JP2022531111A - 電気手術器具用のマイクロ波増幅装置 - Google Patents

電気手術器具用のマイクロ波増幅装置 Download PDF

Info

Publication number
JP2022531111A
JP2022531111A JP2021562173A JP2021562173A JP2022531111A JP 2022531111 A JP2022531111 A JP 2022531111A JP 2021562173 A JP2021562173 A JP 2021562173A JP 2021562173 A JP2021562173 A JP 2021562173A JP 2022531111 A JP2022531111 A JP 2022531111A
Authority
JP
Japan
Prior art keywords
microwave
signal
voltage
power amplifier
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021562173A
Other languages
English (en)
Other versions
JPWO2020221751A5 (ja
Inventor
ハンコック,クリストファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creo Medical Ltd
Original Assignee
Creo Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creo Medical Ltd filed Critical Creo Medical Ltd
Publication of JP2022531111A publication Critical patent/JP2022531111A/ja
Publication of JPWO2020221751A5 publication Critical patent/JPWO2020221751A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/0066Sensing and controlling the application of energy without feedback, i.e. open loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00869Phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1876Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with multiple frequencies

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Surgical Instruments (AREA)
  • Amplifiers (AREA)

Abstract

様々な実施形態は、電気手術器具のためのマイクロ波増幅装置を提供する。マイクロ波増幅装置は、ケーブルアセンブリ、近位送出部、及び遠位増幅部を備える。近位送出部は、ケーブルアセンブリの近位端に接続されており、近位送出部は、ケーブルアセンブリを通じてDC信号を送出するように構成されたDC源と、ケーブルアセンブリを通じてマイクロ波信号を送出するように構成されたマイクロ波源とを備える。遠位増幅部は、ケーブルアセンブリの遠位端に接続されており、遠位増幅部は、増幅すべき入力信号としてマイクロ波信号を受け取るように構成された電力増幅器を備える。遠位増幅部は、電力増幅器にわたって、DC信号をドレイン電圧として印加するように構成されている。また、電力増幅器は、生体組織にマイクロ波エネルギーを供給するように構成された構造体に、増幅したマイクロ波信号を供給するように接続可能な出力を有する。他の実施形態は、マイクロ波増幅装置を備えた電気手術器具を提供する。

Description

本発明は、生体組織を治療するため、例えば切除または止血を行う(すなわち、血液凝固を促すことにより、破れた血管を封止する)ためにマイクロ波周波数エネルギーが使われる電気手術装置に関する。この電気手術装置は、例えば組織を切断するために、やはり高周波エネルギーを供給する外科手術装置の一部分として用いられることもある。
電磁(EM)エネルギー、特にマイクロ波及び高周波(RF)エネルギーは、体組織を切断する能力、凝固させる能力、及び切除する能力があり、電気外科手術に役立つことが分かっている。一般に、EMエネルギーを体組織に供給するための装置は、エネルギーを組織に供給するために、EMエネルギー源を備える発生器と、この発生器に接続される電気手術器具とを含む。従来の電気手術器具は、多くの場合、患者の体内に経皮的に挿入されるように設計されている。しかし、例えば標的部位が、動いている肺、または胃腸(GI)管の薄肉部分にある場合には、器具を経皮的に体内に設置することは困難であり得る。他の電気手術器具を、気道や、または食道もしくは結腸の管腔などの体内の経路を通すことができる外科手術用スコープデバイス(例えば、内視鏡)により、標的部位に送達することができる。これにより、低侵襲性の治療が可能になり、それによって患者の死亡率を低下させ、術中及び術後の合併症率を低下させることができる。
マイクロ波EMエネルギーを使用する組織切除は、生体組織が主に水で構成されているという事実に基づいている。ヒトの軟器官組織は、通常、70%~80%の水分含量である。水分子は永久電気双極子モーメントを有しており、このことは、分子中に電荷不均衡が存在することを意味する。この電荷不均衡により、分子は、時間的に変化する電界を加えることによって発生する力に応じて、その電気双極子モーメントを加えられた電界の極性と合わせるように回転しながら動く。マイクロ波周波数では、分子が急速に振動することで摩擦加熱を生じ、結果として熱の形で電界エネルギーが散逸する。これは誘電加熱として知られている。
この原理はマイクロ波切除療法において利用され、この療法では、マイクロ波周波数の局所的な電磁界を加えることにより、標的組織中の水分子が急速に加熱され、組織の凝固及び細胞死がもたらされる。肺及び他の器官の様々な症状を治療するために、マイクロ波放射プローブを用いることが知られている。例えば、肺では、マイクロ波放射を用いて、喘息を治療したり、腫瘍または病変を切除したりすることができる。
外科的切除術は、ヒトまたは動物の体内から臓器の一部分を取り除く方法である。そのような臓器は、多数の血管を含み得る。組織が切断されると(分割または横切されると)、細動脈と呼ばれる微小血管が損傷し、または破裂する。初期出血に続いて、出血点をふさごうとして血液が凝血塊に変えられる凝固カスケードが起こる。手術中に、患者が、可能な限り血液を失わないことが望ましく、したがって出血のない切断を提供しようとして、様々なデバイスが開発されてきた。内視鏡処置の場合、血流が手術者の視界を遮る可能性があり、それによって処置が打ち切られ、代わりに別の方法、例えば開腹術を用いざるを得なくなる可能性があるので、出血が生じることも、出血ができるだけ早く、または適切な方法で対処されないことも望ましいことではない。
電気手術用の発生器は、開腹処置及び腹腔鏡処置で用いるために、病院の手術室に広く普及しており、内視鏡検査室にもますます増えつつある。内視鏡処置では、電気手術用のアクセサリが、通常は、内視鏡内の管腔を通して挿入される。腹腔鏡手術のための同等のアクセスチャネルと対照して検討すると、そのような管腔は、比較的内径が狭く、長さがより長い。肥満患者の場合、手術用アクセサリは、ハンドルからRF先端部までの長さが300mmとなることがあるが、腹腔鏡の場合の同等の距離は2500mmを超過し得る。
鋭利なブレードの代わりに、高周波(RF)エネルギーを用いて生体組織を切断することが知られている。RFエネルギーを使用して切断する方法は、電流が(細胞及び細胞間電解質のイオン含有量によって助長されて)組織マトリクスを通過する際に、組織を横切る電子の流れに対するインピーダンスによって熱が生じるという原理を用いて行われる。RF電圧が組織マトリクスに印加されると、細胞内で十分な熱が発生して、組織の水分を気化させる。このように乾燥が増大する結果として、特に組織を通る電流経路全体の中で最も高い電流密度を有する器具のRF放出領域(本明細書ではRFブレードと呼ぶ)に隣接して、RFブレードの切断極に隣接する組織は、ブレードとの直接的な接触を失う。そして、印加された電圧は、この空隙のほぼ全体にわたって発生し、結果的に、この空隙はイオン化してプラズマが形成される。プラズマは、組織と比較して非常に高い体積抵抗率を有する。この差異化により、RFブレードの切断極と組織との間に電気回路を作り上げたプラズマに、加えられたエネルギーが集中するので、この差異化は重要である。十分に低速でプラズマに進入する揮発性物質はいずれも気化され、したがって組織を切り裂くプラズマであると認識されることになる。
GB2486343は、生体組織を治療するためにRFエネルギー及びマイクロ波エネルギーの両方を供給する電気手術装置のための制御システムを開示する。プローブに供給されるRFエネルギー及びマイクロ波エネルギーの両方のエネルギー供給プロファイルは、プローブに伝達されるRFエネルギーのサンプリングされた電圧及び電流の情報と、プローブに伝達されるマイクロ波エネルギー、及びプローブから伝達されるマイクロ波エネルギーのサンプリングされた順方向電力及び反射電力の情報とに基づいて設定される。
最も一般的には、本発明は、可撓性のケーブルアセンブリ、例えば、患者の体内を通して、場合によっては、例えば、内視鏡、気管支鏡などの外科手術用スコープデバイスの器具チャネルを介して、治療部位に挿入するのに適しているケーブルアセンブリの遠位端に設置された電気手術器具の一部分としてのマイクロ波増幅装置を提供する。ケーブルアセンブリは、低電力マイクロ波信号及びDC信号のための共通経路を提供し得る。マイクロ波増幅装置は、低電力マイクロ波入力を治療に適した電力レベルに増幅するように配置された電力増幅器を含む。一例では、ケーブルアセンブリは、電力増幅器のドレイン電圧を提供するための一次DC信号と、電力増幅器のバイアス電圧を提供するための二次DC信号との両方を伝達し得る。別の例では、マイクロ波増幅装置は、単一のDC信号から電力増幅器用のドレイン電圧及びゲート電圧を引き出す回路を遠位端に含む。
両配置は、治療を可能にするのに適した電力レベルのマイクロ波エネルギーが近位側で生成され、次いでケーブルアセンブリによって伝達される従来の構造と対比され得る。本配置は、従前の配置で起こり得る望ましくないケーブル損失を回避することができる。このことは、例を挙げて説明することができる。器具に10Wの電力が必要とされ、ケーブルの長さに沿って10dBの損失がある場合、従来のシステムでは100Wの入力電力を必要とする。このようなシステムでは、ケーブル沿いに90Wの電力が失われるので、近位の増幅器は100W以上の出力電力を達成できなければならない。対照的に、10dBのゲインを有する増幅器を遠位端で使用することにより、本発明の装置は、遠位部で受け取られるマイクロ波信号の電力が1Wであれば、10Wの出力を達成し得る。ケーブル損失が10dBの場合、これにはマイクロ波信号の近位端での電力が10Wであることが必要とされる。したがって、このシナリオでのケーブル沿いの損失(9W)は、従来の配置に比べて一桁小さい。
本発明によれば、電気手術器具用のマイクロ波増幅装置であって、ケーブルアセンブリと、ケーブルアセンブリの近位端に接続された近位送出部であって、近位送出部が、ケーブルアセンブリを通じてDC信号を送出するように構成されたDC源と、ケーブルアセンブリを通じてマイクロ波信号を送出するように構成されたマイクロ波源とを備える、近位送出部と、ケーブルアセンブリの遠位端に接続された遠位増幅部であって、遠位増幅部が、マイクロ波信号を、増幅すべき入力信号として受け取るように構成された電力増幅器を備える、遠位増幅部とを備え、遠位増幅部が、電力増幅器にわたって、DC信号をドレイン電圧として印加するように構成されており、電力増幅器が、生体組織にマイクロ波エネルギーを供給するように構成された構造体に、増幅したマイクロ波信号を供給するために接続可能な出力を有する、マイクロ波増幅装置が提供される。本装置では、DC信号が操作されて、ケーブルアセンブリの遠位端で電力増幅器の動作を可能にする。したがって、装置は、ケーブルアセンブリを通じて高電力マイクロ波信号を伝達させることなく動作する。
装置は、DC信号からバイアス電圧を抽出し、それを電力増幅器のゲートに印加するように構成されたゲート電圧抽出モジュールを含み得る。ゲート電圧抽出モジュールは、遠位増幅部または近位送出部にあり得る。近位送出部にあるとき、DC信号は、2つの別個の成分、すなわち、電力増幅器のドレイン電圧に対応する一次DC信号と、電力増幅器のバイアス電圧に対応する二次DC信号とを含み得る。別個の成分は、ケーブルアセンブリ内の独立した伝送線路によって伝達され得る。
ケーブルアセンブリは、誘電材料によって外部導体から分離された内部導体を備える同軸伝送線路を備え得る。マイクロ波信号は、この同軸伝送線路によって伝達され得る。有利には、DC信号は、内部導体を通じて伝達され得、それにより、共通の伝送線路構造が、マイクロ波信号及びDC信号の両方を伝達するために使用される。他の例では、DC信号は、ケーブルアセンブリ内の別個の伝送線路によって伝達されてもよい。DC信号が2つの成分を有する場合、一方の成分(例えば二次DC信号)を同軸伝送線路の内部導体上で伝送させることができ、他方の成分は別個の伝送線路上で伝送される。
マイクロ波信号は、コンデンサを介して同軸伝送線路に結合され得る。これにより、DC信号が漏れてマイクロ波源に戻るのを防ぐ。DC源は、マイクロ波信号がDC源に漏れるのを防ぐために、ローパスフィルタを含むことができる。
電力増幅器の出力は、構造体に増幅したマイクロ波信号を結合するように構成されたコンデンサを含み得る。コンデンサは、生体組織にマイクロ波エネルギーを供給するための構造体にDC信号が伝わるのを防ぐDCアイソレータとして機能する。すなわち、コンデンサは、DC信号から患者を保護することができる。
ゲート電圧抽出モジュールは、DC信号の電圧をダウンコンバートしてバイアス電圧を生成するように構成されたDC-DCコンバータを備え得る。例えば、DC-DCコンバータは、降圧型コンバータを備えてもよい。
一実施形態では、ゲート電圧抽出モジュールは、DC信号から1対のバイアス電圧を抽出するように構成され得る。1対のバイアス電圧は、電力増幅器の非導通状態に対応する第1のバイアス電圧と、電力増幅器の導通状態に対応する第2のバイアス電圧とを含み得る。例えば、ゲート電圧抽出モジュールは、並列に接続された1対の降圧型コンバータを備えており、1対の降圧型コンバータが、第1のバイアス電圧を生成するための第1の降圧型コンバータと、第2のバイアス電圧を生成するための第2の降圧型コンバータとを備えてもよい。装置は、電力増幅器のゲートに、第1のバイアス電圧または第2のバイアス電圧を選択的に印加するように構成されたゲート制御モジュールをさらに備えてもよい。例えば、ゲート制御モジュールは、デフォルト条件として(電力増幅器が非導通であり、したがって入力信号にゲインを少しも提供しないことを保証するために)第1のバイアス電圧を印加するように構成することができ、特定の状況では(すなわち、組織の治療が求められている場合には)、第2のバイアス電圧を印加するために、この条件を無効にすることができる。例えば、ゲート制御モジュールは、電力増幅器のゲートに、第1のバイアス電圧または第2のバイアス電圧を選択的に印加するように配置されたスイッチを備えてもよい。遠位増幅部は、DC信号によって提供される動作電圧を採用するように配置された電圧レールを備え得る。スイッチは、電圧レールに動作電圧を印加すると、第2のバイアス電圧を選択するように構成されてもよい。言い換えれば、スイッチは電圧レールに動作可能なように接続されており、スイッチの作動は電圧レールの電圧に依存する。電圧レールの電圧が(例えば、DC信号の不在を示す)閾値未満である場合、スイッチはデフォルトの位置を採用し、電力増幅器は非導通状態にある。
ゲート制御モジュールは、電圧レールに動作電圧を印加してから、第2のバイアス電圧を選択するためにスイッチを作動させるまでの間に、タイムラグを導入するように配置された遅延回路をさらに備え得る。
ゲート抽出電圧モジュールは、第1のバイアス電圧及び第2のバイアス電圧の両方に、ドレイン電圧とは逆の極性を持たせるように構成され得る。一例を挙げれば、ドレイン電圧は28V、第1のバイアス電圧は-6V、第2のバイアス電圧は-2Vである。この例では、第2のバイアス電圧は、電力増幅器の特性における導通状態への遷移寸前であるように選ばれている。
マイクロ波信号は、ケーブルアセンブリの近位端で1W以下の電力を有し得る。また一方、増幅したマイクロ波信号は、5W以上、例えば10W以上の電力を有し得る。
遠位増幅モジュールは、DC信号を処理する構成要素をマイクロ波信号から保護するための分離構造を含み得る。例えば、遠位増幅モジュールは、ゲート電圧抽出モジュールと電力増幅器のゲートとの間に接続されたローパスフィルタを含んでもよい。ローパスフィルタは、マイクロストリップ伝送線路上に製造することができる。ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、1対の4分の1波長スタブは、電力増幅器のゲートからnλ/2の距離に位置する第1の4分の1波長スタブと、第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備えてもよく、λはマイクロ波信号の波長であり、nは1以上の整数である。
遠位増幅部は、DC信号によって提供される動作電圧を採用するように配置された電圧レールを備えており、電圧レールが、DC信号を受け取るために、ケーブルアセンブリの遠位端に第1の接続線路によって接続されており、電圧レールが、ドレイン電圧を提供するために、電力増幅器のドレインに第2の接続線路によって接続されている。電圧レールは、ローパスフィルタを適切に配置することにより、ゲート電圧抽出モジュールと同様にしてマイクロ波信号から保護することができる。例えば、第1の接続線路に近位ローパスフィルタが、第2の接続線路に遠位ローパスフィルタがあってもよい。近位ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、この1対の4分の1波長スタブは、第1の接続線路とケーブルアセンブリとの間の接続点からnλ/2の距離に位置する第1の4分の1波長スタブと、第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備え、λはマイクロ波信号の波長であり、nは1以上の整数である。遠位ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、1対の4分の1波長スタブは、電力増幅器のドレインからnλ/2の距離に位置する第1の4分の1波長スタブと、第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備え、λはマイクロ波信号の波長であり、nは1以上の整数である。
別の態様では、上記に示したマイクロ波増幅装置と、電力増幅器の出力に接続された放射先端部であって、放射先端部が、増幅したマイクロ波信号を生体組織に放射するように構成されたアンテナを備える、放射先端部とを含む電気手術器具が提供される。任意の適切なアンテナ構造を用いることができる。例えば、放射先端部は、内部導体が外部導体の遠位端を超えて延在してアンテナを形成する同軸構造を有することができる。あるいは、放射先端部は、対向する表面にメタライゼーションの層を有する絶縁誘電体の平面片を含む平面構造を有してもよい。メタライゼーションの層を、アンテナとして動作するように構成することができる。
マイクロ波増幅装置及び放射先端部は、外科手術用スコープデバイスの器具チャネルを通して挿入可能となる寸法に作られ得る。
放射先端部は、追加の入力、例えば、高周波エネルギーを受け取るように構成することができる。放射先端部は、治療部位に流体を供給するための手段(例えば、針など)を含むことができる。
本明細書では、用語「内側」とは、器具チャネル及び/または同軸ケーブルの中心(例えば軸)に半径方向に、より近いことを意味する。用語「外側」とは、器具チャネル及び/または同軸ケーブルの中心(軸)から半径方向に、より離れていることを意味する。
本明細書では、用語「伝導性」とは、文脈による別段の指示がない限り、電導性という意味で使用される。
本明細書では、用語「近位」及び「遠位」とは、細長い器具の端のことをいう。使用の際に、近位端は、RF及び/またはマイクロ波エネルギーを提供するための発生器により近く、一方、遠位端は、発生器からより遠くにある。
本明細書では、「マイクロ波」は、400MHz~100GHzの周波数範囲を指すために広く使われ得るが、好ましくは1GHz~60GHzの範囲を指す。マイクロ波EMエネルギーの好ましいスポット周波数には、915MHz、2.45GHz、3.3GHz、5.8GHz、10GHz、14.5GHz、及び24GHzが含まれる。5.8GHzが好ましい場合がある。デバイスは、これらのマイクロ波周波数のうちの複数の周波数でエネルギーを供給し得る。
用語「高周波」または「RF」は、300kHz~400MHzの周波数を示すために使用され得る。
以下、添付の図面を参照しながら本発明の実施形態を詳細に説明する。
本発明の理解を支援するための電気手術装置の全体的な概略システム図である。 本発明が使用され得る電気手術器具の遠位端の分解図である。 本発明の実施形態である、遠位器具に基づくマイクロ波発生モジュールの概略図である。 同軸伝送線路の近位端にDC電力及び低電力マイクロ波エネルギーを送出するための構成要素の概略図である。 本発明の実施形態のための遠位マイクロ波増幅モジュールを示す概略回路図である。 本発明の別の実施形態である、遠位器具に基づくマイクロ波発生モジュールの概略図である。
さらなる選択肢と好適例
背景-電気手術装置
図1は、本発明の理解に役立つGB2486343に開示されているような電気手術装置400の概略図である。この装置は、RFチャネル及びマイクロ波チャネルを備える。RFチャネルは、生体組織の治療(例えば切断または乾燥)に適した電力レベルのRF周波数電磁信号を生成し、制御するための構成要素を含む。マイクロ波チャネルは、生体組織の治療(例えば凝固または切除)に適した電力レベルのマイクロ波周波数電磁信号を生成し、制御するための構成要素を含む。以下に、より詳しく説明するように、本発明は、この装置のマイクロ波チャネルを置き換えることができるマイクロ波エネルギーの供給手段を提供するものである。
マイクロ波チャネルは、マイクロ波周波数源402と、その後段に続くパワースプリッタ424(例えば、3dBパワースプリッタ)とを有し、パワースプリッタ424は、源402からの信号を2つに分岐する。パワースプリッタ424からの一方の分岐は、マイクロ波チャネルを形成する。このマイクロ波チャネルは、制御信号V10を介してコントローラ406によって制御される可変減衰器404と、制御信号V11を介してコントローラ406によって制御される信号変調器408とを備える電力制御モジュールと、治療に適した電力レベルでプローブ420から供給するために順方向マイクロ波EM放射を生成するための駆動増幅器410及び電力増幅器412を備える増幅器モジュールとを有する。増幅器モジュールの後に、マイクロ波チャネルは、(マイクロ波信号検出器の一部分を形成する)マイクロ波信号結合モジュールに続く。このマイクロ波信号結合モジュールは、サーキュレータ416であって、その第1のポートと第2のポートとの間の経路に沿って、周波数源からプローブにマイクロ波EMエネルギーを供給するように接続されているサーキュレータ416と、サーキュレータ416の第1のポートにある順方向結合器414と、サーキュレータ416の第3のポートにある反射方向結合器418とを備える。第3のポートからのマイクロ波EMエネルギーは、反射方向結合器を通過した後、パワーダンプ負荷422に吸収される。マイクロ波信号結合モジュールはまた、順方向結合信号または反射結合信号のいずれかを検出のためにヘテロダイン受信機に接続するための、制御信号V12を介してコントローラ406によって作動される、スイッチ415を含む。
パワースプリッタ424からの他方の分岐は、測定チャネルを形成する。測定チャネルは、マイクロ波チャネル上の増幅列をバイパスするので、プローブから低電力信号を供給するように構成される。制御信号V13を介してコントローラ406によって制御される一次チャネル選択スイッチ426は、マイクロ波チャネルまたは測定チャネルのいずれかからの信号を選択してプローブに供給するよう動作可能である。マイクロ波信号発生器を低周波RF信号から保護するために、一次チャネル選択スイッチ426とプローブ420との間に高域通過フィルタ427が接続される。
測定チャネルは、プローブから反射される電力の位相及び大きさを検出するように配置された構成要素を含み、この構成要素は、プローブの遠位端にある物質、例えば生体組織についての情報をもたらし得る。測定チャネルは、サーキュレータ428であって、その第1のポートと第2のポートとの間の経路に沿って、源402からプローブにマイクロ波EMエネルギーを供給するように接続されたサーキュレータ428を備える。プローブから戻ってきた反射信号が、サーキュレータ428の第3のポートに導かれる。サーキュレータ428は、順方向信号と反射信号とを分離して、正確な測定を容易にするために用いられる。ただし、サーキュレータは、その第1のポートと第3のポートとを完全には分離しないため、すなわち、順方向信号の一部が第3のポートに漏出して反射信号に干渉する可能性があるため、(順方向結合器430からの)順方向信号の一部を(注入結合器432を介して)第3のポートから出てくる信号に注入し戻す搬送波相殺回路を使用してもよい。搬送波相殺回路は、注入された部分が、第1のポートから第3のポートに漏出してくる全ての信号と、その信号を相殺するために、180°位相がずれていることを保証する位相調節器434を含む。搬送波相殺回路はまた、注入された部分の大きさが、全ての漏出信号と同じであることを保証する信号減衰器436を含む。
順方向信号のドリフトを補償するために、測定チャネル上に順方向結合器438が設けられる。順方向結合器438の結合出力と、サーキュレータ428の第3のポートからの反射信号とは、スイッチ440のそれぞれの入力端子に接続される。このスイッチ440は、結合された順方向信号、または反射信号のいずれかを検出のためにヘテロダイン受信機に接続するように、制御信号V14を介してコントローラ406によって作動される。
スイッチ440の出力(すなわち、測定チャネルからの出力)及びスイッチ415の出力(すなわち、マイクロ波チャネルからの出力)は、二次チャネル選択スイッチ442のそれぞれの入力端子に接続される。この二次チャネル選択スイッチ442は、測定チャネルがプローブにエネルギーを供給しているときに、測定チャネルの出力がヘテロダイン受信機に接続され、マイクロ波チャネルがプローブにエネルギーを供給しているときに、測定チャネルの出力がヘテロダイン受信機に接続されるのを確実にするように、一次チャネル選択スイッチと連動して、制御信号V15を介してコントローラ406によって動作可能である。
ヘテロダイン受信機は、二次チャネル選択スイッチ442によって出力される信号から、位相及び大きさの情報を抽出するのに使用される。このシステムでは、シングルヘテロダイン受信機を示しているが、必要ならば、信号がコントローラに入る前にソース周波数を2度ミックスダウンするダブルヘテロダイン受信機(2つの局部発振器及び混合器を含む)を使用してもよい。ヘテロダイン受信機は、局部発振器444と、二次チャネル選択スイッチ442によって出力される信号をミックスダウンするための混合器448とを備える。局部発振器信号の周波数は、混合器448からの出力が、コントローラ406で受け取られるのに適した中間周波数になるように選択される。局部発振器444及びコントローラ406を高周波マイクロ波信号から保護するために、帯域通過フィルタ446、450が設けられる。
コントローラ406は、ヘテロダイン受信機の出力を受け取り、この出力から、マイクロ波チャネル上または測定チャネル上の順方向信号及び/または反射信号の位相及び大きさを示す情報を求める(例えば、抽出する)。この情報を使用して、マイクロ波チャネル上の高電力マイクロ波EM放射、またはRFチャネル上の高電力RF EM放射の供給を制御することができる。ユーザは、ユーザインタフェース452を介してコントローラ406とインタラクトすることができる。
図1に示すRFチャネルは、制御信号V16を介してコントローラ406によって制御されるゲートドライバ456に接続されたRF周波数源454を備える。ゲートドライバ456は、ハーフブリッジ配置であるRF増幅器458に動作信号を供給する。このハーフブリッジ配置のドレイン電圧は、可変DC電源460によって制御可能である。出力変圧器462が、生成されたRF信号を、プローブ420に供給するための線路上に伝達する。その線路上には、高周波マイクロ波信号からRF信号発生器を保護するために、ローパスフィルタ、帯域通過フィルタ、帯域消去フィルタ、またはノッチフィルタ464が接続されている。
組織負荷に供給される電流を測定するために、変流器466がRFチャネル上に接続される。電圧を測定するために、(出力変圧器から取り出されてもよい)分圧器468が用いられる。分圧器468及び変流器466からの出力信号(すなわち、電圧及び電流を示す電圧出力)は、それぞれの緩衝増幅器470、472及び電圧クランプ用ツェナーダイオード474、476、478、480によって調整された後、コントローラ406に直接接続される(図1に信号B及びCとして示す)。
位相情報を得るために、電圧信号及び電流信号(B及びC)はまた、位相比較器482(例えばEXORゲート)にも接続される。この位相比較器482の出力電圧は、RC回路484によって積分されて、電圧波形と電流波形との間の位相差に比例する電圧出力(図1にAとして示す)を生成する。この電圧出力(信号A)は、コントローラ406に直接接続される。
マイクロ波/測定チャネル及びRFチャネルは、信号結合器114に接続される。この信号結合器114は、ケーブルアセンブリ116を通じて、両種類の信号を別々にまたは同時にプローブ420に伝達する。信号は、プローブ420から患者の生体組織に供給される(例えば放射される)。ケーブルアセンブリ116は、外科手術用スコープデバイス(図示せず)の器具(作業)チャネルの全長にわたって挿入可能であり得る。プローブ420は、外科手術用スコープデバイスの器具チャネルを通過し、内視鏡の管の遠位端で(例えば、患者の体内に)突出するように形作られ得る。プローブ420は、RF EMエネルギー及び/またはマイクロ波EMエネルギーを生体組織に供給するためのアクティブ先端部と、流体を供給するための格納式皮下注射針とを含み得る。これらの複合技術は、不必要な組織を切断し、破壊するための独自のソリューションと、標的領域の周囲の血管を封止する機能とを提供する。
マイクロ波チャネルと信号結合器114との接合部には、導波管アイソレータ(図示せず)が設けられ得る。導波管アイソレータは、3つの機能、すなわち、(i)非常に高いマイクロ波電力(例えば10Wを超える)の通過を可能にすること、(ii)RF電力の通過を遮断すること、及び(iii)高い耐電圧(例えば10kVを超える)を提供することを実行するように構成され得る。また、導波管アイソレータに(例えば内部に)、または導波管アイソレータに隣接して、容量性構造(DCブレークとも呼ばれる)が設けられ得る。容量性構造の目的は、隔離障壁を越える容量結合を低減させることである。
背景-電気手術器具
図2は、本発明を適用することができる電気手術器具である例示的なプローブ214(遠位端アセンブリまたは器具先端部と呼ばれることもある)の分解図を示す。プローブ214は、例えば、図1を参照して上で述べたケーブルアセンブリ116に対応する可撓性シャフトの外側カニューレ管216の遠位端に取り付けられている。カニューレ管216は、流体を器具先端部に運ぶための管腔を画定する可撓性スリーブを形成しており、器具先端部は、その遠位端で固定されている。トルク伝達機能を提供するために、外側カニューレ管216は、例えば、半径方向内側のポリマー層と半径方向外側のポリマー層との間に取り付けられた編組線(例えばステンレス鋼)ラップを含む編組管で形成されており、このポリマーは例えばPebax(登録商標)であってもよい。
外側カニューレ管216は、その遠位端で、可撓性導管であり得る非編組管状部分218に接続されている。管状部分218は、任意の好適なポリマー材料、例えばPebax(登録商標)などから形成され得る。管状部分218は、軸方向の長さ(すなわちシャフト軸に沿った長さ)が、1mm以上であり得る。このことは、マイクロ波エネルギーの使用中に、容量性コンダクタンスの結果として編組が加熱されるリスクを回避するために、編組の端部と遠位端アセンブリ214の近位端との間に、安全な距離が導入されることを確実にし得る。この配置は、平面伝送線路の2つのプレートまたは同軸伝送線路内の2つの導体が、短絡すること、または互いに接続されることを防ぐこともできる。
管状部分218は、「ソフト先端部」218と呼ばれることもある。ソフト先端部218は、いくつかの例では、スリーブまたはカニューレ管216の遠位端に結合された追加の長さのポリマー管であり得る。結合には、任意の好適な接着剤、例えばエポキシなどを使用してもよい。管状部分218とカニューレ管216との間の接合部上に、追加の機械的強度を提供することによってこの接合箇所を補強するために、支持管217が取り付けられ得る。支持管217は、管状部分218及びカニューレ管216の両方が、その中で例えば接着によって固定される短いポリマー管部分であってもよい。支持管217は、可撓性であってもよく、及び/またはシャフトの可撓性に悪影響を及ぼさないことを確実にするように選ばれた長さを有し得る。
管状部分218、カニューレ管216、及び支持管217の接合部はまた、シャフトの遠位端にさらなる構造的強度を提供するために、熱収縮スリーブ(図示せず)内に取り込まれ得る。
カニューレ管216内の編組により、シャフトの近位端に加えられるトルクを、器具先端部の回転運動に変換することが可能になる。
管状部分218の遠位端は、保護外殻222の対応する近位部220上に適合するように構成される。保護外殻222は、生体組織との摩擦が少ない剛性の高い材料、例えばステンレス鋼から形成される。外殻222は、好ましくは金属材料から形成されるが、非金属材料、例えばセラミックから形成されてもよい。外殻は、
-遠位端アセンブリ214をカニューレ管216に固定すること、
-周囲の生体組織にエネルギーを供給するアクティブ先端部構造に、保護下面を提供すること、
-格納式の針を保護するハウジングと支持フレームとを提供すること、及び
-組み立て時とその後の使用時に、同軸ケーブルに対してアクティブ先端部構造を位置決めすることのためのいくつかの機能を果たすように形成されている。
これらの機能を果たす外殻222の構造の部分については、以下に、より詳しく説明する。
本発明の実施形態では、保護外殻222は、図3~図5を参照して、より詳細に説明するように、マイクロ波発生回路の遠位構成要素(本明細書では遠位マイクロ波発生モジュールとも呼ぶ)を収容するようにさらに構成される。
遠位端アセンブリ214は、アクティブ先端部224を含み、このアクティブ先端部224は、その上面及び下面に導電層(例えばメタライゼーションの層)を有する誘電材料221(例えば、アルミナ)の平面片である。導電層はそれぞれ、カニューレ管216によって運ばれる同軸ケーブル142の内部導体228及び外部導体226のそれぞれ一方に電気的に接続されている。同軸ケーブル142の遠位端で、その外側シースが取り除かれて、ある長さの外部導体226が露出する。同軸ケーブルの内部導体228は、外部導体226の遠位端を越えて延在する。後述するように、同軸ケーブル142とアクティブ先端部224とは、内部導体228の突出部分がアクティブ先端部の第1の導電層上に横たわり、一方、外部導体226が保護外殻222を介して第2の導電層と電気的に接続されるに至るように、互いに対して取り付けられている。第1の導電層が外部導体226から分離され、第2の導電層が内部導体228から分離される。
導電層は、高融点導体、例えばWまたはTiから形成され得る。しかし、一例を挙げれば、同軸ケーブル142の内部導体及び外部導体とアクティブ先端部224との間の電気的接続において、はんだの使用を容易にするために、電気的接続が行われる導電層上の近位領域に、より融点の低い導体を堆積させてもよい。このより融点の低い導体は、銀(Ag)または金(Au)であってもよい。
アクティブ先端部224の遠位端は、患者の体内で鋭い角が出現するのを避けるために湾曲させてある。
外部導体226は、保護外殻222を介して、アクティブ先端部224の下面にある下部導電層に電気的に接続される。保護外殻222の近位端には、同軸給電ケーブル142の遠位端を受け入れて支持するためのU字型チャネル248が形成されている。遠位端アセンブリは、外部導体226の露出部分がU字型チャネル248内に収まるように構成されている。外部導体226の露出部分を圧着するために、スリーブまたはカラーなどの導電性要素230が用いられる。圧着に起因する圧縮は、同軸ケーブルが、保護外殻222によって受け入れられる領域において変形することを意味する。例えば、同軸ケーブルの外部導体226が露出している部分は、楕円形の断面を有していてもよく、それにより、U字型チャネル248の側面に当接して、安定した電気的接触を形成する。すなわち、圧着された外部導体226は、締まりばめを介して外殻によって保持され得る。
外部導体226とアクティブ先端部224上の下部導電層229との間の電気的接続を仕上げるために、保護外殻222が、例えば、はんだ付けによって下部導電層に電気的に結合される(例えば図5参照)。本実施形態では、この目的のために、はんだプリフォーム231が提供される。はんだプリフォーム231は、保護外殻222の上面に形成された凹部249内に受容可能なように成形されている。この例では、凹部49は長方形であり、はんだプリフォーム231はこれに対応する形状を有しているが、任意の好適な形状を使用することができる。凹部249は、はんだが、確実に、アクティブ先端部224の下面と保護外殻222との間にのみ存在するように、すなわち、アクティブ先端部224の側縁へ流れないように、保護外殻の縁から後退させてある。組み立てられたときに、はんだプリフォーム231は、上記の低融点の導体(例えば金)で被覆されたアクティブ先端部224の下面上の領域と合致し得る。はんだ付けプロセスを容易にするために、構成要素が組み立てられる際に、はんだプリフォームと共に、好適なフレックス(図示せず)が設けられてもよい。はんだ付けプロセス自体は、誘導はんだ付けであってもよい。誘導はんだ付けの効果は、はんだプリフォーム231におけるアクティブ先端部224及び保護外殻222の領域に限定されてもよい。
上記の構成は、保護外殻222が、(i)アクティブ先端部224、(ii)はんだプリフォーム231、及び(iii)同軸ケーブル142の全てを、正確で再現性のある組み立てを保証する固定された空間的な関係で保持するので有利である。
本発明の実施形態では、同軸ケーブル142の遠位部分とアクティブ先端部224との間の接続は、以下でより詳細に説明するように、遠位マイクロ波発生モジュールを介して行われてもよい。
遠位端アセンブリは、保護外殻222の下面に形成された凹部内に保持される針ガイド232をさらに備える。針ガイド232は、例えばポリイミド製の中空管(例えばフェルール)であり、その中に皮下注射針234が摺動可能に取り付けられる。針234は、カニューレ管216の中にある液体を受け取って治療部位に供給するために、カニューレ管216の内部容積と流体連通している。
遠位端アセンブリ214が組み立てられた後、遠位端アセンブリ214は、締まりばめ及び接着剤(例えば、エポキシ)により、管状部分218の遠位端内に固定され得る。接着剤はまた、管状部分218の遠位端のためのプラグを形成して流体密封を提供することができ、この流体密封は、界面接合箇所に導入される流体の唯一の出口が、針234を通ることを結果としてもたらす。同様に、内部導体228と上部導電層227との間の接合部(例えば、はんだ付けされた接合箇所)は、好適な接着剤(例えばエポキシ)から形成され得る保護カバー251(図5参照)を有し得る。保護カバー251は、保護外殻222とアクティブ先端部224との間の接続を強化することができ、その一方では管状部分218の末端プラグ、すなわち、界面接合箇所に導入される流体の唯一の出口が針を通ることを結果としてもたらす流体密封をも形成する。
使用時には、アクティブ先端部224が患者と密接に接触する。針234は、針234の展開及び後退を行わせるための制御ワイヤ235に作用する界面接合箇所上の摺動機構の制御を介して、アクティブ先端部224の遠位端を越えて伸長させ、ガイド管232の内部に戻る位置まで後退させることができる。針は、その伸ばされた位置において、組織の局所的膨張及び/またはマーキングを行う目的で流体を注入するのに使用される。アクティブ先端部224上の導電層は、RF及び/またはマイクロ波の電磁エネルギーを供給するための双極電極を形成する。
針ガイド232は、遠位アセンブリの内側及び近位に後進延在して、拡張された沿面クリアランスを提供し、それによってRF/マイクロ波の活性化がアクティブ先端部224の遠位先端部領域にわたってのみ生じることを確保する。
器具によるマイクロ波増幅
図3は、本発明の実施形態であるマイクロ波発生装置300を示す。マイクロ波発生装置300は、可撓性ケーブルアセンブリ306によって分離された近位送出部302及び遠位増幅部304を有する。ケーブルアセンブリ306は、図1に関して上で述べたケーブルアセンブリ116に対応し得る。
近位送出部302は、DC電力及びマイクロ波信号310の両方をケーブルアセンブリ306に送出するように機能する。ケーブルアセンブリ306は、マイクロ波信号310を遠位増幅部304に伝達するための同軸伝送線路を備える。ケーブルアセンブリ306は、DC電力を遠位増幅部304に伝達するための独立した細長い導体(例えばワイヤ)を含み得る。しかし、有利には、マイクロ波信号310を伝える同軸伝送線路の内部導体上にDC電力を送出してもよい。
近位送出部302は、DC電力を発生させるためのDC電力発生器316を備える。DC電力発生器316は、例えば、28Vの電圧VDDを有するDC信号を出力し得る。
近位送出部302は、マイクロ波信号310を生成するように配置されたマイクロ波信号発生器314を備える。マイクロ波信号発生器314については、図4を参照して後述する。マイクロ波信号発生器314からのマイクロ波信号310は、コンデンサ312を介して同軸伝送線路に結合されており、このコンデンサ312は、DC電力発生器316からのDC信号がマイクロ波信号発生器314に漏れるのを防ぐためのDC隔離障壁として機能する。
マイクロ波発生器314からのマイクロ波信号310は、生体組織を治療する(例えば、切除する、または凝固させる)のに必要な電力レベルよりも小さい電力レベルを有し得る。例えば、マイクロ波発生器314から出力されるマイクロ波信号310は、10W以下の電力レベルを有し得る。ケーブルアセンブリが、その長さに沿って10dBの損失を示す場合、このことは、遠位端におけるマイクロ波信号322の電力が1Wであることを意味する。したがって、電力増幅器320が10dBのゲインを示す場合、治療に利用可能な電力は10Wである。
マイクロ波信号発生器から低電力マイクロ波信号を伝送することは、ケーブルアセンブリ306を介した伝送中に失われる電力が少ないことを意味する。これにより、マイクロ波損失によるケーブルアセンブリ306の加熱を回避し、または低減させ、したがってケーブルアセンブリの経路に沿って偶発的に組織が加熱されるリスクを回避する。
遠位増幅部304は、ケーブルアセンブリ306から受け取ったマイクロ波信号310を、治療に適した電力レベルに増幅するように機能する。増幅したマイクロ波信号318は、遠位増幅部304によって出力されると、コンデンサ319を介して、上記のアクティブ先端部224などの器具先端部308に結合され、そこから治療部位の生体組織に供給される(例えば、放射または他の方法で発せられる)。コンデンサ319は、器具先端部308と遠位増幅部304との間のDC障壁として動作して、DC信号が器具先端部に到達するのを防止する。
遠位増幅部304は、例えばパワーMOSFETなどの電力増幅器320を含む。電力増幅器320は、同軸伝送線路から出力されたマイクロ波信号322を入力として受け取る。電力増幅器320への入力は、コンデンサ324により、ケーブルアセンブリ306内のDC信号から保護されている。
遠位増幅部304は、マイクロ波信号からDC電力を分離し、それを電力増幅器320の両端に印加するように配置されている。遠位増幅部304は、DC信号(VDD)が印加される電圧レール326を含み得る。マイクロ波信号322は、以下に、より詳細に説明するように、1対の4分の1波長スタブを備え得るフィルタリング配列328によって、電圧レール326から遮断され得る。同様に、マイクロ波エネルギーが電力増幅器320から電圧レール326上に漏れ出すのを防ぐために、電圧レール326と電力増幅器320との間の接続部に、フィルタリング配列330を配置することもできる。
遠位増幅部304は、電力増幅器320のゲートに印加されるバイアス電圧VGGをDC信号から引き出すように動作するゲート電圧抽出モジュール332をさらに備える。ゲート電圧抽出モジュール332は、DC-DCコンバータを含んでもよく、このDC-DCコンバータは、DC信号電圧を電力増幅器320に適したレベルにダウンコンバートする。
遠位増幅部304は、電力増幅器320へのゲート電圧の印加を制御するためのゲート制御モジュール334をさらに備え得る。以下に、より詳細に説明するように、ゲート制御モジュール334は、電力増幅器320のオン(導通)状態とオフ(非導通)状態とにそれぞれ対応する2つのバイアス電圧状態を切り替えるように動作してもよい。ゲート制御モジュール334は、増幅プロセスの円滑な初期化を確保するために、電力増幅器320にわたる(すなわち、そのドレイン電圧としての)DC信号の印加と、電力増幅器320をオンにするためのバイアス電圧の印加との間に、時間遅延を導入するように動作してもよい。
マイクロ波エネルギーが電力増幅器320からゲート制御モジュール334に漏れるのを防ぐために、ゲート制御モジュール334と電力増幅器320のゲートとの間の接続部に、フィルタリング配列336が配置されてもよい。
ゲート電圧抽出モジュール332及びゲート制御モジュール334の詳細な構造については、図5を参照して後述する。
使用時にマイクロ波発生装置300は、このようにして、低電力の入力マイクロ波信号を治療に適した電力レベルに増幅することを実行する。増幅した電力レベルは、入力電力レベルよりも1桁以上高くすることができ、例えば10W以上である。この構成により、ケーブルアセンブリ306に沿った電力の損失が非常に少なくなり、それにより、ケーブルアセンブリ306が通る経路に沿って組織が誤って加熱されるリスクが低減されることになる。
遠位増幅部304は、図2に示す遠位端アセンブリ214内に設置されてもよい。例えば、遠位増幅部304は、アクティブ先端部224の近位端と同軸ケーブル142の遠位端との間に配置されてもよい。保護外殻222は、遠位増幅部304の構成要素を支持するために、基板(例えばPCBなど)をその上に実装していてもよいし、または基板(例えばPCBなど)であってもよい。
図4は、同軸伝送線路370の近位端にマイクロ波信号及びDC信号が送出される近位送出部302の例の概略図である。図3と共通する特徴には同じ参照番号を付け、改めて説明しない。同軸伝送線路370は、誘電材料374によって外部導体376から分離された内部導体372を備える。同軸伝送線路370は、例えば、Huber+Suhnerによって製造されたSucoformケーブルであってもよい。
図4は、マイクロ波信号発生器314のための構成要素を示す。本例では、マイクロ波信号発生器314は、マイクロ波周波数源378と、その後段に続く可変減衰器380とを有しており、これらは、図1に示すシステムと同じようにして、制御信号を介してコントローラ(図示せず)によって制御されてもよい。可変減衰器380の出力は、信号変調器382に入力され、この信号変調器382は、例えばマイクロ波信号にパルス状の波形を適用するように、コントローラによって制御されてもよい。信号変調器からの出力は、駆動増幅器384に入力されて、遠位増幅部に伝送するための所望の電力レベルでマイクロ波信号を発生させる。マイクロ波信号は、コンデンサ312を介して同軸伝送線路370に結合される。
DC電力発生器316は、同軸伝送線路370の内部導体372にDC電圧を印加するように接続された電圧源386を備える。電圧源386は、スイッチモード電源であり得るか、または装置を携帯可能にするために、電池を使用してもよい。接続部は、マイクロ波信号の電圧源386への逆伝送を防止するためにローパスフィルタ390が設けられているマイクロストリップ伝送線路388の一部分であり得るか、またはマイクロストリップ伝送線路388を含み得る。ローパスフィルタ390は、マイクロストリップ伝送線路388上に1対の4分の1波長スタブ392、394を備える。第1のスタブ392は、同軸伝送線路370の内部導体372への接続点396から半波長(すなわちnλ/2)の距離に設置されている。ただし、λは、マイクロ波伝送線路388上のマイクロ波信号の波長であり、nは、1以上の整数である。これにより、第1の4分の1波長(すなわち((2n-1)λ)/4)スタブ392の基部が短絡状態にあり、したがって4分の1波長スタブ392の他端が開回路状態にあることが確実となる。第2の4分の1波長スタブ394は、第1のスタブから半波長(すなわちnλ/2)の距離だけ間隔を空けて配置されている。
DC電力発生器316は、DC信号経路上の他の不要なAC要素を取り除くために、DC信号を伝達する伝送線路にシャント接続されたコンデンサのセット387をさらに備える。
図5は、本発明の実施形態のための遠位マイクロ波増幅モジュール304を示す概略回路図である。前の図面と共通する特徴には同じ参照番号を付け、改めて説明しない。
本例では、ケーブルアセンブリ306の遠位端が、遠位マイクロ波増幅モジュール304に接続されている。ケーブルアセンブリ306は、マイクロ波信号及びDC信号の両方を伝達する、上で述べた同軸伝送線路370を含み得る。遠位マイクロ波増幅モジュール304は、フィルタを使用してDC信号からマイクロ波信号を分割する。DC信号は、マイクロ波信号の通過を阻止するように配置された1対の4分の1波長スタブ328を備えるローパスフィルタを有する第1の接続線路502を介してDCレール326に進む。
この1対のスタブ328は、マイクロストリップ伝送線路上に作製されてもよい。第1のスタブは、同軸伝送線路の内部導体への接続点から半波長(すなわちnλ/2)の距離に設置されている。ただし、λは、マイクロ波伝送線路上のマイクロ波信号の波長であり、nは、1以上の整数である。これにより、第1の4分の1波長(すなわち((2n-1)λ)/4)スタブの基部が短絡状態にあり、したがって4分の1波長スタブの他端が開回路状態にあることを確実にする。第2の4分の1波長スタブは、第1のスタブから半波長(すなわちnλ/2)の距離だけ間隔を空けて配置されている。
一方、マイクロ波信号は、接続線路504沿いに電力増幅器320に進み、そこで増幅すべき入力信号となる。接続線路504は、マイクロストリップ伝送線路などであってもよい。接続線路504は、マイクロ波信号が結合されるが、DC信号を遮断するコンデンサ324を含む。したがって、コンデンサ324は、ケーブルアセンブリ306内の同軸伝送線路370から伝達される任意のDC成分から電力増幅器320を隔離する。
接続線路506は、電圧レール326を電力増幅器320に接続して、電力増幅器320にわたって(すなわちドレイン電源として)DC信号の電圧を印加する。接続線路506上の電力増幅器320からマイクロ波エネルギーが漏れ出るのを防ぐために、1対の4分の1波長スタブ330がローパスフィルタとして配置されている。1対のスタブ330は、接続線路506と電力増幅器320との間の接続点に関してではあるが、スタブ328と同じようにして配置されてもよい。
接続線路506は、DC信号経路上の他の不要なAC要素を取り除くために、DC信号を伝達する接続線路にシャント接続されたコンデンサのセット508をさらに備える。
接続線路506は、電力増幅器320と電圧レール326との間に直列に接続されたインダクタ510をさらに備える。このインダクタンスにより、電圧レール326へのAC信号の漏れがさらに抑制される。
上に述べた接続線路のそれぞれは、DC信号またはマイクロ波信号を必要に応じて伝達するための適切な伝送線路として実装することができる。例えばコンパクトな構成にまとめられ得る可撓性の基板上にあるマイクロストリップ線路が好適な例である。
本実施形態では、遠位マイクロ波増幅モジュール304は、電圧レール326から電力増幅器用のバイアス電圧VGGを抽出するように構成されている。電圧レール326は、比較的高い電圧、例えば28Vまたは同じような電圧であってもよいが、その一方で電力増幅器320のためのバイアス電圧は、1桁低い電圧である必要があり得る。バイアス電圧を得るために、遠位マイクロ波増幅モジュール304は、ゲート電圧抽出モジュール332を含む。ゲート電圧抽出モジュール332は、DC-DCコンバータとして機能し、本実施形態では、1対の並列降圧型コンバータ512、514として実装されており、これらのそれぞれが異なる電圧を出力するように構成されていて、バイアス電圧を2つの異なる状態に切り替えることができるようにする。
各降圧型コンバータ512、514は、入力電圧を提供するために電圧レール326に接続されている。各降圧型コンバータ512、514内の静電容量及びインダクタンスの値は、入力電圧を所望の出力電圧に変換するように選択される。出力電圧は、電力増幅器の動作特性に基づいて選択することができる。本例では、降圧型コンバータ512、514は、ダイオードを用いて各コンバータにおける適切な電流の流れ方向を制御することにより、負の出力電圧を生成するように構成される。このことは、出力電圧(バイアス電圧)を、電力増幅器が導通状態となる特性のポイントの近くに設定できることを意味する。
例えば、第1の降圧型コンバータ512は、電力増幅器特性の非導電部にあるバイアス電圧、例えば-6Vを出力するように構成されてもよい。第2の降圧型コンバータ514は、電力増幅器特性の導電部にあるバイアス電圧、好ましくは導電状態への遷移の直後にあるバイアス電圧、例えば-2Vを出力するように構成されてもよい。
1対の降圧型コンバータ512、514からの出力は、ゲート制御モジュール334の一部を構成するスイッチ516のそれぞれの入力極に接続されている。スイッチ516の出力は、接続線路518に接続されており、この接続線路518は、ゲート電圧抽出モジュール332から電力増幅器320のゲートにバイアス電圧を提供するために、接続線路504に接続されている。
接続線路518上の電力増幅器320からマイクロ波エネルギーが漏れ出るのを防ぐために、1対の4分の1波長スタブ336がローパスフィルタとして配置されている。1対のスタブ336は、接続線路518と接続線路504との間の接続点に関してではあるが、スタブ328と同じようにして配置されてもよい。
接続線路518は、バイアス電圧信号経路上の他の不要なAC要素を取り除くために、バイアス電圧を伝達する接続線路518にシャント接続されたコンデンサのセット520をさらに備える。
ゲート制御モジュール334は、電力増幅器320のゲートに必要なバイアス電圧を印加するように動作する。したがって、ゲート制御モジュール334は、電力増幅器320を選択的に作動させるように効果的に動作する。本例では、ゲート制御モジュール334は、電力増幅器320にバイアス電圧を提供するために、降圧型コンバータ512、514を選択するスイッチ516を制御するように機能する。スイッチ516は、電圧レール326へのDC信号の印加時に通電されるインダクタ522によって制御されてもよい。したがって、スイッチ516は、インダクタ522が通電されていないときに、デフォルト(例えばオフ)の構成を採用することができる。この構成では、スイッチ516は、非導通電圧レベル(例えば-6V)の降圧型コンバータを電力増幅器に接続する。インダクタ522が通電されると、スイッチは、作動された(例えばオン)構成を採用し、導通電圧レベル(例えば-2V)の降圧型コンバータが電力増幅器に接続される。
本実施形態では、ゲート制御モジュール334は、電力増幅器320のための「ソフトスタート」回路524を含み、この回路は、インダクタ522に印加される電圧を滑らかに増加させることにより、スイッチの状態変化を遅延させるように作用する。本構成の利点は、電力増幅器を作動させるためのバイアス電圧が印加される前に、電力増幅器320にわたるドレイン電圧が定常状態に到達することを可能にすることである。「ソフトスタート」回路524は、RC回路528からの変化する第1の入力と、分圧器回路530からの固定入力との差に基づいて、インダクタ522への出力を生成するコンパレータ526を用いて実装される。
図6は、本発明の実施形態であるマイクロ波増幅装置550の別の例を示す概略図である。図3と共通する特徴には同じ参照番号を付け、改めて説明しない。
図6の装置550は、ゲート電圧が、近位端で生成され、ケーブルアセンブリ306を介して二次DC信号として転送される点で、図3の装置とは異なる。したがって、本例のDC電力発生器316は、ケーブルアセンブリ306を通じて運ぶためのDC信号(電圧VDDを有する)を出力するDC源386を含み得る。この例では、ケーブルアセンブリは、DC信号用の専用伝送線路371を含む。近位部分304では、伝送線路371の遠位端は、上に述べたタイプのものであってもよいローパスフィルタ330を介して、電力増幅器320のドレインに結合される。専用伝送線路371は、ローパスフィルタを介してドレインに直接接続してもよいし、または図6に示す電圧レール326を介して接続してもよい。
DC電力発生器316はまた、電力増幅器用のバイアス電圧を発生させるための手段を含んでもよい。いくつかの例では、バイアス電圧は、例えば、ドレイン電圧用のDC源386よりも低い電圧で動作する別個のDC源を使用して発生させてもよい。ただし、図6に示す実施形態では、近位部分302にゲート電圧抽出モジュール332を設けることにより、ドレイン電圧と同じDC源からバイアス電圧を得ている。ゲート電圧抽出モジュール332は、上記と同じ方法で動作するように構成してもよい。近位部分302はまた、ケーブルアセンブリ306に供給されるバイアス電圧を制御するためのゲート制御モジュール334を含み得る。
本例では、バイアス電圧は、ケーブルアセンブリ306内の同軸伝送線路370の内部導体を通じて遠位部分に伝達される。同軸伝送線路370はまた、マイクロ波信号発生器314からのマイクロ波信号310を伝達するためにも用いられる。
いくつかの例では、DC信号用の専用線路371は、同軸伝送線路370の外部導体の周りに形成され、そこから絶縁層によって分離されて、例えば、信号3軸ケーブルを効果的に形成する追加の導電層であってもよい。本例では、マイクロ波信号が電圧レール326上に漏れるのを避けるために、DC信号が同軸伝送線路370から分離されるポイントで、遠位部分304に低域フィルタを含めることが望ましい場合がある。

Claims (25)

  1. 電気手術器具用のマイクロ波増幅装置であって、
    ケーブルアセンブリと、
    前記ケーブルアセンブリの近位端に接続された近位送出部であって、前記近位送出部が、
    前記ケーブルアセンブリを通じてDC信号を送出するように構成されたDC源と、
    前記ケーブルアセンブリを通じてマイクロ波信号を送出するように構成されたマイクロ波源と
    を備える、前記近位送出部と、
    前記ケーブルアセンブリの遠位端に接続された遠位増幅部であって、前記遠位増幅部が、
    前記マイクロ波信号を、増幅すべき入力信号として受け取るように構成された電力増幅器
    を備える、前記遠位増幅部と、を備え、
    前記遠位増幅部が、前記電力増幅器にわたって、前記DC信号をドレイン電圧として印加するように構成されており、
    前記電力増幅器が、生体組織にマイクロ波エネルギーを供給するように構成された構造体に、増幅したマイクロ波信号を供給するように接続可能な出力を有する、
    前記マイクロ波増幅装置。
  2. 前記DC信号からバイアス電圧を抽出し、それを前記電力増幅器のゲートに印加するように構成されたゲート電圧抽出モジュールをさらに備える、請求項1に記載のマイクロ波増幅装置。
  3. 前記ゲート電圧抽出モジュールが、前記DC信号の電圧をダウンコンバートして前記バイアス電圧を生成するように構成されたDC-DCコンバータを備える、請求項2に記載のマイクロ波増幅装置。
  4. 前記DC-DCコンバータが、降圧型コンバータを備える、請求項3に記載のマイクロ波増幅装置。
  5. 前記ゲート電圧抽出モジュールが、前記DC信号から1対のバイアス電圧を抽出するように構成されており、前記1対のバイアス電圧が、前記電力増幅器の非導通状態に対応する第1のバイアス電圧と、前記電力増幅器の導通状態に対応する第2のバイアス電圧とを含む、請求項2~4のいずれか1項に記載のマイクロ波増幅装置。
  6. 前記ゲート電圧抽出モジュールが、並列に接続された1対の降圧型コンバータを備えており、前記1対の降圧型コンバータが、前記第1のバイアス電圧を生成するための第1の降圧型コンバータと、前記第2のバイアス電圧を生成するための第2の降圧型コンバータとを備える、請求項5に記載のマイクロ波増幅装置。
  7. 前記電力増幅器の前記ゲートに、前記第1のバイアス電圧または前記第2のバイアス電圧を選択的に印加するように構成されたゲート制御モジュールをさらに備える、請求項5または6に記載のマイクロ波増幅装置。
  8. 前記ゲート制御モジュールが、前記電力増幅器の前記ゲートに、前記第1のバイアス電圧または前記第2のバイアス電圧を選択的に印加するように配置されたスイッチを備える、請求項7に記載のマイクロ波増幅装置。
  9. 前記遠位増幅部が、前記DC信号によって提供される動作電圧を採用するように配置された電圧レールを備えており、前記スイッチが、前記電圧レールに前記動作電圧を印加すると、前記第2のバイアス電圧を選択するように構成されている、請求項8に記載のマイクロ波増幅装置。
  10. 前記ゲート制御モジュールが、前記電圧レールへの前記動作電圧の印加と、前記第2のバイアス電圧を選択するための前記スイッチの作動との間に、タイムラグを導入するように配置された遅延回路をさらに備える、請求項8または9に記載のマイクロ波増幅装置。
  11. 前記第1のバイアス電圧及び前記第2のバイアス電圧は共に、前記ドレイン電圧とは逆の極性を有する、請求項5~10のいずれか1項に記載のマイクロ波増幅装置。
  12. 前記ゲート電圧抽出モジュールが、前記遠位増幅部にある、請求項2~11のいずれか1項に記載のマイクロ波増幅装置。
  13. 前記ゲート電圧抽出モジュールと前記電力増幅器の前記ゲートとの間に接続されたローパスフィルタをさらに備える、請求項12に記載のマイクロ波増幅装置。
  14. 前記ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、前記1対の4分の1波長スタブは、前記電力増幅器の前記ゲートからnλ/2の距離に位置する第1の4分の1波長スタブと、前記第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備え、λは前記マイクロ波信号の波長であり、nは1以上の整数である、請求項13に記載のマイクロ波増幅装置。
  15. 前記ゲート電圧抽出モジュールが、前記近位送出部にあり、前記DC信号が、前記ケーブルアセンブリによって前記遠位増幅部に伝達されるバイアス電圧を含む、請求項2~11のいずれか1項に記載のマイクロ波増幅装置。
  16. 前記ケーブルアセンブリが、誘電材料によって外部導体から分離された内部導体を備える同軸伝送線路を備えており、前記マイクロ波信号が、前記同軸伝送線路によって伝達され、前記DC信号が、前記内部導体を通じて伝達される、いずれかの先行請求項に記載のマイクロ波増幅装置。
  17. 前記マイクロ波信号が、コンデンサを介して前記同軸伝送線路に結合される、請求項16に記載のマイクロ波増幅装置。
  18. 前記電力増幅器の前記出力が、前記構造体に前記増幅したマイクロ波信号を結合するように構成されたコンデンサを含む、いずれかの先行請求項に記載のマイクロ波増幅装置。
  19. 前記マイクロ波信号が、前記ケーブルアセンブリの前記近位端で10W以下の電力を有する、いずれかの先行請求項に記載のマイクロ波増幅装置。
  20. 前記遠位増幅部が、前記DC信号によって提供される動作電圧を採用するように配置された電圧レールを備えており、前記電圧レールが、前記DC信号を受け取るために、前記ケーブルアセンブリの遠位端に第1の接続線路によって接続されており、前記電圧レールが、前記ドレイン電圧を提供するために、前記電力増幅器のドレインに第2の接続線路によって接続されている、いずれかの先行請求項に記載のマイクロ波増幅装置。
  21. 前記第1の接続線路に近位ローパスフィルタを、前記第2の接続線路に遠位ローパスフィルタをさらに備える、請求項20に記載のマイクロ波増幅装置。
  22. 前記近位ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、前記1対の4分の1波長スタブは、前記第1の接続線路と前記ケーブルアセンブリとの間の接続点からnλ/2の距離に位置する第1の4分の1波長スタブと、前記第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備え、λは前記マイクロ波信号の波長であり、nは1以上の整数である、請求項21に記載のマイクロ波増幅装置。
  23. 前記遠位ローパスフィルタは、それぞれが((2n-1)λ)/4の長さを有する1対の4分の1波長スタブを備え、前記1対の4分の1波長スタブは、前記電力増幅器の前記ドレインからnλ/2の距離に位置する第1の4分の1波長スタブと、前記第1の4分の1波長スタブから距離nλ/2だけ間隔を空けた第2の4分の1波長スタブとを備え、λは前記マイクロ波信号の波長であり、nは1以上の整数である、請求項21または22に記載のマイクロ波増幅装置。
  24. いずれかの先行請求項に記載のマイクロ波増幅装置と、
    前記電力増幅器の前記出力に接続された放射先端部であって、前記放射先端部が、前記増幅したマイクロ波信号を生体組織に放射するように構成されたアンテナを備える、前記放射先端部と
    を備える、電気手術器具。
  25. 前記マイクロ波増幅装置及び前記放射先端部が、外科手術用スコープデバイスの器具チャネルを通して挿入可能となる寸法に作られている、請求項24に記載の電気手術器具。
JP2021562173A 2019-04-30 2020-04-28 電気手術器具用のマイクロ波増幅装置 Pending JP2022531111A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1906010.2 2019-04-30
GB1906010.2A GB2583491A (en) 2019-04-30 2019-04-30 Microwave amplification apparatus for an electrosurgical instrument
PCT/EP2020/061764 WO2020221751A1 (en) 2019-04-30 2020-04-28 Microwave amplification apparatus for an electrosurgical instrument

Publications (2)

Publication Number Publication Date
JP2022531111A true JP2022531111A (ja) 2022-07-06
JPWO2020221751A5 JPWO2020221751A5 (ja) 2023-04-27

Family

ID=66809121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021562173A Pending JP2022531111A (ja) 2019-04-30 2020-04-28 電気手術器具用のマイクロ波増幅装置

Country Status (13)

Country Link
US (1) US20220241011A1 (ja)
EP (3) EP3962393B1 (ja)
JP (1) JP2022531111A (ja)
KR (1) KR20220002894A (ja)
CN (1) CN113710184A (ja)
AU (1) AU2020266748A1 (ja)
BR (1) BR112021021256A2 (ja)
CA (1) CA3136704A1 (ja)
ES (1) ES2954619T3 (ja)
GB (1) GB2583491A (ja)
IL (1) IL287307A (ja)
SG (1) SG11202111555UA (ja)
WO (1) WO2020221751A1 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0624658D0 (en) * 2006-12-11 2007-01-17 Medical Device Innovations Ltd Electrosurgical ablation apparatus and a method of ablating biological tissue
US8353903B2 (en) * 2009-05-06 2013-01-15 Vivant Medical, Inc. Power-stage antenna integrated system
US8463396B2 (en) * 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
US8216227B2 (en) * 2009-05-06 2012-07-10 Vivant Medical, Inc. Power-stage antenna integrated system with junction member
CN102446498B (zh) * 2010-10-12 2013-08-07 北京京东方光电科技有限公司 液晶显示器的驱动装置和驱动方法
GB201021032D0 (en) 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
EP2514382A1 (en) * 2011-04-21 2012-10-24 Koninklijke Philips Electronics N.V. MR imaging guided therapy system
GB2545465A (en) * 2015-12-17 2017-06-21 Creo Medical Ltd Electrosurgical probe for delivering microwave energy
GB2551339B (en) * 2016-06-13 2021-12-08 Creo Medical Ltd Electrosurgical device with integrated microwave source

Also Published As

Publication number Publication date
EP3962393C0 (en) 2023-06-07
CA3136704A1 (en) 2020-11-05
SG11202111555UA (en) 2021-11-29
EP3962393B1 (en) 2023-06-07
CN113710184A (zh) 2021-11-26
KR20220002894A (ko) 2022-01-07
US20220241011A1 (en) 2022-08-04
WO2020221751A1 (en) 2020-11-05
EP3962393A1 (en) 2022-03-09
IL287307A (en) 2021-12-01
BR112021021256A2 (pt) 2021-12-21
GB2583491A (en) 2020-11-04
EP4190261A1 (en) 2023-06-07
EP4193949A1 (en) 2023-06-14
GB201906010D0 (en) 2019-06-12
AU2020266748A1 (en) 2021-11-11
ES2954619T3 (es) 2023-11-23

Similar Documents

Publication Publication Date Title
JP6803902B2 (ja) 生体組織内へrfおよび/またはマイクロ波エネルギーを供給する電気外科機器
EP3773288B1 (en) Electrosurgical generator
JP7261492B2 (ja) 電気外科装置
KR102354441B1 (ko) 무선 주파수 에너지 및 마이크로파 에너지를 전달하기 위한 전기 수술 장치 및 이의 사용 방법
JP2014507175A (ja) 高周波およびマイクロ波を伝送するための電気外科手術装置
JP7195623B2 (ja) Rf及び/またはマイクロ波エネルギーを生体組織内に送達するための電気外科装置
JP2022531111A (ja) 電気手術器具用のマイクロ波増幅装置
US20230310077A1 (en) Electrosurgical apparatus for cutting and coagulation
RU2772044C2 (ru) Электрохирургическое устройство

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322