CN103326682A - 具有高线性度的可调运算跨导放大器 - Google Patents

具有高线性度的可调运算跨导放大器 Download PDF

Info

Publication number
CN103326682A
CN103326682A CN2013102011858A CN201310201185A CN103326682A CN 103326682 A CN103326682 A CN 103326682A CN 2013102011858 A CN2013102011858 A CN 2013102011858A CN 201310201185 A CN201310201185 A CN 201310201185A CN 103326682 A CN103326682 A CN 103326682A
Authority
CN
China
Prior art keywords
amplifier
tuning
stage
input stage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102011858A
Other languages
English (en)
Inventor
李�真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Baker Microelectronics Co Ltd
Original Assignee
Suzhou Baker Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Baker Microelectronics Co Ltd filed Critical Suzhou Baker Microelectronics Co Ltd
Priority to CN2013102011858A priority Critical patent/CN103326682A/zh
Publication of CN103326682A publication Critical patent/CN103326682A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

具有高线性度的可调运算跨导放大器,本发明中,在选定输入信号范围的情况下,放大器可以被调整为线性增益。该放大器包括输入级以接收输入信号。该放大器还包含一个调谐电路,连接在放大器的输入级和输出级之间,该调谐电路通过放大器输出级上的调谐电流对放大器的增益进行控制。调谐电路中,将一对差分晶体管连接到一对晶体管的输出级。该调谐电路的输入级和输出级是一个共源共栅结构,以提高放大器的输出阻抗和共模输入信号的范围。

Description

具有高线性度的可调运算跨导放大器
技术领域:
本发明涉及一种普通的运算跨导放大器,特别地是,该运算跨导放大器中的调谐电路通过调节放大器的调谐电流来控制跨导。
背景技术:
随着人们对带宽的认识,连续时间滤波器被用于高清晰电视系统(HDTV)和高速数模转换器(ADC)中。高速,低失真,线性调谐范围宽,作为连续时间滤波器的几个特性,使得其在很多方面得以广泛的应用。
一种连续时间滤波器采用运算跨导放大器-电容滤波器(即OTA-C)。宽带OTA-C滤波器需要合适的宽带运算跨导放大器(OTAs),可使用双极晶体管(BJT)技术实现。尽管BJT技术提供了优异的高频性能,但是在宽带双极OTA放大器的设计方面还存在一些技术问题,特别是使用BJT跨导电容(gm-c)配置的设计。此外,OTAs在应用中有一些潜在的优势,例如,由于信号路径的低截止频率和电路中横向PNP晶体管的磁阻,使得BJT技术还不能实现。然而,最近,互补型双极晶体管BJT为电路的灵活设计提供了机会。
在传统的双极OTAs中,输入信号产生一个线性增益响应,通过调整偏执电流以设置输入级的增益,使得输入信号在选定的输入动态范围内变化。为了使OTA对较大的输入信号产生一个线性输出,可以通过增加偏置电流来设置相对高电平的输入级增益。然而,输出级通常都包括一个大的负反馈射极电阻,以减小对选定的差分输入信号所产生的输出失真,从而降低了OAT的调谐范围。这种射极负反馈通过改变偏置电流,在很大的程度上减小了输入级的增益,从而限制了OAT输入信号的范围。虽然射极负反馈导致输入阻抗的增加和输入电容的减小,但是,除了预期的工作特性外,OAT能提供一个很宽的调谐范围。
发明内容:
本发明的第一个目的是提供一个低失真跨导放大器,在输入信号范围很宽时,能被调整出线性响应。
本发明的第二个目的是提供一种互补双极技术,它能使可调运算跨导放大器具有提高高频的性能。
本发明的技术解决方案:
本发明的上述目的实现了放大器在选定的输入信号范围内能够被调整为线性增益。该放大器包括一个输入级以接收输入信号。该放大器还包括一个调谐电路,连接在放大器的输入级和输出级之间,通过调整输出级的调谐电流来控制放大器的增益。
调谐电路中,将一对差分晶体管连接到一对晶体管的输出级。该调谐电路的输入级和输出级是一个共源共栅结构,以提高放大器的输出阻抗。
对比文献,发明专利:可调线性运算跨导放大器,申请号:200810130712.X
附图说明:
本发明的其他目的和功能都是显而易见的,下面将结合附图对本发明的权利要求作详细的描述。
图1所示为传统的差分运算跨导放大器,该放大器中有一个被称为共源共栅结构的增益级配置。
图2(A)所示是根据本发明所述的放大器的简化图。
图2(B)所示是差分运算跨导放大器中积分器的框图。
图3(A)所示是根据本发明所述的跨导放大器的更详尽的图解。
图3(B)所示是一个共模反馈回路,通过控制放大器输出级的偏置以稳定图3(A)所示的放大器的共模输出。
图4(A)所示是根据本发明所述的跨导放大器的双极技术。
图4(B)所示是一个共模反馈回路,以稳定图4(A)中所示的BiCMOS放大器的共模输出。
图5所示的是根据本发明所述的被应用于四个运算跨导放大器中的典型二阶滤波器。
具体实施方案:
本发明依赖于一个调谐电路,通过控制放大器输入端的偏置电流以调整运算跨导放大器的跨导。尽管输入级存在负反馈电阻,但是,调谐电路使放大器的跨导作为偏置电流的一个有利功能。在这方面,调谐电路可以在很宽的动态输入范围内被调整(即,调整偏置电流),并使得放大器的输入级具有高输入阻抗。
如图1所示,是一个传统的差分运算跨导放大器(OTA1),包括一个共源共栅结构的增益级。通过把三极管QA和QB射极负反馈电阻RA和RB上的差分输入电压(IN+,IN-)转换成差分电流,使得放大器工作。可以看出,电流源IB和IC分别连接到三极管QC和QD上。OTA1还包括一个电流镜(包括QE,QF,QG,QH,RC,RD),和差分高阻抗输出结点Z+和Z-
因为电阻RA、RB的电阻值和输入设备QA和QB上的跨导(gm)很小,所以放大器的增益由电流源IA设置。然而,当电阻RA、RB的电阻值很大的时候,将在很宽的动态输入范围内影响放大器的线性工作,并且还需要一个很高的输入阻抗,输入级的gm对电流IA的敏感度趋向于稳定。更具体地说,对图1电路进行分析,得出图1放大器的低频、短路跨导(Gmo)的表达式为:
Figure BSA00000901766000031
Figure BSA00000901766000032
Figure BSA00000901766000033
gmA,gmF,rπF和rbA都是混合π小信号等效电路中双极型三极管QA和QC的参数。由公式(3)可知,放大器的跨导增益大约等于(1/REE),且与IA的值无关。很大的负反馈射极电阻REE是为了防止图1中放大器的增益被偏置IA所调整。如下所述,即使存在一个很大的负反馈射极电阻,本发明的跨导放大器中以调谐形式存在的中间增益级的gm可以通过调整调谐电流被控制。
图2(A)所示是根据本发明描述的放大器10的简化图。该放大器包括一个输入级,输入级中包括三极管Q1和Q2,它们的发射极与射极电阻REE和电容CEE相连接。如上所提到的,负反馈射极电阻REE是为了减小输出失真和输入阻抗的,并增加输入阻抗。在滤波器的放大器10中,在不同滤波器的通带频率内,电容CEE提供了一个端子以补偿变化的相位响应。差分输入电压(VIN+,VIN-)输入给三极管Q1和Q2,作为一个电压到电流的转换器。三极管Q1和Q2被电流源网络Q1’,Q2’,QB,和IB所偏置。
该放大器的共基极的共栅共源级包括三极管Q6和Q7。共栅共源级三极管Q6和Q7被电流源I4和I5所偏置,三极管Q8到Q11作为共栅共源级的有效负载。三极管的偏置电压VB1和VB2由偏置电路(未画出)提供,该偏置电路与过程和温度的变化相独立。
再次如图2(A)所示,该放大器包括一个调谐电路,其中包括一个由三极管Q1B和Q2B组成的中间增益级。中间增益级的三极管Q1B和Q2B耦合在差分输入级和共源共栅输出级之间。显而易见,PMOS的差分对Q1B、Q2B和共基极共源共栅三级管Q8、Q9,不同功能的跨导放大器由大小不同的电流ITUN所调谐。电流源12提供调谐电流ITUN,流向三极管Q1B和Q2B的共发射极结点,可以看出,电流源14和16分别占三极管Q1B和Q2B集电极电流ITUN的一半,这可以通过我们已知的传统晶体管基极调节电流源的方法来实现。
电流源I4、I5、I10和I11都被用来为三极管Q6到Q9提供固定的电流。根据本发明的规定,中间增益级的三极管Q1B和Q2B为放大器的跨导增益提供了调谐电流ITUN。这使得放大器可以通过调节调谐电流ITUN以接收很宽的动态范围的输入信号。
假设一个很大的(例如,5千欧)负反馈射极电阻REE,图2(A)所示放大器的短路跨导Gm可以表示为: G m = V IN + I OUT + = R EE 1 ( 1 + g m 6 g m 1 B ) = R EE 1 ( 1 + I B I TUN ) = G mo ( 1 + I B I TUN ) , 当ITUN=0时,跨导Gm的只等于固定的值Gmo
在工作中,调节电流ITUN的部分量,从电流源12分别流向中间增益级的每个三极管Q1B和Q2B,作为差分输入电压(VIN+,VIN-)的一个功能。当差分输入使得ITUN的整个电流都流经三极管Q1B的时候,根据三极管Q9发射极的KCL平衡方程可知:IEQ9s+2ITUN=ITUN+IBIEQ9s=IB-ITUN
给三极管Q9加一个正向外加电压直到ITUN能够偏置IB。当三极管Q9截止的时候,当ITUN增加时,跨导没有变化。因此,Gm的值达到最大(即2Gmo),当ITUN=IB时,相当于线性调谐范围2∶1。当REE减小,IB增大时,Gm的最大值也随之增大,当REE增大,IB减小时,则反之。
如图2(B)所示,一个方框图OAT10表示一个积分器。在图2(B)中,调谐电流ITUN受调谐信号TC控制。图2(B)的集成电路和其他的集成电路是为了实现各种类型的连续时间有源滤波器,如图5所述的例子。电容性负载上的输出共源共栅级可以直观地看出由图2(B)中的CL1和CL2产生,同样,图2(A)中也有此虚拟的结构。
如图3(A)所示,是根据本发明描述的跨导放大器20的更详尽的图示。由图3(A)可知,Q1B和Q2B被调谐电路所产生的调谐电流所偏置,且调节电流源22,该调谐电路由三极管Q3B、Q19、Q22到Q25构成。在图3(A)中,三极管Q22到Q25和有源负载三极管Q8到Q11具有第一导电类型(即NPN),PNP三极管Q19、Q3B和中间增益级的PNP三极管Q1B和Q2B具有相反地导电类型。
放大器输出结点26和28的共模输出端的稳定性是通过控制共模反馈回路24上Q4和Q5的偏置电压来实现的,图3(B)中已经画出。在图3(B)中,共模反馈回路24包括NPN双极型三极管Q14到Q17,PNP双极型三极管Q18-Q19。电流源I12和I13为差分对Q14-Q15和Q16-Q17提供了偏置电流。两个差分对Q14-Q15和Q16-Q17的差分电流都流入电流镜负载Q18-Q19,从Q18流出,以控制Q4-Q5的偏置。电阻R’EE尽量减小共模反馈回路24输出接点26和28上的负载,以及扩大共模反馈回路工作在线性区的范围。当输出接点26和28上的信号最大幅度的摆动时,应用于反馈回路24的共模参考电压VCM将被清零(VCM=0)。分流电容C’EE加在差分对Q14-Q15和Q16-Q17之间,为共模反馈回路24提供稳定的高频。
如图4(A)所示,描述了根据本发明描述的一个运用在跨导放大器40上的互补双极技术(即BiCMOS)。放大器40是放大器30的改进,可以利用MOS晶体管实现差分输入级和有源负载。例如,差分输入级包括有电流源42和44所偏置的第一和第二NMOS晶体管M1和M2。有源电阻RSS与有源电容CS并联,有源端子与第一和第二NMOS晶体管M1和M2的端子相连接。
中间增益级包括一对PNP双极型三极管,图4(A)中被定义为QM1和QM2。如图4(A)所示,调谐电流I’TUN是由电流源52通过中间增益级的三极管QM1和QM2所提供的。电流ITUN/2是由电流源54和56通过中间增益级的三极管QM1和QM2所提供的。在输出级,一对PMOS三极管M4和M5为共基极共栅共源PNP双极型三极管Q’6和Q’7提供偏置电流。输出级的共栅共源结构驱动NMOS有源负载晶体管M8和M9,分别被电流源60和62所偏置。通过共模反馈回路(CMF)66附加在PMOS晶体管M4和M5上的门偏置电压可以稳定输出电压的共模分量VO+和VO-,这可以使偏执电流提供给共栅共源级的晶体管Q’6和Q’7
如图4(B)所示,共模反馈回路(CMF)66包括一个PMOS晶体管M17,其漏极终端与PMOS晶体管M4和M5的门相连接。PMOS晶体管17和16构成一个电流镜,其漏极与NMOS差分晶体管对M12-M13和M14-M15相耦合。NMOS差分对被电流源70和72所偏置。如图4(B)所示,电阻RS1、RS2和电容CS1、CS2并联连接在NMOS差分对之间。CMF回路的稳定性是将差分接地的CMF的输出结点78经过电容CL1和CL2连接到CMF回路66的输入端来实现的。
图5所示是根据本发明要求的一个包括四个运算跨导放大器(OATs)81-84的典型的二阶滤波器80。二阶滤波器80可以被等效的使用,例如,RLC带通滤波器。这些作用很容易就能明白,本发明中OAT被用作连续时间有源滤波器(例如,切比雪夫和椭圆滤波器)。可以看出为OAT81加载输入电压(+Vi,-Vi),在OAT84产生响应输出(+VO,-VO)。电容C1和C2的值,以及调谐电流控制信号TC是为了设置电流ITUN的大小,以达到理想滤波器的响应特征。
虽然本发明参考了一些发明的具体体现,但是这并不受本发明的限制。在技术上的各种修改并没有违背发明的范围和精神,这由权利要求所界定。

Claims (9)

1.调谐放大器的跨导具有高线性度,其特征是:放大器包括一个输入级和一个输出级,输入级以接收输入信号,调谐电路包括:差分增益级对放大器的跨导增益进行调节,使其在预设调谐范围内变化,并且对调谐电流作出响应,差分增益级连接在放大器的输入级和输出级之间;放大器的输出级包含第一和第二调谐电路晶体管,它们并联连接,被称为差分增益级。
2.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:调谐电路中,第一和第二调谐电路晶体管包括一对连接在一个共基极组态上的双极型晶体管;差分增益级中包含第三晶体管和第四晶体管,第三晶体管的输出结点耦合到第一调谐电路晶体管上,第四晶体管耦合到第二调谐电路晶体管上。
3.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:放大器包括:一个输入级,将差分输入电压转换为输入电流;一个输出电路以接收输入电流;差分增益级包括一对差分晶体管,它们连接到输出电路的输入级;差分增益级的端子提供调节电流,在预设的调谐范围内设置放大器不同的跨导增益,根据调谐电流的变化,当调谐电流最小时,放大器的跨导增益相当于一个名义上的跨导;当调谐电流在预设的调谐范围内变化时,输出电路中的电流将对其作出响应。
4.根据权利要求3所述的调谐放大器的跨导具有高线性度,其特征是:放大器的输入级包括一对差分晶体管,输出电路包括连接在一个共基极组态的第一和第二双极型晶体管;该运算跨导放大器还包括一个耦合到输出电路的共模反馈回路。
5.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:运算跨导放大器包括:输入级包含一对第一导电类型的差分晶体管;输出级连接到输入级,其包含一对导电类型与第一导电类型相反的输出晶体管;调谐电路连接在放大器的输入级和输出级之间,根据调谐电流的变化,在预设的调谐范围内调节放大器的跨导增益,调谐电路包含一对导电类型与第一导电类型相反的调谐晶体管。
6.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:放大器包括输入级和输出级,输入级以接收输入信号;一个负反馈发射极电阻耦合到差分输入级;一个可调电流源产生调谐电流,对调谐控制信号作出响应;调谐电路包括一个差分增益级,放大器跨导增益的线性可调是调谐控制信号的一个功能,该差分增益级连接在放大器的输入级和输出级之间。
7.根据权利要求6所述的调谐放大器的跨导具有高线性度,其特征是:差分增益级中第一晶体管的控制端子与输入级的第一输出端子相连接,第二晶体管的控制端子与输入级的第二输出端子相连接。
8.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:共源共栅放大器包括一个输入级以接收输入信号,一个输出级,一个耦合到输入级的发射极电阻,该发射极电阻的选择要使得放大器具有很大的线性跨导增益;调谐电路包括:差分增益级对放大器的跨导增益进行调节,使其在预设调谐范围内变化,并且对调谐电流作出响应,差分增益级连接在放大器的输入级和输出级之间。
9.根据权利要求1所述的调谐放大器的跨导具有高线性度,其特征是:放大器中包括一个差分输入级以接收差分输入信号,一个差分输出级,调谐电路包括:差分增益级对放大器的线性跨导增益进行调节,使其在预设调谐范围内变化,并且对调谐电流作出响应,差分增益级连接在放大器的差分输入级和差分输出级之间。
CN2013102011858A 2013-05-27 2013-05-27 具有高线性度的可调运算跨导放大器 Pending CN103326682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013102011858A CN103326682A (zh) 2013-05-27 2013-05-27 具有高线性度的可调运算跨导放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102011858A CN103326682A (zh) 2013-05-27 2013-05-27 具有高线性度的可调运算跨导放大器

Publications (1)

Publication Number Publication Date
CN103326682A true CN103326682A (zh) 2013-09-25

Family

ID=49195254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102011858A Pending CN103326682A (zh) 2013-05-27 2013-05-27 具有高线性度的可调运算跨导放大器

Country Status (1)

Country Link
CN (1) CN103326682A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375929A (zh) * 2014-08-25 2016-03-02 联发科技股份有限公司 共振设备
CN105743448A (zh) * 2016-01-31 2016-07-06 天津大学 一种用于Gm-C滤波器的可调的高线性度跨导放大器结构
CN106100598A (zh) * 2016-05-31 2016-11-09 深圳市海思半导体有限公司 一种可变增益放大器
CN106330119A (zh) * 2016-08-26 2017-01-11 浙江芯迈电子科技有限公司 一种具有低温度漂移系数的跨导运放电路
CN106330120A (zh) * 2016-08-26 2017-01-11 浙江芯迈电子科技有限公司 一种具有高精度和高线性度的跨导运放电路
CN107425817A (zh) * 2016-05-24 2017-12-01 弗兰克公司 具有低失真的跨导放大器
CN107491132A (zh) * 2016-06-12 2017-12-19 中芯国际集成电路制造(上海)有限公司 电压电流转换电路
WO2018140609A1 (en) * 2017-01-26 2018-08-02 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers
US10177717B2 (en) 2016-03-14 2019-01-08 Analog Devices, Inc. Active linearization for broadband amplifiers
CN110495095A (zh) * 2017-05-02 2019-11-22 微芯片技术股份有限公司 调节仪表放大器中的增益误差的方法
CN110662977A (zh) * 2017-03-27 2020-01-07 波导公司 集成式传感器
CN111435828A (zh) * 2019-01-11 2020-07-21 模拟设备国际无限公司 具有降低的功率消耗和提高的压摆速率的放大器
US10848109B2 (en) 2017-01-26 2020-11-24 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357968A (zh) * 2000-12-06 2002-07-10 晶致半导体股份有限公司 具有改良线性度以及低偏差的跨导放大器
US20050030681A1 (en) * 2003-08-06 2005-02-10 Analog Microelectronics, Inc. Source follower with rail-to-rail voltage swing
CN101001078A (zh) * 2007-01-12 2007-07-18 清华大学 一种低电压负反馈跨导放大器
WO2009117713A1 (en) * 2008-03-21 2009-09-24 Qualcomm Incorporated Quadrature output low noise transconductance amplifier having differential input
CN101615894A (zh) * 2008-06-27 2009-12-30 深圳赛意法微电子有限公司 可调线性运算跨导放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357968A (zh) * 2000-12-06 2002-07-10 晶致半导体股份有限公司 具有改良线性度以及低偏差的跨导放大器
US20050030681A1 (en) * 2003-08-06 2005-02-10 Analog Microelectronics, Inc. Source follower with rail-to-rail voltage swing
CN101001078A (zh) * 2007-01-12 2007-07-18 清华大学 一种低电压负反馈跨导放大器
WO2009117713A1 (en) * 2008-03-21 2009-09-24 Qualcomm Incorporated Quadrature output low noise transconductance amplifier having differential input
CN101615894A (zh) * 2008-06-27 2009-12-30 深圳赛意法微电子有限公司 可调线性运算跨导放大器

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375929A (zh) * 2014-08-25 2016-03-02 联发科技股份有限公司 共振设备
CN105375929B (zh) * 2014-08-25 2019-05-31 联发科技股份有限公司 共振设备
CN105743448A (zh) * 2016-01-31 2016-07-06 天津大学 一种用于Gm-C滤波器的可调的高线性度跨导放大器结构
CN105743448B (zh) * 2016-01-31 2018-10-30 天津大学 一种用于Gm-C滤波器的可调的高线性度跨导放大器结构
US10177717B2 (en) 2016-03-14 2019-01-08 Analog Devices, Inc. Active linearization for broadband amplifiers
CN107425817B (zh) * 2016-05-24 2023-04-07 弗兰克公司 具有低失真的跨导放大器
CN107425817A (zh) * 2016-05-24 2017-12-01 弗兰克公司 具有低失真的跨导放大器
CN106100598A (zh) * 2016-05-31 2016-11-09 深圳市海思半导体有限公司 一种可变增益放大器
CN106100598B (zh) * 2016-05-31 2019-02-05 深圳市海思半导体有限公司 一种可变增益放大器
CN107491132B (zh) * 2016-06-12 2019-11-05 中芯国际集成电路制造(上海)有限公司 电压电流转换电路
CN107491132A (zh) * 2016-06-12 2017-12-19 中芯国际集成电路制造(上海)有限公司 电压电流转换电路
CN106330120A (zh) * 2016-08-26 2017-01-11 浙江芯迈电子科技有限公司 一种具有高精度和高线性度的跨导运放电路
CN106330119B (zh) * 2016-08-26 2018-12-28 浙江芯迈电子科技有限公司 一种具有低温度漂移系数的跨导运放电路
CN106330119A (zh) * 2016-08-26 2017-01-11 浙江芯迈电子科技有限公司 一种具有低温度漂移系数的跨导运放电路
CN106330120B (zh) * 2016-08-26 2018-12-28 浙江芯迈电子科技有限公司 一种具有高精度和高线性度的跨导运放电路
US10848109B2 (en) 2017-01-26 2020-11-24 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers
US10389312B2 (en) 2017-01-26 2019-08-20 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers
WO2018140609A1 (en) * 2017-01-26 2018-08-02 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers
CN110662977A (zh) * 2017-03-27 2020-01-07 波导公司 集成式传感器
CN110495095A (zh) * 2017-05-02 2019-11-22 微芯片技术股份有限公司 调节仪表放大器中的增益误差的方法
CN110495095B (zh) * 2017-05-02 2023-07-28 微芯片技术股份有限公司 调节仪表放大器中的增益误差的方法
CN111435828A (zh) * 2019-01-11 2020-07-21 模拟设备国际无限公司 具有降低的功率消耗和提高的压摆速率的放大器
CN111435828B (zh) * 2019-01-11 2023-08-11 亚德诺半导体国际无限责任公司 具有降低的功率消耗和提高的压摆速率的放大器

Similar Documents

Publication Publication Date Title
CN103326682A (zh) 具有高线性度的可调运算跨导放大器
CA2298310C (en) Low-voltage transconductance amplifier/filters
US5182477A (en) Bipolar tunable transconductance element
US6335655B1 (en) Filter circuit
US8648652B2 (en) Band pass filter and calibration method for band pass filter
US8081032B1 (en) Broadband LNA with filter
EP0352790B1 (en) Integrator and active filter including integrator with simple phase compensation
US6194972B1 (en) Gyrator with loop amplifiers connected to inductive elements
Yesil et al. Electronically controllable bandpass filters with high quality factor and reduced capacitor value: An additional approach
JP2011250084A (ja) ジャイレータ回路、広帯域増幅器及び無線通信装置
CN109857186B (zh) 一种带负反馈的源极跟随器以及滤波器结构
US5332937A (en) Transconductor stage for high frequency filters
US5495201A (en) Transconductor stage
US7375583B2 (en) Low noise lowpass filter
JPH1075135A (ja) BiCMOSトランスコンダクタ差動段および2番目の通過帯域フィルタ
JPS63105505A (ja) 増幅器
US20170126207A1 (en) Method and Implementation for Accurate Gain-Bandwidth Product Tuning
CN116232241A (zh) 仪表放大电路及电流监测仪
Castello et al. A very linear BiCMOS transconductor for high-frequency filtering applications
JPH05299949A (ja) 帰還形差動増幅回路
CN111835293B (zh) 多跨阻恒定带宽超低噪声tia
EP0696846B1 (en) High-pass filter structure with programmable zeros
KR100618354B1 (ko) 교차 연결된 트랜지스터를 이용하는 초광대역 필터
US5751185A (en) Low pass filter circuit utilizing transistors as inductive elements
CA2289501C (en) Gyrator with loop amplifiers connected to inductive elements

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130925