CN103341359B - 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂 - Google Patents

一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂 Download PDF

Info

Publication number
CN103341359B
CN103341359B CN201310308749.8A CN201310308749A CN103341359B CN 103341359 B CN103341359 B CN 103341359B CN 201310308749 A CN201310308749 A CN 201310308749A CN 103341359 B CN103341359 B CN 103341359B
Authority
CN
China
Prior art keywords
foamy carbon
amorphous state
palladium
carbon
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310308749.8A
Other languages
English (en)
Other versions
CN103341359A (zh
Inventor
王殿龙
李忠宏
朱俊生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310308749.8A priority Critical patent/CN103341359B/zh
Publication of CN103341359A publication Critical patent/CN103341359A/zh
Application granted granted Critical
Publication of CN103341359B publication Critical patent/CN103341359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Catalysts (AREA)

Abstract

一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,它涉及制备非晶态泡沫碳和在非晶态的泡沫碳上化学沉积钯纳米晶的方法。本发明是要解决现有铅酸电池的消氢催化剂由于钯珠颗粒较大、比表面积较小从而导致催化活性和催化效率低,不适用于析氢量较多的铅酸电池的问题,本发明方法为:一、海绵的前处理;二、制备耐硫酸溶液腐蚀的非晶态泡沫碳;三、制备粗化后的非晶态泡沫碳;四、制备活化后的非晶态泡沫碳;五、制备敏化处理后的非晶态泡沫碳;六、制备非晶态泡沫碳载钯纳米晶消氢催化剂,即完成。本发明的催化剂具有纳米晶结构,比表面积大,耐硫酸溶液腐蚀,催化活性高。本发明应用Pb-C电池领域。

Description

一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂
技术领域
本发明涉及一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂及其制备方法。
背景技术
铅酸电池安全性好、价格低,是目前二次电池市场占有率最高的电池,而且由于不断出现先进铅酸电池新技术,给铅酸电池行业带来了新的活力,如超级电池、Pb-C电池、双极性电池等。其中,用于电动汽车的动力Pb-C电池和用于风、光电的储能型Pb-C电池因克服了负极硫酸盐化,具有充电速度快、使用寿命长等优点,随着电动汽车和光伏、风电产业的发展,市场前景广阔。由于Pb-C电池为了克服负极硫酸盐化,在负极中添加了较多的碳材料,因此增加了析氢速率,导致电池失水加快,影响电池寿命。本发明的泡沫碳载钯纳米晶消氢催化剂,能够在常温下催化Pb-C电池中的氢氧复合反应,有效消除Pb-C电池失水,提高电池的使用寿命。
现有的用于铅酸电池的消氢催化剂是采用钯珠,催化效果不明显,主要是因为钯珠颗粒较大,比表面积较小,催化活性较低,因而催化效率较低。所以不适用于析氢量较多的Pb-C电池。
发明内容
本发明是要解决现有铅酸电池的消氢催化剂由于钯珠颗粒较大、比表面积较小从而导致催化活性和催化效率低,不适用于析氢量较多的铅酸电池的问题,提供了一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂及其制备方法。
本发明一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂是由非晶态泡沫碳和钯纳米晶制成。
本发明一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备方法,是通过以下步骤进行的:
一、海绵的前处理:a、将厚度0.5~5mm、孔径0.01~2mm的开孔聚氨酯海绵在摩尔浓度为1mol/L的氢氧化钠溶液中浸泡5~10min,然后挤压脱去开孔聚氨酯海绵中的氢氧化钠溶液;b、将步骤a处理后的开孔聚氨酯海绵用去离子水清洗,然后挤压脱去开孔聚氨酯中的去离子水,再吹干;c、重复步骤b操作2次,得到清洗后的开孔聚氨酯海绵;
二、在室温条件下将清洗后的开孔聚氨酯海绵浸入浸渍液A中浸泡1~2min,然后挤压脱去开孔聚氨酯海绵中的浸渍液A,再在120℃下固化20~30min,然后在室温条件下 浸入浸渍液B中浸泡0.5~1min,再吹开孔聚氨酯海绵至开孔聚氨酯海绵的孔洞均未被浸渍液B封住,然后在120℃下固化20~30min,再置于氩气或氮气保护的气氛炉中在600-800℃条件下碳化1~2h,得到耐硫酸溶液腐蚀的非晶态泡沫碳;其中浸渍液A为质量浓度为9%的草酸糠醇溶液,浸渍液B为质量浓度为5%的草酸糠醇溶液;
三、在室温下将步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳置于混合溶液A中进行粗化处理2~5min,得到粗化后的非晶态泡沫碳;其中混合溶液A由质量浓度为98%的硫酸和铬酐组成,所述的质量浓度为98%的硫酸在混合溶液A中的浓度为100-200mL/L,所述的铬酐在混合溶液A中的浓度为100-200g/L;
四、在室温下将粗化后的非晶态泡沫碳浸入到混合溶液B中活化处理5min,得到活化后的非晶态泡沫碳;其中混合溶液B由质量浓度为36%的盐酸和氯化亚锡组成,所述的质量浓度为36%的盐酸在混合溶液B中的浓度为50mL/L,所述的氯化亚锡在混合溶液B中的浓度为30g/L;
五、在室温下将活化后的非晶态泡沫碳浸入到混合溶液C中敏化处理5min,得到敏化处理后的非晶态泡沫碳;其中混合溶液C由质量浓度为36%的盐酸和氯化钯组成,所述的质量浓度为36%的盐酸在混合溶液C中的浓度为8mL/L,所述的氯化钯在混合溶液C中的浓度为0.5g/L;
六、将敏化处理后的非晶态泡沫碳浸入到化学镀钯溶液中,在50~60℃下化学镀钯10~30min,得到非晶态泡沫碳载钯纳米晶消氢催化剂,即完成用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备;其中敏化处理后的非晶态泡沫碳和化学镀钯溶液的质量比为1:(20~50)。
本发明制备的用于Pb-C电池的泡沫碳载钯消氢催化剂,具有纳米晶结构,比表面积大,耐硫酸溶液腐蚀,催化活性高,能够在室温下催化氢气和氧气的化合。本发明采用耐硫酸溶液腐蚀的非晶态泡沫碳为模板,化学沉积钯纳米晶催化剂的方法,由于在泡沫碳上沉积的钯具有纳米结构,所制得的纳米钯粒径较小,仅22nm,具有较强的催化活性。再加上泡沫碳具有很高的比表面积,透气性好,不宜被生成的水淹没,使得所发明的泡沫碳载钯纳米晶消氢催化剂在室温下具有很高的催化活性。
附图说明
图1是试验1中步骤一得到的开孔聚氨酯海绵的SEM照片;
图2是试验1中步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳的SEM照片;
图3是试验1中步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳的XRD图;
图4是试验1制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的SEM照片;
图5是试验1制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的XRD图;
图6为试验1制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的催化消氢性能图;
图7是试验1制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的实物照片。
具体实施方式
具体实施方式一:本实施方式一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂是由非晶态泡沫碳和钯纳米晶制成。
本实施方式制备的用于Pb-C电池的泡沫碳载钯消氢催化剂,具有纳米晶结构,比表面积大,耐硫酸溶液腐蚀,催化活性高,能够在室温下催化氢气和氧气的化合。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述的钯纳米晶的粒径为22nm。其他与具体实施方式一相同。
具体实施方式三:本实施方式一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备方法,是通过以下步骤进行的:
一、海绵的前处理:a、将厚度0.5~5mm、孔径0.01~2mm的开孔聚氨酯海绵在摩尔浓度为1mol/L的氢氧化钠溶液中浸泡5~10min,然后挤压脱去开孔聚氨酯海绵中的氢氧化钠溶液;b、将步骤a处理后的开孔聚氨酯海绵用去离子水清洗,然后挤压脱去开孔聚氨酯中的去离子水,再吹干;c、重复步骤b操作2次,得到清洗后的开孔聚氨酯海绵;
二、在室温条件下将清洗后的开孔聚氨酯海绵浸入浸渍液A中浸泡1~2min,然后挤压脱去开孔聚氨酯海绵中的浸渍液A,再在120℃下固化20~30min,然后在室温条件下浸入浸渍液B中浸泡0.5~1min,再吹开孔聚氨酯海绵至开孔聚氨酯海绵的孔洞均未被浸渍液B封住,然后在120℃下固化20~30min,再置于氩气或氮气保护的气氛炉中在600-800℃条件下碳化1~2h,得到耐硫酸溶液腐蚀的非晶态泡沫碳;其中浸渍液A为质量浓度为9%的草酸糠醇溶液,浸渍液B为质量浓度为5%的草酸糠醇溶液;
三、在室温下将步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳置于混合溶液A中进行粗化处理2~5min,得到粗化后的非晶态泡沫碳;其中混合溶液A由质量浓度为98%的硫酸和铬酐组成,所述的质量浓度为98%的硫酸在混合溶液A中的浓度为100-200mL/L,所述的铬酐在混合溶液A中的浓度为100-200g/L;
四、在室温下将粗化后的非晶态泡沫碳浸入到混合溶液B中活化处理5min,得到活化后的非晶态泡沫碳;其中混合溶液B由质量浓度为36%的盐酸和氯化亚锡组成,所述 的质量浓度为36%的盐酸在混合溶液B中的浓度为50mL/L,所述的氯化亚锡在混合溶液B中的浓度为30g/L;
五、在室温下将活化后的非晶态泡沫碳浸入到混合溶液C中敏化处理5min,得到敏化处理后的非晶态泡沫碳;其中混合溶液C由质量浓度为36%的盐酸和氯化钯组成,所述的质量浓度为36%的盐酸在混合溶液C中的浓度为8mL/L,所述的氯化钯在混合溶液C中的浓度为0.5g/L;
六、将敏化处理后的非晶态泡沫碳浸入到化学镀钯溶液中,在50~60℃下化学镀钯10~30min,得到非晶态泡沫碳载钯纳米晶消氢催化剂,即完成用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备;其中敏化处理后的非晶态泡沫碳和化学镀钯溶液的质量比为1:(20~50)。
本实施方式采用耐硫酸溶液腐蚀的非晶态泡沫碳为模板,化学沉积钯纳米晶催化剂的方法,由于在泡沫碳上沉积的钯具有纳米结构,所制得的纳米钯粒径较小,仅22nm,具有较强的催化活性。再加上泡沫碳具有很高的比表面积,透气性好,不宜被生成的水淹没,使得所制备的泡沫碳载钯纳米晶消氢催化剂在室温下具有很高的催化活性,适用于析氢量较多的铅酸电池。
具体实施方式四:本实施方式与具体实施方式三不同的是:所述的步骤二中开孔聚氨酯海绵与浸渍液A的质量比为1:(20~50)所述的钯纳米晶的粒径为22nm。其他与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式三或四不同的是:所述的步骤二中开孔聚氨酯海绵与浸渍液B的质量比为1:(20~50)。其他与具体实施方式三或四相同。
具体实施方式六:本实施方式与具体实施方式三至五之一不同的是:所述的步骤三中耐硫酸溶液腐蚀的非晶态泡沫碳与混合溶液A的质量比为1:(20~50)。其他与具体实施方式三至五之一相同。
具体实施方式七:本实施方式与具体实施方式三至六之一不同的是:所述的步骤四中粗化后的非晶态泡沫碳与混合溶液B的质量比为1:(20~50)。其他与具体实施方式三至六之一相同。
具体实施方式八:本实施方式与具体实施方式三至七之一不同的是:所述的步骤五中活化后的非晶态泡沫碳与混合溶液C的质量比为1:(20~50)。其他与具体实施方式三至七之一相同。
具体实施方式九:本实施方式与具体实施方式三至八之一不同的是:所述的步骤六中 化学镀钯溶液由质量浓度为36%的盐酸、质量浓度为25%的氨水、氯化钯、次亚磷酸钠和氯化铵组成,其中质量浓度为36%的盐酸在化学镀钯溶液中的浓度为3~4mL/L,质量浓度为25%的氨水在化学镀钯溶液中的浓度为150~160mL/L、氯化钯在化学镀钯溶液中的浓度为1.5-2g/L、次亚磷酸钠在化学镀钯溶液中的浓度为8~10g/L、氯化铵在化学镀钯溶液中的浓度为20~27g/L。其他与具体实施方式三至八之一相同。
具体实施方式十:本实施方式与具体实施方式三至九之一不同的是:所述的步骤六中化学镀钯溶液的pH为9~10。其他与具体实施方式三至九之一相同。
通过以下试验验证本发明的有益效果:
试验1、本试验用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂是由非晶态泡沫碳和钯纳米晶制成,制备方法是通过以下步骤进行的:
一、海绵的前处理:a、将厚度0.5~5mm、孔径0.01~2mm的开孔聚氨酯海绵在摩尔浓度为1mol/L的氢氧化钠溶液中浸泡5min,然后挤压脱去开孔聚氨酯海绵中的氢氧化钠溶液;b、将步骤a处理后的开孔聚氨酯海绵用去离子水清洗,然后挤压脱去开孔聚氨酯中的去离子水,再吹干;c、重复步骤b操作2次,得到清洗后的开孔聚氨酯海绵;
二、在室温条件下将清洗后的开孔聚氨酯海绵浸入浸渍液A中浸泡1min,然后挤压脱去开孔聚氨酯海绵中的浸渍液A,再放入具有通风装置的烘箱中120℃下固化20min,然后在室温条件下浸入浸渍液B中浸泡0.5min,再吹开孔聚氨酯海绵至开孔聚氨酯海绵的孔洞均未被浸渍液B封住,然后放入具有通风装置的烘箱中120℃下固化20min,再置于氩气或氮气保护的气氛炉中在600~800℃条件下碳化2h,得耐硫酸溶液腐蚀的非晶态泡沫碳;其中浸渍液A为质量浓度为9%的草酸糠醇溶液,浸渍液B为质量浓度为5%的草酸糠醇溶液;其中开孔聚氨酯海绵与浸渍液A的质量比为1:50,开孔聚氨酯海绵与浸渍液B的质量比为1:50。
三、在室温下将步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳置于混合溶液A中进行粗化处理5min,得到粗化后的非晶态泡沫碳;其中混合溶液A由质量浓度为98%的硫酸和铬酐组成,所述的质量浓度为98%的硫酸在混合溶液A中的浓度为100mL/L,所述的铬酐在混合溶液A中的浓度为100g/L;耐硫酸溶液腐蚀的非晶态泡沫碳与混合溶液A的质量比为1:50。
四、在室温下将粗化后的非晶态泡沫碳浸入到混合溶液B中活化处理5min,得到活化后的非晶态泡沫碳;其中混合溶液B由质量浓度为36%的盐酸和氯化亚锡组成,所述的质量浓度为36%的盐酸在混合溶液B中的浓度为50mL/L,所述的氯化亚锡在混合溶液 B中的浓度为30g/L;粗化后的非晶态泡沫碳与混合溶液B的质量比为1:50。
五、在室温下将活化后的非晶态泡沫碳浸入到混合溶液C中敏化处理5min,得到敏化处理后的非晶态泡沫碳;其中混合溶液C由质量浓度为36%的盐酸和氯化钯组成,所述的质量浓度为36%的盐酸在混合溶液C中的浓度为8mL/L,所述的氯化钯在混合溶液C中的浓度为0.5g/L;活化后的非晶态泡沫碳与混合溶液C的质量比为1:50。
六、将敏化处理后的非晶态泡沫碳浸入到pH为9的化学镀钯溶液中,在50℃下化学镀钯20min,得到非晶态泡沫碳载钯纳米晶消氢催化剂,即完成用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备,其中敏化处理后的非晶态泡沫碳和化学镀钯溶液的质量比为1:50。
步骤六中化学镀钯溶液由质量浓度为36%的盐酸、质量浓度为25%的氨水、氯化钯、次亚磷酸钠和氯化铵组成,其中质量浓度为36%的盐酸在化学镀钯溶液中的浓度为3mL/L,质量浓度为25%的氨水在化学镀钯溶液中的浓度为150mL/L、氯化钯在化学镀钯溶液中的浓度为2g/L、次亚磷酸钠在化学镀钯溶液中的浓度为10g/L、氯化铵在化学镀钯溶液中的浓度为20g/L。
本试验步骤一制备得到的开孔聚氨酯海绵的扫描电子显微照片如图1所示,由图1可知,固化后的开孔聚氨酯海绵维持三维多孔的形貌,因此有利于增加材料的比表面积。
本试验步骤二制备得到的耐硫酸溶液腐蚀的非晶态泡沫碳的扫描电子显微照片如图2所示,可见,非晶态泡沫碳具有三维多孔的形貌,因此有利于增加材料的比表面积。耐硫酸溶液腐蚀的非晶态泡沫碳的XRD图如图3所示,从图中可以看出2theta角为24°,左右存在一个宽而弱的衍射峰,证明所制得的泡沫碳为非晶态。
本试验制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的扫描电子显微照片如图4所示,可见,用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂具有三维多孔结构,该催化剂比表面积大,耐硫酸溶液腐蚀,催化活性高,能够在室温下催化氢气和氧气的化合。
本试验制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的XRD图如图5所示,图中所有的衍射峰对应着非晶态泡沫碳(002)晶面的衍射峰及Pd纳米晶的衍射峰。根据Scherrer方程计算可知,所制备Pd纳米晶的颗粒大小约为22nm,表明制得的泡沫碳载钯具有纳米晶结构。
本试验制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的催化消氢性能如图6所示,泡沫碳载钯纳米晶消氢催化剂的面积3cm2、厚度1.5mm、平均孔径0.3mm,由图6可知,随着钯载量的增加,催化氢气和氧气化合反应的速率增加。
本试验制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂中的钯纳米晶与泡沫碳的质量比为1:6。
试验2、本试验用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂是由非晶态泡沫碳和钯纳米晶制成,制备方法是通过以下步骤进行的:
一、海绵的前处理:a、将厚度0.5~5mm、孔径0.01~2mm的开孔聚氨酯海绵在摩尔浓度为1mol/L的氢氧化钠溶液中浸泡5min,然后挤压脱去开孔聚氨酯海绵中的氢氧化钠溶液;b、将步骤a处理后的开孔聚氨酯海绵用去离子水清洗,然后挤压脱去开孔聚氨酯中的去离子水,再吹干;c、重复步骤b操作2次,得到清洗后的开孔聚氨酯海绵;
二、在室温条件下将清洗后的开孔聚氨酯海绵浸入浸渍液A中浸泡2min,然后挤压脱去开孔聚氨酯海绵中的浸渍液A,再放入具有通风装置的烘箱中120℃下固化30min,然后在室温条件下浸入浸渍液B中浸泡1min,再吹开孔聚氨酯海绵至开孔聚氨酯海绵的孔洞均未被浸渍液B封住,然后放入具有通风装置的烘箱中120℃下固化30min,再置于氩气或氮气保护的气氛炉中在600~800℃条件下碳化1h,得耐硫酸溶液腐蚀的非晶态泡沫碳;其中浸渍液A为质量浓度为9%的草酸糠醇溶液,浸渍液B为质量浓度为5%的草酸糠醇溶液;其中开孔聚氨酯海绵与浸渍液A的质量比为1:50,开孔聚氨酯海绵与浸渍液B的质量比为1:50。
三、在室温下将步骤二得到的耐硫酸溶液腐蚀的非晶态泡沫碳置于混合溶液A中进行粗化处理5min,得到粗化后的非晶态泡沫碳;其中混合溶液A由质量浓度为98%的硫酸和铬酐组成,所述的质量浓度为98%的硫酸在混合溶液A中的浓度为200mL/L,所述的铬酐在混合溶液A中的浓度为200g/L;耐硫酸溶液腐蚀的非晶态泡沫碳与混合溶液A的质量比为1:50。
四、在室温下将粗化后的非晶态泡沫碳浸入到混合溶液B中活化处理5min,得到活化后的非晶态泡沫碳;其中混合溶液B由质量浓度为36%的盐酸和氯化亚锡组成,所述的质量浓度为36%的盐酸在混合溶液B中的浓度为50mL/L,所述的氯化亚锡在混合溶液B中的浓度为30g/L;粗化后的非晶态泡沫碳与混合溶液B的质量比为1:50。
五、在室温下将活化后的非晶态泡沫碳浸入到混合溶液C中敏化处理5min,得到敏化处理后的非晶态泡沫碳;其中混合溶液C由质量浓度为36%的盐酸和氯化钯组成,所述的质量浓度为36%的盐酸在混合溶液C中的浓度为8mL/L,所述的氯化钯在混合溶液C中的浓度为0.5g/L;活化后的非晶态泡沫碳与混合溶液C的质量比为1:50。
六、将敏化处理后的非晶态泡沫碳浸入到pH为10的化学镀钯溶液中,在50℃下化 学镀钯30min,得到非晶态泡沫碳载钯纳米晶消氢催化剂,即完成用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备,其中敏化处理后的非晶态泡沫碳和化学镀钯溶液的质量比为1:50。
步骤六中化学镀钯溶液由质量浓度为36%的盐酸、质量浓度为25%的氨水、氯化钯、次亚磷酸钠和氯化铵组成,其中质量浓度为36%的盐酸在化学镀钯溶液中的浓度为3mL/L,质量浓度为25%的氨水在化学镀钯溶液中的浓度为150mL/L、氯化钯在化学镀钯溶液中的浓度为2g/L、次亚磷酸钠在化学镀钯溶液中的浓度为10g/L、氯化铵在化学镀钯溶液中的浓度为20g/L。
本试验制备的用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的实物照片如图7所示,可见该催化剂上纳米晶分布均匀,且由于泡沫碳载钯纳米晶消氢催化剂具有很高的比表面积和纳米结构,催化活性很高,耐酸碱介质腐蚀,能够在室温下催化氢气和氧气快速化合为水。这种泡沫碳载钯纳米晶消氢催化剂用于提高Pb-C电池的使用寿命。
试验1~试验2中泡沫炭载钯纳米晶的空间群为p-3m1,对应JCPDS卡片号为72-0710,晶胞参数为a=2.78363,b=2.78363,c=7.01255,根据Scherrer方程计算可知,该Pd纳米晶的粒径大小约为22nm。

Claims (9)

1.一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂是由非晶态泡沫碳和钯纳米晶制成;
所述用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂的制备方法是通过以下步骤进行的:
一、海绵的前处理:a、将厚度0.5~5mm、孔径0.01~2mm的开孔聚氨酯海绵在摩尔浓度为1mol/L的氢氧化钠溶液中浸泡5~10min,然后挤压脱去开孔聚氨酯海绵中的氢氧化钠溶液;b、将步骤a处理后的开孔聚氨酯海绵用去离子水清洗,然后挤压脱去开孔聚氨酯中的去离子水,再用空气吹干;c、重复步骤b操作2次,得到清洗后的开孔聚氨酯海绵;
二、在室温条件下将清洗后的开孔聚氨酯海绵在浸渍液A中浸泡1~2min,然后挤压脱去开孔聚氨酯海绵中的浸渍液A,再在120℃下固化20~30min,然后在室温条件下放入浸渍液B中浸泡0.5~1min,再吹开孔聚氨酯海绵至浸渍液B未封住开孔聚氨酯海绵的孔洞,然后在120℃下固化20~30min,再置于保护气氛炉中碳化,形成耐硫酸溶液腐蚀的非晶态泡沫碳;其中浸渍液A为质量浓度为9%的草酸糠醇溶液,浸渍液B为质量浓度为5%的草酸糠醇溶液;
三、将耐硫酸溶液腐蚀的非晶态泡沫碳置于混合溶液A中进行粗化处理2~5min,得到粗化后的非晶态泡沫碳;其中混合溶液A由质量浓度为98%的硫酸和铬酐组成,质量浓度为98%的硫酸的终浓度为100-200mL/L,铬酐的终浓度为100-200g/L;
四、将粗化后的非晶态泡沫碳浸入到混合溶液B中活化处理5min,得到活化后的非晶态泡沫碳;其中混合溶液B由质量浓度为36%的盐酸和氯化亚锡组成,质量浓度为36%的盐酸的终浓度为50mL/L,氯化亚锡的终浓度为30g/L;
五、将活化后的非晶态泡沫碳浸入到混合溶液C中敏化处理5min,得到敏化处理后的非晶态泡沫碳;其中混合溶液C由质量浓度为36%的盐酸和氯化亚锡组成,质量浓度为36%的盐酸的终浓度为8mL/L,氯化亚锡的终浓度为0.5g/L;
六、将敏化处理后的非晶态泡沫碳浸入到化学镀钯溶液中,在50~60℃下化学镀钯10~30min,得到非晶态泡沫碳载钯纳米晶消氢催化剂。
2.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的钯纳米晶的粒径为22nm。
3.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤二中开孔聚氨酯海绵与浸渍液A的质量比为1:(20~50)。
4.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤二中开孔聚氨酯海绵与浸渍液B的质量比为1:(20~50)。
5.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤三中耐硫酸溶液腐蚀的非晶态泡沫碳与混合溶液A的质量比为1:(20~50)。
6.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤四中粗化后的非晶态泡沫碳与混合溶液B的质量比为1:(20~50)。
7.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤五中活化后的非晶态泡沫碳与混合溶液C的质量比为1:(20~50)。
8.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤六中混合溶液C由质量浓度为36%的盐酸、质量浓度为25%的氨水、氯化钯、次亚磷酸钠和氯化铵组成,其中质量浓度为36%的盐酸的终浓度为3~4mL/L,质量浓度为25%的氨水的终浓度为150~160mL/L、氯化钯的终浓度为1.5-2g/L、次亚磷酸钠的终浓度为8~10g/L、氯化铵的终浓度为20~27g/L。
9.根据权利要求1所述的一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂,其特征在于所述的步骤六中的混合溶液C的pH为9~10。
CN201310308749.8A 2013-07-22 2013-07-22 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂 Active CN103341359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310308749.8A CN103341359B (zh) 2013-07-22 2013-07-22 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310308749.8A CN103341359B (zh) 2013-07-22 2013-07-22 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂

Publications (2)

Publication Number Publication Date
CN103341359A CN103341359A (zh) 2013-10-09
CN103341359B true CN103341359B (zh) 2015-04-15

Family

ID=49276212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310308749.8A Active CN103341359B (zh) 2013-07-22 2013-07-22 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂

Country Status (1)

Country Link
CN (1) CN103341359B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014788A (zh) * 2017-11-28 2018-05-11 苏州艾缇克药物化学有限公司 一种负载钯的超韧沥青/糠醇复合泡沫碳催化剂的生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800831A (zh) * 2012-09-03 2012-11-28 浙江南都电源动力股份有限公司 一种铅酸蓄电池用的安全催化阀
CN102941109A (zh) * 2012-11-16 2013-02-27 浙江大学 一种含有泡沫碳化硅的贵金属催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800831A (zh) * 2012-09-03 2012-11-28 浙江南都电源动力股份有限公司 一种铅酸蓄电池用的安全催化阀
CN102941109A (zh) * 2012-11-16 2013-02-27 浙江大学 一种含有泡沫碳化硅的贵金属催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
模板预处理对泡沫炭结构的影响;周颖等;《化工学报》;20081231;第59卷(第12期);第3138-3143页 *

Also Published As

Publication number Publication date
CN103341359A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
CN103427073B (zh) 一种作为锂电池负极材料的介孔Si/C复合微球的制备方法
CN105800600A (zh) 利用果皮制备氮自掺杂三维石墨烯的方法
CN104157832B (zh) 一种四氧化三铁/碳复合锂离子电池电极材料的制备方法
CN102903896A (zh) 用于锂离子电池的硅碳复合负极材料、其制备方法和应用
CN111785977B (zh) 一种铁钴合金/氮共掺杂碳气凝胶电催化材料的制备方法
CN106206059A (zh) NiCo2S4/石墨毡复合电极材料的制备方法和应用
CN103715436A (zh) 一种二氧化碳电化学还原催化剂及其制备和应用
CN103440998A (zh) 一种钴酸锌纳米片列阵/泡沫镍复合电极、制备方法及其应用
CN102024955B (zh) 一种用于燃料电池的三维网状纳米多孔钯钌电极材料及其制备方法
CN103318871A (zh) 一种以活性炭为原料合成石墨化多孔碳材料的制备方法
CN106129361B (zh) 一种锂离子电池负极活性材料及制备方法
CN106654272A (zh) 一种三维多孔纳米结构碳材料的制备方法
CN103855365A (zh) 锂-空气电池正极使用氮掺杂的多孔碳材料
CN103441246A (zh) 三维氮掺杂的石墨烯基二氧化锡复合材料的制备方法及其应用
CN105449226A (zh) 一种新型锂空气电池用三维电极材料及其制备方法
CN110627031A (zh) 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN115692746A (zh) 一步沉积制备orr和oer双功能催化剂的方法
CN103855394A (zh) 锂-空气电池正极使用多孔碳材料
CN108565469A (zh) 一种钴-氮掺杂碳复合材料及其制备方法
CN103341359B (zh) 一种用于Pb-C电池的泡沫碳载钯纳米晶消氢催化剂
CN101307395B (zh) 一种非晶态NiB储氢合金电极的制备方法
CN104269223B (zh) 利用电镀污泥-蛋壳膜制备电极材料的方法
CN109768233B (zh) 锂离子电池NiCo2S4/石墨烯复合负极材料的制备方法
CN107644999A (zh) 一种纳米多孔结构的Pd‑Sn复合材料的制备及其应用
CN110061204B (zh) 二维蜂窝状碳纳米片包覆1T′-ReS2作为钠离子电池负极材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant