525B2 (ja) 電気外科用発生器
CN105592886A (zh) 双功能等离子体和非电离微波凝结电外科器械以及整合所述双功能等离子体和非电离微波凝结电外科器械的电外科设备
CN105848601A (zh) 具有将电磁能和/或热等离子体递送到生物组织中的能力的外科圈套器
CN103327923A (zh) 电手术器械
CN111602336B (zh) 微波放大器
CN109475381A (zh) 用于促进生物组织中的止血的电外科设备和方法
CN110167474A (zh) 电外科装置和电外科仪器
EP4144315B1 (en) Electrosurgical instrument, generator and apparatus
CA3190252A1 (en) Modular apparatus for robot-assisted electrosurgery
CN111133629B (zh) 用于电外科设备的隔离装置
US20230057974A1 (en) Electrosurgical generator for delivering microwave energy at multiple frequencies
GB2464501A (en) Plasma Applicators for Sterilisation
RU2775009C2 (ru) Микроволновый усилитель
RU2777944C2 (ru) Электрохирургический генератор энергии для электроимпульсного открытия клеточных пор
JP2022531111A (ja) 電気手術器具用のマイクロ波増幅装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant