CN103272540B - 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用 - Google Patents

多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用 Download PDF

Info

Publication number
CN103272540B
CN103272540B CN201310169160.4A CN201310169160A CN103272540B CN 103272540 B CN103272540 B CN 103272540B CN 201310169160 A CN201310169160 A CN 201310169160A CN 103272540 B CN103272540 B CN 103272540B
Authority
CN
China
Prior art keywords
component containing
compound
hydrogel
carboxylated
hydrogen bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310169160.4A
Other languages
English (en)
Other versions
CN103272540A (zh
Inventor
张锦
杜然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201310169160.4A priority Critical patent/CN103272540B/zh
Publication of CN103272540A publication Critical patent/CN103272540A/zh
Application granted granted Critical
Publication of CN103272540B publication Critical patent/CN103272540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用。所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;所述含弱氢键的组分为小分子化合物或高分子化合物。本发明提供的水凝胶同时具备多重响应、自愈合功能、环境依赖的可逆的粘附行为,可以在传感器、致动器、药物控释、自修复材料、光热治疗、可移动智能粘结剂、人工关节领域获得重要应用。

Description

多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用
技术领域
本发明涉及一种多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用,属于水凝胶领域。
背景技术
随着超分子科学的出现,超分子水凝胶自21世纪初开始被广泛关注。相比传统化学法交联得到的水凝胶,超分子水凝胶的三维网络结构由弱相互作用诱导形成。由于弱相互作用对环境的变化极为敏感,且常常具有可逆性,因此,超分子水凝胶不仅保持了传统水凝胶高水含量、生物相容性、环境友好的特点,而且常兼具应激响应、自愈合等优异性质。然而,可实现多种功能的水凝胶,对交联力的类型、强弱等常具有严格的要求。如何有效地调控超分子水凝胶中的交联力,获得具备多种功能的超分子水凝胶,一直是此领域中的难题。
碳纳米管是20世纪末才被发现的一种新型一维碳材料。完美的单壁碳纳米管可视为由sp2键结合的单层石墨烯片沿特定方向卷曲而成的无缝管状结构,而多壁碳纳米管可视为多根同轴单壁管的组合体。卷曲方向的不同,可以使得碳纳米管显示金属性或半导体性。碳纳米管的直径可在0.4nm到数十纳米之间变化,而其长度也可在数百纳米到十几厘米之间变化,长径比可达107以上。超高的长径比,管状结构的多样性,管壁上游离的大量π电子,使得碳纳米管在光学、电学、力学、吸附方面具备极优异的性质。
碳纳米管具有如许多优异的性质,因此常被用于水凝胶体系。基于碳纳米管的水凝胶,可由纯碳纳米管构成,也可由碳纳米管与其它物质复合而成。由于碳纳米管的存在,这类水凝胶大多具有高于传统水凝胶的导电性与力学强度,而且在吸附、应激响应方面也常具有更优异的表现。然而,具有自愈合功能,或能够同时响应两种以上外界刺激的基于碳纳米管的水凝胶鲜有报道。
发明内容
本发明的目的是提供一种多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用,所述多组分超分子水凝胶可以广泛地应用于传感器、致动器、自愈合材料等技术领域。
本发明提供了多组分超分子水凝胶在作为温度应激响应材料中的应用,可用于制备温度传感器;其中,温度应激响应是指所述超分子水凝胶随着温度的不同在固态与液态之间发生转变,具体是在高温下变为液态,在低温下变为固态,高温指35~90℃,低温指5~30℃。这种温度诱导的凝胶-溶胶可逆转变,是因为在该超分子凝胶体系中,大部分交联力由弱氢键提供,而弱氢键可通过升温而被破坏,从而使得凝胶的三位网络结构可在升温的情况下被破坏。由于弱氢键的可逆性,在较低温度静置一段时间,凝胶网络可得以重构;
所述多组分超分子水凝胶为由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点(如羧基化碳量子点、羧基化硫化锌量子点、羧基化硫化镉量子点或羧基化碲化镉量子点)、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为所述含伯胺、仲胺或叔胺的化合物。
本发明还提供了多组分超分子水凝胶在作为近红外光应激响应材料中的应用,可用于制备近红外光传感器;其中,所述近红外光应激响应指的是所述超分子水凝胶在有无激光照射的条件下在固态和液态之间进行转变,具体可在连续型1064nm激光或脉冲型1064nm激光,能量为1~10mJ,功率为0.1~105W,照射时间为10s~10min时,转变为液态;撤除激光后,所得液体可在5~20℃下静置30s~30min回复为不流动的凝胶。这种近红外光诱导的凝胶-溶胶可逆转变,是因为碳纳米管或石墨烯对近红外光的强烈吸收作用及将之转换为热的能力,这种光热效应可用于破坏超分子凝胶体系中的弱氢键,从而瓦解三位凝胶网络。由于弱氢键的可逆性,在较低温度静置一段时间,凝胶网络可得以重构;
所述多组分超分子水凝胶为由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点(如羧基化碳量子点、羧基化硫化锌量子点、羧基化硫化镉量子点或羧基化碲化镉量子点)、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为所述含伯胺、仲胺或叔胺的化合物。
本发明还进一步提供了多组分超分子水凝胶在作为酸碱应激响应材料中的应用,可用于制备酸碱度传感器。其中,酸碱应激响应是指所述超分子水凝胶随着酸碱度的不同在液态与固态之间进行转变,具体在浓盐酸(凝胶与浓盐酸的体积比可为1~20:1)的作用下,在30s~60min内转变为液态;所得液体可通过加入与盐酸相同物质的量的氢氧化钾或氢氧化钠的固体粉末或浓溶液,搅拌均匀,室温静置30s~60min,回复为不流动的凝胶。这种酸碱(pH值)诱导的凝胶-溶胶可逆转变,是因为在这种超分子凝胶体系中,大部分交联力由氨基键的弱氢键N-H…N提供,而氨基会在酸加入的情况下被质子化,从而使得氨基之间的弱氢键消失,转而变为强烈的静电排斥力,从而使得凝胶的三位网络结构被破坏。通过外加碱中和质子化的氨基,氨基之间的弱氢键可以重新形成,因而凝胶网络可得以重构;
所述多组分超分子水凝胶为由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点(如羧基化碳量子点、羧基化硫化锌量子点、羧基化硫化镉量子点或羧基化碲化镉量子点)、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为所述含伯胺、仲胺或叔胺的化合物。
本发明最后提供了多组分超分子水凝胶在作为自愈合材料中的应用,所述水凝胶在剪切应力为1~3000Pa时,结构遭到破坏,之后可在2s~120min内恢复其原有力学性质,该性能源于凝胶中的交联力为可逆的氢键作用。本发明的水凝胶在干燥后(干燥温度为20~80℃),仍可保持自愈合性能:在被剪为多块后,可在其被剪断后30s~120h后,直接将断裂表面简单拼接,断裂表面可在3s~10min内恢复如初,并能够支撑住整个凝胶的重量;或在外力撞击下形成孔洞后,在3s~10min内自行恢复如初,不需要任何外界的能量或物质的输入,上述性能源于该凝胶中存在的大量弱氢键,使得凝胶中的交联具有非常高的可逆性;
所述多组分超分子水凝胶为由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点(如羧基化碳量子点、羧基化硫化锌量子点、羧基化硫化镉量子点或羧基化碲化镉量子点)、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为所述含伯胺、仲胺或叔胺的化合物。
上述的应用中,所述含强氢键的组分与所述含弱氢键的组分的质量比可为1:33~3500,具体可为1:100~3500、1:100、1:145、1:250、1:499、1:1000、1:2000或1:3500。
上述的应用中,所述多组分超分子水凝胶中,所述水的质量百分含量可为25%~90%,如25wt%、37.5wt%、50wt%、62.5wt%或75wt%。
上述的应用中,所述高分子化合物可为多乙烯多胺、聚乙烯亚胺(分子量为300~3000)、聚己烯亚胺(分子量为300~3000)、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;其中,所述第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子和第五代聚酰胺胺树枝形高分子可按照文献(D.A.Tom,E.Baker,J.Dewald,M.Hall,G.Kalla,S.Martin,J.Raeck,J.Ryder and P.Smith,Macromolecules,1986,19,2466.)报道的方法进行制备;所述超支化聚酰胺胺可按照文献(孙静.超支化聚酰胺合成与研究进展[J].上海化工,2011,(6):19-24.)报道的方法进行制备;
所述小分子化合物可为三聚氰胺。
本发明中的所述多组分超分子水凝胶可按照包括下述步骤的方法制备:
(1)配制所述含强氢键的组分的水溶液;
(2)向所述含强氢键的组分的水溶液中加入所述含弱氢键的组分并混合均匀,得到悬浮液;
(3)所述悬浮液经静置即得所述超分子水凝胶。
上述的制备方法中,所述含强氢键的组分的水溶液中,所述含强氢键的组分的质量-体积浓度可为0.3~15mg/mL,如0.3~10mg/mL、3mg/mL、4mg/mL或10mg/mL。
上述的制备方法中,步骤(3)中,所述静置的温度可为5°C~30°C,所述静置的时间可为1min~72h,具体可为10min~24h、10min、6h、12h或24h。
该方法制备的水凝胶中无杂质组分,因此无需额外后处理步骤,可以直接进行使用。
本发明提供的多组分超分子水凝胶的大部分交联力来源于弱氢键,且存在可发生酸碱反应的基团,故水凝胶对外界环境的刺激很敏感,可以在升温、近红外光照射、酸的作用下发生凝胶-溶胶转变,且这种转变是可逆的,即在降温、移去近红外光源、碱的作用下实现溶胶-凝胶转变。本发明提供的水凝胶同时具备多重响应、自愈合功能、环境依赖的可逆的粘附行为,可以在传感器、致动器、药物控释、自修复材料、光热治疗、可移动智能粘结剂、人工关节领域获得重要应用。
附图说明
图1为实施例1得到的超分子水凝胶数码照片。
图2为实施例1、2、3、4,5、6和8所得超分子水凝胶的数码照片,分别顺次对应图2(a)、图2(b)、图2(c)、图2(d)、图2(e)、图2(f)和图2(g)。
图3为实施例1得到的超分子水凝胶的TEM图片,其中图3(a)和图3(b)所示的凝胶中氧化碳纳米管浓度为0.025wt%,图3(c)和图3(d)所示的凝胶中氧化碳纳米管浓度为0.2wt%。
图4为多乙烯多胺和实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶干燥后的傅立叶红外光谱图。
图5为实施例1得到的超分子水凝胶的温度诱导的凝胶-溶胶可逆转变照片。
图6为实施例1得到的超分子水凝胶的近红外光诱导的凝胶-溶胶可逆转变照片。
图7为实施例1得到的超分子水凝胶的酸碱(pH值)诱导的凝胶-溶胶可逆转变照片,其中图7(a)为转变过程的数码照片,图7(b)为转变机理的化学方程式。
图8为实施例1得到的几种不同碳纳米管浓度的超分子水凝胶通过流变仪施加周期性剪切力时,其模量的相应变化情况。
图9为实施例1得到的超分子水凝胶在被切断后可通过断面自愈合的照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例1、2和8中的氧化碳纳米管溶液通过如下方法制备得到:
(1)称取多壁碳纳米管500mg于500ml24口圆底烧瓶中,向其中加入187.5mL质量分数为98%的浓硫酸与62.5mL质量分数为65%的浓硝酸。然后,将之在60℃下超声6h;
(2)将250mL冰块放入2L烧杯中,再将碳纳米管的混酸溶液倒入其中,并持续搅拌20min;
(3)将所得混合液在10000转下高速离心,弃去上层清液,将所得的黑色泥浆状物质在去离子水中透析8次,直至其为中性;
(4)将所得物质分散于去离子水中,配制为0.3~12mg/mL的氧化碳纳米管水分散液。
下述实施例3和4中的氧化石墨烯溶液通过如下方法制备得到:
(1)将25mL浓度为98wt%的硫酸加入100mL烧瓶中,加热至90°C,搅拌条件下依次缓慢加入5g过硫酸钾和5g五氧化二磷。然后降温至80°C,加入5g石墨粉,搅拌反应4.5小时,加入1L的蒸馏水静置12h,得到预氧化石墨。
(2)用2L蒸馏水对得到的预氧化石墨进行抽滤洗涤后,将预氧化石墨在50°C下干燥12h。
(3)取230mL浓度为98wt%的硫酸置于1L的烧瓶中,用冰浴冷却20min,然后依次缓慢加入干燥后的预氧化石墨和30g高锰酸钾,磁力搅拌20min;将烧瓶在35°C水浴中反应2h后,缓慢加入460mL蒸馏水,再加入1.4L的蒸馏水稀释,搅拌反应2h后,加入25mL30wt%的过氧化氢,此时反应液的颜色变成土黄色。
(4)向反应液中加入5wt%的盐酸,静置沉降后将上清液倒出,重复3次;再加入2L蒸馏水,静置沉降后将上清液倒出,重复2次后离心,得到氧化石墨烯,将所述氧化石墨烯配成需要浓度的氧化石墨烯溶液,其浓度为0.3~12mg/mL。
下述实施例5中的羧基化四氧化三铁纳米粒子的水溶胶通过如下方法制备得到:
(1)将0.85mL浓盐酸(质量分数35~38%)加入到25mL去离子水中,在剧烈搅拌下,向其中连续加入5.2g三氯化铁与2.0g氯化亚铁;
(2)在剧烈搅拌下,向所得溶液中,逐滴加入250mL1.5mol/L的氢氧化钠溶液;
(3)上一步过程中,有黑色沉淀产生。通过磁力将沉淀吸住,弃去上清液;
向沉淀中加入适量去离子水(200~500mL),在4000转/分的转速下离心10~30min,离心后弃去上清液。这个步骤反复3次;
(4)在搅拌条件下,将500mL,0.01mol/L盐酸水溶液加入到沉淀中。再次离心(4000转/分)10~30min,弃去上清液;
(5)再加入适量水(200~500mL)将之溶解,即可得到透明、黄色的羧基化四氧化三铁纳米粒子的水溶液。
下述实施例7中羧基化碲化铬量子点从南京捷纳思新材料有限公司购得(货号QD-11-560),其表面修饰有羧基,在水中有较好的溶解性。
实施例1、制备超分子水凝胶
1)取1mL浓度为4mg/mL的氧化碳纳米管水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温10min,可得到碳纳米管/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化碳纳米管和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
图1为实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶数码照片。
其中图1(a)所示水凝胶中,氧化碳纳米管浓度均为0.2wt%,含水量从左到右分别为25wt%、37.5wt%、50wt%、62.5wt%和75wt%;图1(b)所示水凝胶的含水量均为50wt%,从左到右氧化碳纳米管浓度分别为0.015wt%、0.025wt%、0.05wt%、0.1wt%、0.2wt%、0.35wt%和0.5wt%。
其中该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.1wt%,含水量为50wt%,氧化碳纳米管与多乙烯多胺的质量比为1:499)的数码照片如图2(a)所示。
图3为本实施例得到的不同浓度的碳纳米管/多乙烯多胺超分子水凝胶的TEM图片,图3(a)和图3(b)所示的凝胶中氧化碳纳米管浓度为0.025wt%,图3(c)和图3(d)所示的凝胶中氧化碳纳米管浓度为0.2wt%。
从图1、图2和图3可以看出,对于碳纳米管/多乙烯多胺超分子水凝胶,可看到碳纳米管外壁被多乙烯多胺包裹,被包覆的碳纳米管相互搭接,从而构成凝胶的三位网络结构。
图4为多乙烯多胺以及实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶干燥后的傅立叶红外光谱图。由该图可得知,相对于多乙烯多胺,干燥后的凝胶在3300cm-1处的氨基N-H伸缩振动峰略为展宽,亚甲基的非对称(2941cm-1)与对称伸缩振动峰(2827cm-1)向高波数移动了2~4cm-1,而1639cm-1附近出现了-COO-…NH+的振动峰,这些迹象均表明体系中同时存在大量弱氢键与少量的强氢键。
实施例2、制备超分子水凝胶
1)取1mL浓度为4mg/mL的氧化碳纳米管水溶液,加入1mL分子量为300的支化聚乙烯亚胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温6h,可得到碳纳米管/聚乙烯亚胺超分子水凝胶。
然后,按照上述步骤,通过调控碳纳米管和聚乙烯亚胺的质量比(1:33~3500)和水的质量百分含量(25%~75%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.2wt%,含水量为50wt%,氧化碳纳米管与聚乙烯亚胺的质量比为1:250)的数码照片如图2(b)所示。
实施例3、制备超分子水凝胶
1)取1mL浓度为3mg/mL的氧化石墨烯水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温12h,可得到石墨烯/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化石墨烯和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.15wt%,含水量为50wt%,氧化石墨烯与多乙烯多胺的质量比为1:333.3的数码照片如图2(c)所示。
实施例4、制备超分子水凝胶
1)取1mL浓度为3mg/mL的氧化石墨烯水溶液,加入1mL分子量为300的支化聚乙烯亚胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温12h,可得到石墨烯/聚乙烯亚胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化石墨烯和聚乙烯亚胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.15wt%,含水量为50wt%,氧化石墨烯与聚乙烯亚胺的质量比为1:333.3的数码照片如图2(d)所示。
实施例5、制备超分子水凝胶
1)取1mL浓度为10mg/mL的羧基化四氧化三铁纳米粒子水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到四氧化三铁/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控羧基化四氧化三铁纳米粒子和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(羧基化四氧化三铁纳米粒子浓度为0.5wt%,含水量为50wt%,羧基化四氧化三铁纳米粒子与多乙烯多胺的质量比为1:100的数码照片如图2(e)所示。
实施例6、制备超分子水凝胶
1)取1mL浓度为10mg/mL的聚丙烯酸水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到聚丙烯酸/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控聚丙烯酸和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(聚丙烯酸浓度为0.5wt%,含水量为50wt%,聚丙烯酸与多乙烯多胺的质量比为1:100的数码照片如图2(f)所示。
实施例7、制备超分子水凝胶
1)取1mL浓度为3mg/mL的羧基化碲化铬量子点水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到银纳米粒子/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控羧基化碲化铬量子点和多乙烯多胺的质量比(1:50~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
实施例8、制备超分子水凝胶
1)取0.5mL浓度为4mg/mL的氧化碳纳米管水溶液,加入0.5mL浓度为4mg/mL的羧基化四氧化三铁纳米粒子水溶液,再加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温6h,可得到氧化碳纳米管/四氧化三铁/多乙烯多胺三组分超分子水凝胶。
然后,按照上述步骤,通过调控氧化碳纳米管与羧基化四氧化三铁纳米粒子的总质量与多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.1wt%,四氧化三铁浓度为0.1wt%,含水量为50wt%,氧化碳纳米管和羧基化四氧化三铁纳米粒子的总质量与多乙烯多胺的质量比为1:250)的数码照片如图2(g)所示。
实施例9、水凝胶的温度应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的温度诱导的凝胶-溶胶可逆转变:当该水凝胶置于55℃时,可在30s内转变为液态;所得液体可在20℃静置2min回复为不流动的凝胶,上述转变过程的数码照片示于图5。
实施例10、水凝胶的近红外光应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的近红外光诱导的凝胶-溶胶可逆转变:当该超分子水凝胶在脉冲型1064nm激光,能量6mJ,脉冲频率20ns,照射2min下,转变为液态;所得液体可在20℃静置2min回复为不流动的凝胶,上述转变过程的数码照片示于图6。
实施例11、水凝胶的酸碱度应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的酸碱(pH值)诱导的凝胶-溶胶可逆转变:当该超分子水凝胶在浓盐酸(凝胶与盐酸的体积比为20:1)的作用下,在3min内转变为液态;所得液体可通过加入与盐酸相同物质的量的氢氧化钾或氢氧化钠的固体粉末或浓溶液,搅拌均匀,室温静置5min,回复为不流动的凝胶,上述转变过程相应数码照片示于图7(a),图7(b)为上述转变机理的化学方程式。
实施例12、水凝胶的自愈合性能
通过流变仪表征凝胶的自愈合性质。
将实施例1得到的不同碳纳米管浓度的碳纳米管/多乙烯多胺超分子水凝胶(氧化碳纳米管浓度分别为0.025wt%、0.1wt%、0.2wt%和0.5wt%)置于锥板流变仪上进行剪切变形-恢复的测试,所用变形剪切应力分别为5Pa、20Pa、35Pa和200Pa,记录在剪切力周期性变化时,凝胶的储存模量和损耗模量的变化情况。具体结果示于图8。从该图可以看出,凝胶在大剪切力作用下,储存模量迅速减小,而当回复为小剪切力后,储存模量可以迅速恢复,即体现出快速的自愈合行为。
实施例13、水凝胶的宏观自愈合性能
将实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶剪断后,直接将断面重新拼接在一起,则凝胶可在2min内重新复原为一个整体,并能够支撑自身的重量。相应数码照片示于图9。
经测试,本发明实施例2-8制备的超分子水凝胶具有与实施例1制备的超分子水凝胶同样的温度响应性能、近红外光响应性能、酸碱响应性能和自愈合性能。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种多组分超分子水凝胶在作为温度应激响应材料中的应用;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
2.一种多组分超分子水凝胶在作为近红外光应激响应材料中的应用;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
3.一种多组分超分子水凝胶在作为酸碱应激响应材料中的应用;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
4.一种多组分超分子水凝胶在作为自愈合材料中的应用;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
5.一种温度传感器,其特征在于:所述温度传感器包括多组分超分子水凝胶;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
6.一种近红外光传感器,其特征在于:所述近红外光传感器包括多组分超分子水凝胶;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
7.一种酸度传感器,其特征在于:所述酸度传感器包括多组分超分子水凝胶;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为含伯胺、仲胺或叔胺的化合物;
所述高分子化合物为多乙烯多胺、聚乙烯亚胺、聚己烯亚胺、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;
所述小分子化合物为三聚氰胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
CN201310169160.4A 2013-05-09 2013-05-09 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用 Active CN103272540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310169160.4A CN103272540B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310169160.4A CN103272540B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用

Publications (2)

Publication Number Publication Date
CN103272540A CN103272540A (zh) 2013-09-04
CN103272540B true CN103272540B (zh) 2015-03-04

Family

ID=49055222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310169160.4A Active CN103272540B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用

Country Status (1)

Country Link
CN (1) CN103272540B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055312A (zh) * 2012-12-29 2013-04-24 浙江大学 四氧化三铁作为光热敏感材料的应用
CN104437279B (zh) * 2014-11-17 2016-08-24 北京大学 掺杂碳纳米管气凝胶及其制备方法与应用
CN104530701B (zh) * 2015-01-15 2017-08-11 合肥工业大学 一种低温自修复导电复合材料及其制备方法
CN105153864A (zh) * 2015-08-19 2015-12-16 中国科学院深圳先进技术研究院 一种光热致形状记忆复合材料及其制备方法
CN105601955A (zh) * 2016-02-03 2016-05-25 合肥工业大学 一种电刺激荧光响应水凝胶
CN105866166A (zh) * 2016-03-21 2016-08-17 天津工业大学 一种测量温敏性水凝胶相转变温度的动态热机械分析方法
CN105646906B (zh) * 2016-03-24 2018-02-13 华东交通大学 一种具有多重刺激响应的氧化石墨烯凝胶的制备方法
CN105949364B (zh) * 2016-07-22 2018-04-06 合肥工业大学 一种光热诱导自修复贵金属纳米复合水凝胶及其制备方法
CN106390952A (zh) * 2016-10-13 2017-02-15 合众(佛山)化工有限公司 一种新型碳纳米管复合水凝胶及其制备方法
CN106832140A (zh) * 2017-01-19 2017-06-13 中国科学院大学 一种多重自修复聚氨酯共混材料的制备方法
CN108998006B (zh) * 2018-07-20 2021-06-08 合肥工业大学 一种环境友好的应变响应型荧光超分子材料及其制备方法
CN109294133B (zh) * 2018-09-25 2021-02-09 南京工业大学 可拉伸自愈合水凝胶柔性应变传感器及其制备方法
CN109438727B (zh) * 2018-10-17 2020-08-07 中国人民解放军总医院 一种荧光响应的自愈性水凝胶及其制备方法
CN109880148B (zh) * 2019-01-22 2021-08-06 肇庆医学高等专科学校 一种表面印迹材料的制备及其在谷氨酸对映体拆分中的应用
CN110698697B (zh) * 2019-08-30 2020-10-09 厦门大学 一种具有自愈合性能的聚乙烯亚胺-聚乙烯醇水凝胶的制备方法
CN111359441B (zh) * 2020-03-25 2022-02-15 青岛科技大学 一种碱性pH响应聚合物纳米容器填充耐氯反渗透膜的制备方法
CN113480745B (zh) * 2021-04-16 2022-07-12 山东师范大学 一种超拉伸磁响应自修复水凝胶及其制备方法、应用
CN114307983A (zh) * 2021-10-22 2022-04-12 海南大学 一种兼具分离富集、检测、催化功能的一体化智能结构体系及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143914A (zh) * 2007-09-13 2008-03-19 郑州大学 碳纳米管增强温敏性复合水凝胶及辐射制备方法
CN101980729A (zh) * 2007-12-17 2011-02-23 新特斯有限责任公司 交联水凝胶
CN102604032A (zh) * 2012-02-28 2012-07-25 华南理工大学 一种温敏扩链剂及温度、pH双敏感的聚氨酯水凝胶

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143914A (zh) * 2007-09-13 2008-03-19 郑州大学 碳纳米管增强温敏性复合水凝胶及辐射制备方法
CN101980729A (zh) * 2007-12-17 2011-02-23 新特斯有限责任公司 交联水凝胶
CN102604032A (zh) * 2012-02-28 2012-07-25 华南理工大学 一种温敏扩链剂及温度、pH双敏感的聚氨酯水凝胶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
以微凝胶为基质的杂化材料制备及应用研究进展;李红等;《高分子通报》;20100228(第2期);第41-51页 *

Also Published As

Publication number Publication date
CN103272540A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103272540B (zh) 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用
CN103242656B (zh) 一种多组分超分子水凝胶及其制备方法
CN103275668B (zh) 多组分超分子水凝胶在作为粘结剂中的应用
da Silva Souza et al. Luminescent carbon dots obtained from cellulose
Lu et al. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry
Xue et al. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions
JP5649572B2 (ja) ナノオブジェクトまたはナノストラクチャーのゲル化され、凍結乾燥されたカプセルまたはアグロメレート、それらを含むポリマーマトリックスを含むナノコンポジット材料、およびそれらを調製するための方法
JP6163662B2 (ja) グラフェン複合粉体材料及びその製造方法
Tang et al. A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage
Malatji et al. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution
CN102911402B (zh) 一种具有多导热点的星形导热填料的制备方法
CN103805142A (zh) 一种氮化硅改性相变储能微胶囊及其制备方法
CN101899185A (zh) 一种碳纳米管/聚苯乙烯复合导电材料的制作方法
CN111961229B (zh) 一种双层水凝胶及其制备方法与应用
CN101724179A (zh) 壳聚糖季铵盐/蒙脱土纳米复合材料的微波辐射制备方法
Xie et al. Preparation magnetic cassava residue microspheres and its application for Cu (II) adsorption
Georgakilas et al. Polypyrrole/MWNT nanocomposites synthesized through interfacial polymerization
CN106902715A (zh) 一种三维结构复合气凝胶、其制备方法及用途
CN100469835C (zh) 蒙脱土/稀土粒子/聚合物三元纳米复合材料及其制备方法
CN104445134A (zh) 一种碳材料的表面改性方法
Antoniou et al. Carbon nanostructures containing polyhedral oligomeric silsesquioxanes (POSS)
Lin et al. Efficient fabrication of low-density polyethylene/polyethylene oxide/carbon nanotubes films with robust shape stability and photothermal property for thermal management and afterheat utilization
KR101281626B1 (ko) 고분자/탄소나노튜브 복합체 제조 방법, 이를 이용한 고분자/탄소나노튜브 복합체 박막 제조 방법, 고분자/탄소나노튜브 복합체 및 고분자/탄소나노튜브 복합체 박막
CN1962428B (zh) 修饰碳纳米管的方法
CN102964607B (zh) 一种金属离子/淀粉聚集体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant