CN103275668B - 多组分超分子水凝胶在作为粘结剂中的应用 - Google Patents

多组分超分子水凝胶在作为粘结剂中的应用 Download PDF

Info

Publication number
CN103275668B
CN103275668B CN201310168441.8A CN201310168441A CN103275668B CN 103275668 B CN103275668 B CN 103275668B CN 201310168441 A CN201310168441 A CN 201310168441A CN 103275668 B CN103275668 B CN 103275668B
Authority
CN
China
Prior art keywords
hydrogel
hydrogen bond
component
supramolecular hydrogel
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310168441.8A
Other languages
English (en)
Other versions
CN103275668A (zh
Inventor
张锦
杜然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201310168441.8A priority Critical patent/CN103275668B/zh
Publication of CN103275668A publication Critical patent/CN103275668A/zh
Application granted granted Critical
Publication of CN103275668B publication Critical patent/CN103275668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种多组分超分子水凝胶在作为粘结剂中的应用。所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;所述含弱氢键的组分为小分子化合物或高分子化合物。本发明提供的水凝胶在作为粘结剂使用时,其不同于常见的粘结剂,该凝胶在垂直方向粘附力远大于其切向粘附力,因此可以在人工关节中起到粘结两块骨骼,使其可以沿切向自由旋转而又不至于相互脱离的作用。

Description

多组分超分子水凝胶在作为粘结剂中的应用
技术领域
本发明涉及一种多组分超分子水凝胶在作为粘结剂中的应用,属于水凝胶技术领域。
背景技术
随着超分子科学的出现,超分子水凝胶自21世纪初开始被广泛关注。相比传统化学法交联得到的水凝胶,超分子水凝胶的三维网络结构由弱相互作用诱导形成。由于弱相互作用对环境的变化极为敏感,且常常具有可逆性,因此,超分子水凝胶不仅保持了传统水凝胶高水含量、生物相容性、环境友好的特点,而且常兼具应激响应、自愈合等优异性质。然而,可实现多种功能的水凝胶,对交联力的类型、强弱等常具有严格的要求。如何有效地调控超分子水凝胶中的交联力,获得具备多种功能的超分子水凝胶,一直是此领域中的难题。
碳纳米管是20世纪末才被发现的一种新型一维碳材料。完美的单壁碳纳米管可视为由sp2键结合的单层石墨烯片沿特定方向卷曲而成的无缝管状结构,而多壁碳纳米管可视为多根同轴单壁管的组合体。卷曲方向的不同,可以使得碳纳米管显示金属性或半导体性。碳纳米管的直径可在0.4nm到数十纳米之间变化,而其长度也可在数百纳米到十几厘米之间变化,长径比可达107以上。超高的长径比,管状结构的多样性,管壁上游离的大量π电子,使得碳纳米管在光学、电学、力学、吸附方面具备极优异的性质。
碳纳米管具有如许多优异的性质,因此常被用于水凝胶体系。基于碳纳米管的水凝胶,可由纯碳纳米管构成,也可由碳纳米管与其它物质复合而成。由于碳纳米管的存在,这类水凝胶大多具有高于传统水凝胶的导电性与力学强度,而且在吸附、应激响应方面也常具有更优异的表现。然而,具有自愈合功能,或能够同时响应两种以上外界刺激的基于碳纳米管的水凝胶鲜有报道。
粘结剂虽然已经商业化,但商业可获得的产品(如一般的环氧树脂粘结剂,聚丙烯酸酯型粘结剂(如502胶))多数在聚四氟乙烯上的粘结力很弱,而且它们的粘结行为通常是不可逆的,只能作一次性使用。此外,它们的粘结力对外界条件的刺激很不敏感。然而,发展同时具备可逆粘结与应激响应能力的粘结剂极为重要,因为这种粘合剂可循环使用(降低成本),且可方便地实现被粘物质的转移。另一方面,在人工关节方面,需要垂直方向粘附力大于切向粘附力的材料,这是目前多数粘结剂所不具备的。
发明内容
本发明的目的是提供一种多组分超分子水凝胶在作为粘结剂中的应用。
本发明提供了多组分超分子水凝胶在作为粘结剂中的应用;
所述多组分超分子水凝胶为由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子、羧基化量子点(如羧基化碳量子点、羧基化硫化锌量子点、羧基化硫化镉量子点或羧基化碲化镉量子点)、聚丙烯酸、聚丙烯醇、聚乙烯醇、聚氨酯、聚酰胺和聚对苯乙烯磺酸钠中的一种或多种;
所述含弱氢键的组分为小分子化合物或高分子化合物,所述小分子化合物或所述高分子化合物均为所述含伯胺、仲胺或叔胺的化合物。
上述的应用中,所述含强氢键的组分与所述含弱氢键的组分的质量比可为1:33~3500,具体可为1:100~3500、1:100、1:145、1:250、1:499、1:1000、1:2000或1:3500。
上述的应用中,所述多组分超分子水凝胶中,所述水的质量百分含量可为25%~90%,如25wt%、37.5wt%、50wt%、62.5wt%或75wt%。
上述的应用中,所述高分子化合物可为多乙烯多胺、聚乙烯亚胺(分子量为300~3000)、聚己烯亚胺(分子量为300~3000)、第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子、第五代聚酰胺胺树枝形高分子或超支化聚酰胺胺;其中,所述第三代聚酰胺胺树枝形高分子、第四代聚酰胺胺树枝形高分子和第五代聚酰胺胺树枝形高分子可按照文献(D.A.Tom,E.Baker,J.Dewald,M.Hall,G.Kalla,S.Martin,J.Raeck,J.Ryder and P.Smith,Macromolecules,1986,19,2466.)报道的方法进行制备;所述超支化聚酰胺胺可按照文献(孙静.超支化聚酰胺合成与研究进展[J].上海化工,2011,(6):19-24.)报道的方法进行制备;
所述小分子化合物可为三聚氰胺。
所述多组分超分子水凝胶的组分中含有电负性较强的氧、氮等元素,因此具有较强的粘附力。所述多组分超分子水凝胶在干燥后(干燥温度为20~90℃,时间为1~14天),均匀涂布于金属砝码底面,并将其压在玻璃基底、特氟龙基底、聚苯乙烯基底、聚甲基丙烯酸甲酯基底、砷化镓基底或聚对苯二甲酸乙二醇酯(PET)基底上,在5~15℃恒温2h~48h,之后在12℃测试粘附力,所得结果为2~8N/cm2
所述多组分超分子水凝胶在作为粘结剂使用时,其粘结力对温度具有依赖性:当温度自12℃变化到35℃,粘附力从2~8N/cm2下降到2×10-4~8×10-4N/cm2,且粘附力的变化是可逆的;当温度降低到原来数值后,粘附力可得以完全恢复。
所述多组分超分子水凝胶在作为粘结剂使用时,其粘结力对近红外光具有依赖性:当承重为2N/cm2时,使用1064nm激光(能量3~10mJ,功率0.1~105W)照射粘结部位,可在10s~10min使得粘结的物品脱附。当停止照射并重新粘结后,其粘附力可以得到完全恢复。
所述多组分超分子水凝胶在作为粘结剂使用时,该粘结剂可以循环使用:当通过外力、升温、近红外光照射方式使得粘结的物品脱附后,可将物品重新粘结。若直接测试,则粘结力为原来的20%~90%;若在5~15℃恒温15min~48h后,粘附力可恢复到初始水平。
所述多组分超分子水凝胶在作为粘结剂使用时,由于其垂直方向粘结力大于其切向粘附力,因此可以在人工关节中起到粘结两块骨骼,使其可以沿切向自由旋转,而又不至于脱离的作用。
本发明中的所述多组分超分子水凝胶在作为温度应激响应材料中的应用,可用于制备温度传感器;其中,温度应激响应是指所述超分子水凝胶随着温度的不同在固态与液态之间发生转变,具体是在高温下变为液态,在低温下变为固态,高温指35~90℃,低温指5~30℃。这种温度诱导的凝胶-溶胶可逆转变,是因为在该超分子凝胶体系中,大部分交联力由弱氢键提供,而弱氢键可通过升温而被破坏,从而使得凝胶的三位网络结构可在升温的情况下被破坏。由于弱氢键的可逆性,在较低温度静置一段时间,凝胶网络可得以重构。
本发明中的所述多组分超分子水凝胶在作为近红外光应激响应材料中的应用,可用于制备近红外光传感器。其中,所述近红外光应激响应指的是所述超分子水凝胶在有无激光照射的条件下在固态和液态之间进行转变,具体可在连续型1064nm激光或脉冲型1064nm激光,能量为1~10mJ,功率为0.1~105W,照射时间为10s~10min时,转变为液态;撤除激光后,所得液体可在5~20℃下静置30s~30min回复为不流动的凝胶。这种近红外光诱导的凝胶-溶胶可逆转变,是因为碳纳米管或石墨烯对近红外光的强烈吸收作用及将之转换为热的能力,这种光热效应可用于破坏超分子凝胶体系中的弱氢键,从而瓦解三位凝胶网络。由于弱氢键的可逆性,在较低温度静置一段时间,凝胶网络可得以重构。
本发明中的所述多组分超分子水凝胶在作为酸碱应激响应材料中的应用,可用于制备酸碱度传感器。其中,酸碱应激响应是指所述超分子水凝胶随着酸碱度的不同在液态与固态之间进行转变,具体在浓盐酸(凝胶与浓盐酸的体积比可为1~20:1)的作用下,在30s~60min内转变为液态;所得液体可通过加入与盐酸相同物质的量的氢氧化钾或氢氧化钠的固体粉末或浓溶液,搅拌均匀,室温静置30s~60min,回复为不流动的凝胶。这种酸碱(pH值)诱导的凝胶-溶胶可逆转变,是因为在这种超分子凝胶体系中,大部分交联力由氨基键的弱氢键N-H…N提供,而氨基会在酸加入的情况下被质子化,从而使得氨基之间的弱氢键消失,转而变为强烈的静电排斥力,从而使得凝胶的三位网络结构被破坏。通过外加碱中和质子化的氨基,氨基之间的弱氢键可以重新形成,因而凝胶网络可得以重构。
本发明中的所述多组分超分子水凝胶在作为自愈合材料中的应用,所述水凝胶在剪切应力为1~3000Pa时,结构遭到破坏,之后可在2s~120min内恢复其原有力学性质,该性能源于凝胶中的交联力为可逆的氢键作用。本发明的水凝胶在干燥后(干燥温度为20~80℃),仍可保持自愈合性能:在被剪为多块后,可在其被剪断后30s~120h后,直接将断裂表面简单拼接,断裂表面可在3s~10min内恢复如初,并能够支撑住整个凝胶的重量;或在外力撞击下形成孔洞后,在3s~10min内自行恢复如初,不需要任何外界的能量或物质的输入,上述性能源于该凝胶中存在的大量弱氢键,使得凝胶中的交联具有非常高的可逆性。
本发明中的所述多组分超分子水凝胶可按照包括下述步骤的方法制备:
(1)配制所述含强氢键的组分的水溶液;
(2)向所述含强氢键的组分的水溶液中加入所述含弱氢键的组分并混合均匀,得到悬浮液;
(3)所述悬浮液经静置即得所述超分子水凝胶。
上述的制备方法中,所述含强氢键的组分的水溶液中,所述含强氢键的组分的质量-体积浓度可为0.3~15mg/mL,如0.3~10mg/mL、3mg/mL、4mg/mL或10mg/mL。
上述的制备方法中,步骤(3)中,所述静置的温度可为5°C~30°C,所述静置的时间可为1min~72h,具体可为10min~24h、10min、6h、12h或24h。
该方法制备的水凝胶中无杂质组分,因此无需额外后处理步骤,可以直接进行使用。
本发明提供的水凝胶可作为粘结剂使用,除其具有较强的粘附力,与多数商业化粘结剂不同的是,该凝胶作为粘结剂可循环使用,而且其粘附力可在升温或近红外光照射后极大地被削弱。因此,可以通过加热或光照的办法取下粘附物,并将之转移到其它需要的地方进行再次粘附。本发明提供的水凝胶在作为粘结剂使用时,其不同于常见的粘结剂,该凝胶在垂直方向粘附力远大于其切向粘附力,因此可以在人工关节中起到粘结两块骨骼,使其可以沿切向自由旋转而又不至于相互脱离的作用。
附图说明
图1为实施例1得到的超分子水凝胶数码照片。
图2为实施例1、2、3、4,5、6和8所得超分子水凝胶的数码照片,分别顺次对应图2(a)、图2(b)、图2(c)、图2(d)、图2(e)、图2(f)和图2(g)。
图3为实施例1得到的超分子水凝胶的TEM图片,其中图3(a)和图3(b)所示的凝胶中氧化碳纳米管浓度为0.025wt%,图3(c)和图3(d)所示的凝胶中氧化碳纳米管浓度为0.2wt%。
图4为多乙烯多胺和实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶干燥后的傅立叶红外光谱图。
图5为实施例1得到的超分子水凝胶的温度诱导的凝胶-溶胶可逆转变照片。
图6为实施例1得到的超分子水凝胶的近红外光诱导的凝胶-溶胶可逆转变照片。
图7为实施例1得到的超分子水凝胶的酸碱(pH值)诱导的凝胶-溶胶可逆转变照片,其中图7(a)为转变过程的数码照片,图7(b)为转变机理的化学方程式。
图8为实施例1得到的几种不同碳纳米管浓度的超分子水凝胶通过流变仪施加周期性剪切力时,其模量的相应变化情况。
图9为实施例1得到的超分子水凝胶在被切断后可通过断面自愈合的照片。
图10为实施例1得到的超分子水凝胶将金属砝码分别粘结在特氟龙基底上(图10(a))与玻璃基底上(图10(b))的数码照片。
图11为实施例1得到的超分子水凝胶在不同温度下粘结一定重量重物所能持续的时间(图11(a)),以及在多个温度循环时持续时间的变化情况曲线(图11(b)。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例1、2和8中的氧化碳纳米管溶液通过如下方法制备得到:
(1)称取多壁碳纳米管500mg于500ml24口圆底烧瓶中,向其中加入187.5mL质量分数为98%的浓硫酸与62.5mL质量分数为65%的浓硝酸。然后,将之在60℃下超声6h;
(2)将250mL冰块放入2L烧杯中,再将碳纳米管的混酸溶液倒入其中,并持续搅拌20min;
(3)将所得混合液在10000转下高速离心,弃去上层清液,将所得的黑色泥浆状物质在去离子水中透析8次,直至其为中性;
(4)将所得物质分散于去离子水中,配制为0.3~12mg/mL的氧化碳纳米管水分散液。
下述实施例3和4中的氧化石墨烯溶液通过如下方法制备得到:
(1)将25mL浓度为98wt%的硫酸加入100mL烧瓶中,加热至90°C,搅拌条件下依次缓慢加入5g过硫酸钾和5g五氧化二磷。然后降温至80°C,加入5g石墨粉,搅拌反应4.5小时,加入1L的蒸馏水静置12h,得到预氧化石墨。
(2)用2L蒸馏水对得到的预氧化石墨进行抽滤洗涤后,将预氧化石墨在50°C下干燥12h。
(3)取230mL浓度为98wt%的硫酸置于1L的烧瓶中,用冰浴冷却20min,然后依次缓慢加入干燥后的预氧化石墨和30g高锰酸钾,磁力搅拌20min;将烧瓶在35°C水浴中反应2h后,缓慢加入460mL蒸馏水,再加入1.4L的蒸馏水稀释,搅拌反应2h后,加入25mL30wt%的过氧化氢,此时反应液的颜色变成土黄色。
(4)向反应液中加入5wt%的盐酸,静置沉降后将上清液倒出,重复3次;再加入2L蒸馏水,静置沉降后将上清液倒出,重复2次后离心,得到氧化石墨烯,将所述氧化石墨烯配成需要浓度的氧化石墨烯溶液,其浓度为0.3~12mg/mL。
下述实施例5中的羧基化四氧化三铁纳米粒子的水溶胶通过如下方法制备得到:
(1)将0.85mL浓盐酸(质量分数35~38%)加入到25mL去离子水中,在剧烈搅拌下,向其中连续加入5.2g三氯化铁与2.0g氯化亚铁;
(2)在剧烈搅拌下,向所得溶液中,逐滴加入250mL1.5mol/L的氢氧化钠溶液;
(3)上一步过程中,有黑色沉淀产生。通过磁力将沉淀吸住,弃去上清液;
向沉淀中加入适量去离子水(200~500mL),在4000转/分的转速下离心10~30min,离心后弃去上清液。这个步骤反复3次;
(4)在搅拌条件下,将500mL,0.01mol/L盐酸水溶液加入到沉淀中。再次离心(4000转/分)10~30min,弃去上清液;
(5)再加入适量水(200~500mL)将之溶解,即可得到透明、黄色的羧基化四氧化三铁纳米粒子的水溶液。
下述实施例7中羧基化碲化铬量子点从南京捷纳思新材料有限公司购得(货号QD-11-560),其表面修饰有羧基,在水中有较好的溶解性。
实施例1、制备超分子水凝胶
1)取1mL浓度为4mg/mL的氧化碳纳米管水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温10min,可得到碳纳米管/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化碳纳米管和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
图1为实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶数码照片。
其中图1(a)所示水凝胶中,氧化碳纳米管浓度均为0.2wt%,含水量从左到右分别为25wt%、37.5wt%、50wt%、62.5wt%和75wt%;图1(b)所示水凝胶的含水量均为50wt%,从左到右氧化碳纳米管浓度分别为0.015wt%、0.025wt%、0.05wt%、0.1wt%、0.2wt%、0.35wt%和0.5wt%。
其中该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.1wt%,含水量为50wt%,氧化碳纳米管与多乙烯多胺的质量比为1:499)的数码照片如图2(a)所示。
图3为本实施例得到的不同浓度的碳纳米管/多乙烯多胺超分子水凝胶的TEM图片,图3(a)和图3(b)所示的凝胶中氧化碳纳米管浓度为0.025wt%,图3(c)和图3(d)所示的凝胶中氧化碳纳米管浓度为0.2wt%。
从图1、图2和图3可以看出,对于碳纳米管/多乙烯多胺超分子水凝胶,可看到碳纳米管外壁被多乙烯多胺包裹,被包覆的碳纳米管相互搭接,从而构成凝胶的三位网络结构。
图4为多乙烯多胺以及实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶干燥后的傅立叶红外光谱图。由该图可得知,相对于多乙烯多胺,干燥后的凝胶在3300cm-1处的氨基N-H伸缩振动峰略为展宽,亚甲基的非对称(2941cm-1)与对称伸缩振动峰(2827cm-1)向高波数移动了2~4cm-1,而1639cm-1附近出现了-COO-…NH+的振动峰,这些迹象均表明体系中同时存在大量弱氢键与少量的强氢键。
实施例2、制备超分子水凝胶
1)取1mL浓度为4mg/mL的氧化碳纳米管水溶液,加入1mL分子量为300的支化聚乙烯亚胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温6h,可得到碳纳米管/聚乙烯亚胺超分子水凝胶。
然后,按照上述步骤,通过调控碳纳米管和聚乙烯亚胺的质量比(1:33~3500)和水的质量百分含量(25%~75%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.2wt%,含水量为50wt%,氧化碳纳米管与聚乙烯亚胺的质量比为1:250)的数码照片如图2(b)所示。
实施例3、制备超分子水凝胶
1)取1mL浓度为3mg/mL的氧化石墨烯水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温12h,可得到石墨烯/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化石墨烯和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.15wt%,含水量为50wt%,氧化石墨烯与多乙烯多胺的质量比为1:333.3的数码照片如图2(c)所示。
实施例4、制备超分子水凝胶
1)取1mL浓度为3mg/mL的氧化石墨烯水溶液,加入1mL分子量为300的支化聚乙烯亚胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温12h,可得到石墨烯/聚乙烯亚胺超分子水凝胶。
然后,按照上述步骤,通过调控氧化石墨烯和聚乙烯亚胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.15wt%,含水量为50wt%,氧化石墨烯与聚乙烯亚胺的质量比为1:333.3的数码照片如图2(d)所示。
实施例5、制备超分子水凝胶
1)取1mL浓度为10mg/mL的羧基化四氧化三铁纳米粒子水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到四氧化三铁/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控羧基化四氧化三铁纳米粒子和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(羧基化四氧化三铁纳米粒子浓度为0.5wt%,含水量为50wt%,羧基化四氧化三铁纳米粒子与多乙烯多胺的质量比为1:100的数码照片如图2(e)所示。
实施例6、制备超分子水凝胶
1)取1mL浓度为10mg/mL的聚丙烯酸水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到聚丙烯酸/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控聚丙烯酸和多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(聚丙烯酸浓度为0.5wt%,含水量为50wt%,聚丙烯酸与多乙烯多胺的质量比为1:100的数码照片如图2(f)所示。
实施例7、制备超分子水凝胶
1)取1mL浓度为3mg/mL的羧基化碲化铬量子点水溶液,加入1mL多乙烯多胺,将体系密封并在50℃水浴加热20s;
2)所得混合物在12℃恒温24h,可得到银纳米粒子/多乙烯多胺超分子水凝胶。
然后,按照上述步骤,通过调控羧基化碲化铬量子点和多乙烯多胺的质量比(1:50~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
实施例8、制备超分子水凝胶
1)取0.5mL浓度为4mg/mL的氧化碳纳米管水溶液,加入0.5mL浓度为4mg/mL的羧基化四氧化三铁纳米粒子水溶液,再加入1mL多乙烯多胺,将体系密封并在50℃水浴加热30s;
2)所得混合物在12℃恒温6h,可得到氧化碳纳米管/四氧化三铁/多乙烯多胺三组分超分子水凝胶。
然后,按照上述步骤,通过调控氧化碳纳米管与羧基化四氧化三铁纳米粒子的总质量与多乙烯多胺的质量比(1:33~3500)和水的质量百分含量(25%~90%),制备一系列组成的水凝胶。
该实施例制备的一种组成的水凝胶(氧化碳纳米管浓度为0.1wt%,四氧化三铁浓度为0.1wt%,含水量为50wt%,氧化碳纳米管和羧基化四氧化三铁纳米粒子的总质量与多乙烯多胺的质量比为1:250)的数码照片如图2(g)所示。
实施例9、水凝胶的温度应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的温度诱导的凝胶-溶胶可逆转变:当该水凝胶置于55℃时,可在30s内转变为液态;所得液体可在20℃静置2min回复为不流动的凝胶,上述转变过程的数码照片示于图5。
实施例10、水凝胶的近红外光应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的近红外光诱导的凝胶-溶胶可逆转变:当该超分子水凝胶在脉冲型1064nm激光,能量6mJ,脉冲频率20ns,照射2min下,转变为液态;撤离激光后,所得液体可在20℃静置2min回复为不流动的凝胶,上述转变过程的数码照片示于图6。
实施例11、水凝胶的酸碱度应激响应性
测试实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶的酸碱(pH值)诱导的凝胶-溶胶可逆转变:当该超分子水凝胶在浓盐酸(凝胶与盐酸的体积比为20:1)的作用下,在3min内转变为液态;所得液体可通过加入与盐酸相同物质的量的氢氧化钾或氢氧化钠的固体粉末或浓溶液,搅拌均匀,室温静置5min,回复为不流动的凝胶,上述转变过程相应数码照片示于图7(a),图7(b)为上述转变机理的化学方程式。
实施例12、水凝胶的自愈合性能
通过流变仪表征凝胶的自愈合性质。
将实施例1得到的不同碳纳米管浓度的碳纳米管/多乙烯多胺超分子水凝胶(氧化碳纳米管浓度分别为0.025wt%、0.1wt%、0.2wt%和0.5wt%)置于锥板流变仪上进行剪切变形-恢复的测试,所用变形剪切应力分别为5Pa、20Pa、35Pa和200Pa,记录在剪切力周期性变化时,凝胶的储存模量和损耗模量的变化情况。具体结果示于图8。从该图可以看出,凝胶在大剪切力作用下,储存模量迅速减小,而当回复为小剪切力后,储存模量可以迅速恢复,即体现出快速的自愈合行为。
实施例13、水凝胶的宏观自愈合性能
将实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶剪断后,直接将断面重新拼接在一起,则凝胶可在2min内重新复原为一个整体,并能够支撑自身的重量。相应数码照片示于图9。
实施例14、水凝胶作为粘结剂的应用
将实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶作为粘结剂,涂布在金属砝码的底面上,之后将其按压在特氟龙基底或玻璃基底上,在5℃下恒温12h。之后,将装置倒放在铁架台上,下方悬挂特定重量的钩码,测定其粘附力。12℃下,在特氟龙基底和玻璃基底上的粘附力分别为2.8N/cm2(28kPa)与3.7N/cm2(37kPa)。相应数码照片示于图10。
实施例15、凝胶作为粘结剂的应用
将实施例1得到的碳纳米管/多乙烯多胺超分子水凝胶作为粘结剂,涂布在金属砝码的底面上,之后将其按压在玻璃基底上,在5℃下恒温12h。之后,将装置倒放在铁架台上,下方悬挂钩码,使得所承受的力为1.8N/cm2(18kPa),分别在12℃、22℃与35℃下测试重物粘结所能持续的时间。同样,在玻璃基底上,承力1.8N/cm2(18kPa)时,交替在40℃与5℃下恒温30min并测试粘结所能持续的时间(始终使用初始涂布的凝胶作为粘结剂,中途不额外添加凝胶),做多组循环,以测试温度对其的影响,以及粘结剂的循环使用性质。实验结果示于图11。其中,图11(a)为碳纳米管/多乙烯多胺超分子水凝胶温度依赖的粘附性表征,该图表明,随温度升高,凝胶的粘附力呈指数下降;图11(b)是将金属砝码粘结在玻璃基底上并承载重物(承受的力为1.8N/cm2),交替在5℃与40℃下恒温30min,做多个循环,这样得到的重物在基底上粘附所能持续的时间对实验时间所作的图,该图表明,随温度变化,粘附力将发生显著变化,而这种变化是完全可逆的。这也说明,这种超分子凝胶作为粘结剂,可以反复使用。
经测试,本发明实施例2-8制备的超分子水凝胶具有与实施例1制备的超分子水凝胶同样的温度响应性能、近红外光响应性能、酸碱响应性能、自愈合性能和粘结性能。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种多组分超分子水凝胶在作为粘结剂中的应用;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子和羧基化银纳米粒子中的一种或多种;
所述含弱氢键的组分为多乙烯多胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
2.一种粘结剂,其特征在于:所述粘结剂包括多组分超分子水凝胶;
所述水凝胶由含强氢键的组分、含弱氢键的组分和水组成;
所述含强氢键的组分为氧化碳纳米管、氧化石墨烯、羧基化四氧化三铁纳米粒子、羧基化银纳米粒子和羧基化量子点中的一种或多种;
所述含弱氢键的组分为多乙烯多胺;
所述含强氢键的组分与所述含弱氢键的组分的质量比为1:33~3500;
所述多组分超分子水凝胶中,所述水的质量百分含量为25%~90%。
CN201310168441.8A 2013-05-09 2013-05-09 多组分超分子水凝胶在作为粘结剂中的应用 Active CN103275668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310168441.8A CN103275668B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为粘结剂中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310168441.8A CN103275668B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为粘结剂中的应用

Publications (2)

Publication Number Publication Date
CN103275668A CN103275668A (zh) 2013-09-04
CN103275668B true CN103275668B (zh) 2014-10-29

Family

ID=49058298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310168441.8A Active CN103275668B (zh) 2013-05-09 2013-05-09 多组分超分子水凝胶在作为粘结剂中的应用

Country Status (1)

Country Link
CN (1) CN103275668B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441010B (zh) * 2015-12-30 2018-10-19 太仓卡斯特姆新材料有限公司 一种光响应性复合粘胶剂
CN106753030A (zh) * 2017-01-05 2017-05-31 南京林业大学 超支化聚酰胺改性单宁胶黏剂及其制备方法、胶合板及其应用
CN109647311B (zh) * 2018-12-17 2020-09-01 武汉理工大学 一种磁性液体弹珠及其光操控方法
CN109868097B (zh) * 2019-03-15 2020-08-25 中国科学技术大学 一种用于粘结水凝胶材料与固体材料的粘结剂以及粘结方法
CN110444765B (zh) * 2019-08-12 2021-09-21 苏州大学 三聚氰胺交联聚乙烯醇水凝胶在锂电池硅负极材料中的应用
CN110724282B (zh) * 2019-11-28 2021-02-19 山东大学 一种超长拉伸自修复水凝胶粘结材料及其制备方法
CN112080020A (zh) * 2020-09-21 2020-12-15 清华大学 一种可自识别损伤型光检测自愈合水凝胶的制备方法及应用
CN113943428B (zh) * 2021-10-21 2023-11-14 郭艳 一种心电检测用导电凝胶及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050037082A1 (en) * 2003-08-13 2005-02-17 Wan-Kei Wan Poly(vinyl alcohol)-bacterial cellulose nanocomposite
AU2008338428A1 (en) * 2007-12-17 2009-06-25 Drexel University Crosslinked hydrogels

Also Published As

Publication number Publication date
CN103275668A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103242656B (zh) 一种多组分超分子水凝胶及其制备方法
CN103275668B (zh) 多组分超分子水凝胶在作为粘结剂中的应用
CN103272540B (zh) 多组分超分子水凝胶在作为应激响应材料和自愈合材料中的应用
Zhao et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management
Tang et al. A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage
Lu et al. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry
Karousis et al. Structure, properties, functionalization, and applications of carbon nanohorns
Wang et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite
Hart et al. Healable supramolecular polymers
CN104992853B (zh) 制备超级电容器柔性可弯曲薄膜电极的方法
Uzun et al. Recognition-induced transformation of microspheres into vesicles: morphology and size control
CN111961229B (zh) 一种双层水凝胶及其制备方法与应用
CN104449714B (zh) 一种上转换纳米颗粒-氧化石墨烯复合材料及其制备方法
JP2016531824A (ja) グラフェン複合粉体材料及びその製造方法
Wang et al. Synthesis and characterization of microencapsulated sodium phosphate dodecahydrate
Song et al. Fabrication of mechanical robust keratin film by mesoscopic molecular network reconstruction and its performance for dye removal
CN112409998A (zh) 一种含有n,n,n,n-四甲基对苯二胺的光热转化共晶材料及其制备方法
CN103359746B (zh) 一种双层中空二氧化硅纳米球及其制备方法
Wegner et al. Functional materials: For energy, sustainable development and biomedical sciences
CN101531822A (zh) 一种聚合物碳纳米管复合结构及其制备方法
Tao et al. Preparation and adsorption performance research of large-volume hollow mesoporous polydopamine microcapsules
Yang et al. Electro‐Thermo Controlled Water Valve Based on 2D Graphene–Cellulose Hydrogels
Lu et al. Chitosan-gelatin/cetyltrimethylammonium bromide magnetic polymer composites as reusable high performance adsorbent for AR 18 removal
CN109384215A (zh) 制备基于核-壳石墨烯/聚丙烯腈的碳纳米球的方法
Nan et al. Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant