CN103262251A - 用于机动车的供电的发电机装置 - Google Patents

用于机动车的供电的发电机装置 Download PDF

Info

Publication number
CN103262251A
CN103262251A CN2011800592954A CN201180059295A CN103262251A CN 103262251 A CN103262251 A CN 103262251A CN 2011800592954 A CN2011800592954 A CN 2011800592954A CN 201180059295 A CN201180059295 A CN 201180059295A CN 103262251 A CN103262251 A CN 103262251A
Authority
CN
China
Prior art keywords
rotor machine
rectifier element
voltage
diode
tagma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800592954A
Other languages
English (en)
Inventor
R·施皮茨
A·格拉赫
C·托尔克斯多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN103262251A publication Critical patent/CN103262251A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种用于机动车的供电的发电机装置,所述发电机装置装配有至少一个用于对由所述发电机提供的交流电压进行整流的整流器元件。所述整流器元件具有n沟道MOS场效应晶体管,在所述n沟道MOS场效应晶体管中栅极、体区和源极区固定地彼此电连接,并且在所述n沟道MOS场效应晶体管中漏极区用作负极。

Description

用于机动车的供电的发电机装置
技术领域
本发明涉及一种用于机动车的供电的发电机装置。
背景技术
在机动车三相发电机或交流发电机(发电机)中,为了整流而使用交流电桥(整流器)。作为整流元件通常使用具有由硅构成的pn结的半导体二极管。例如在三相发电机中,6个半导体二极管连接成B6电桥。有时也并联二极管,例如代替6个二极管而使用12个二极管。在具有其他相数的交流发电机中,使用相应匹配的二极管电桥。二极管设计用于在具有直至超过500A/cm2的电流密度的高电流的情况下以及在具有大约225℃的最大截止层温度Tj的高温的情况下的运行。典型地,导通方向上的电压降——导通电压UF在所使用的高电流下大约是1伏特。在截止方向上的运行时,通常仅仅一个非常小的截止电流IR流动,直到击穿电压UZ。从所述电压起,截止电流急剧升高。因此阻止进一步的电压升高。通常在此应用具有大约20-40伏特的截止电压(根据机动车的车载电压)的齐纳二极管(Z二极管)。可以在击穿时短时间地甚至以非常高的电流加载Z二极管。因此Z二极管用于在负载变换(负载突降)时限制过高的发电机电压。这样的二极管通常封装在牢固的压入式二极管壳体中,例如在DE19549202B4中描述的那样。
这种装置的缺点在于,pn二极管的导通电压导致导通损耗并且因此导致发电机的效率恶化。因为在发电机的电流输出时平均总是两个二极管串联,所以在100A发电机中平均导通损耗大约是200W。必须通过开销较大的冷却措施降低二极管和整流器的与此相关的加热,例如通过使用冷却体或通风设备。
为了降低导通损耗,在DE102004056663A1中提出取代pn二极管使用所谓的高效二极管(HED)。以下肖特基二极管称为高效二极管(HED):其与传统的肖特基二极管不同地不具有由截止电压引起的势垒降低效应(Barrier-Lowering Effekt:BL)并且因此具有低截止电流。高效肖特基二极管(HED)由传统的肖特基二极管(SBD)与其他元件——如场板、pn结或不同势垒金属的组合组成,所述组合单片集成在半导体芯片上。其往往以沟道技术中实施。
借助高效肖特基二极管(HED)可以实现低得多的导通电压UF,所述导通电压位于0.5V至0.6V的范围内。由于二极管的导通损耗低,相应发电机的效率和输出功率提高。因为肖特基二极管作为多数载流子部件非常快地转换,所以在确定频率区域中发电机的无线电去干扰最多改善10dB。
此外,由于更低的截止损耗功率,与使用pn二极管相比可以降低冷却二极管的开销。
然而,高效肖特基二极管(HED)的制造是费事的并且在技术上要求非常高。除具有500nm以下范围内的台宽度的、必须蚀刻到硅中的、非常精细的沟槽结构以外,尤其合适且稳定的肖特基接触部的成本有利的制造是一种挑战。作为肖特基接触部优选使用硅化镍或其他合适的硅化物。在生产功率MOSFET的现代半导体工厂中,通常不提供所述硅化物工艺。
发明内容
在本发明中提出,在用于机动车发动机的整流器中使用专门制造的n沟道场效应晶体管,在所述场效应晶体管中栅极、体区和源极区固定地彼此电连接,并且在所述场效应晶体管中漏极区用作负极。借助所述专门的、也称作伪肖特基二极管(PSD)的整流器元件可以与HED类似地获得低的导通电压,所述导通电压小于pn二极管的导通电压。优选地,当整流器元件由500A/cm2的电流流过时,这样的整流器元件的导通电压小于0.7V。优选地,所述导通电压位于0.5V和0.7V之间。这种整流器元件不包括肖特基接触部并且因此也不需要专门的硅化物工艺。其可以借助用于MOSFET的略微修改的标准工艺既在平面技术中也在沟道技术中制造。作为多数载流子部件,其又非常快地转换。
具体实施方式
在图1中示出了根据本发明的发电机装置的示例。在此,附图标记10表示以星形连接运行的三相发电机,其具有相或绕组U、V和W以及可转动的激励线圈E。例如可以使用在机动车中常用的齿形电极发电机作为发电机。当然也可以使用其他发电机以及使用具有多于三个相的发电机。发电机内的其他电连接也是可能的,例如三角形连接。附图标记20分别作为整流部件表示借助于自截止n沟道MOSFET实现的伪肖特基二极管。在此,自截止n沟道MOSFET20如此连接,使得栅极、体区和源极区固定地彼此电连接,并且漏极区用作负极。所述连接原则上可以分散实现,但在特别有利的方式中单片地在充当伪肖特基的MOSFET中实现。因此得到具有在附图1中绘出的正极连接端A和负极连接端K的双级装置。
如果相对于正极A在负极连接端K上施加正电压,则MOSFET截止,因为其栅极位于源极电势上。忽略很小的截止电流,电流中断。在所述配置中,MOSFET甚至可以用作Z二极管。因此,在故障情况下——例如在突然负载下降(在负载突降时)时的电压升高的情况下限制过电压。如果电压升高超过体二极管的击穿电压UZ,则二极管击穿(雪崩击穿)并且如此防止进一步的电压升高。
如果使电压转换极性,则在第三象限中运行晶体管。在超过阈电压之后,电流流动,因为集成的二极管——所谓的体二极管在导通方向上极化。二极管上的导通电压UF下降。不同于栅极与MOSFET的漏极连接端连接的布置,栅极现在仅仅与源极接触部电连接。在这种情况下,导通电压UON略小于导通电压UF。然而,在商业上通用的MOSFET中,所述两个电压之间的区别是非常小的。在具有大约1.8V的阈电压UTH的60V功率MOSFET中,区别(在mA范围内测量)位于20mV的范围内。因此,对于伪肖特基二极管,MOSEFT的其他特定于部件的特征必须以合适的方式相对于通常的晶体管改变。
伪肖特基二极管(PSD)的原理结构在很大程度上与通常的功率MOSFET的结构相一致,如其例如在J.Lutz的教科书《Halbleiter-Leistungsbauelemente》(Springer Verlag出版社,2006)中描述的那样。但不同于通常的MOSFET,栅极连接端通常不特别地引出,而是直接地与源极区连接。然而,必须进行用作PSD的MOSFET上的其他改变,从而出现低的击穿电压UON。
这在以下阐明:
在MOSFET的第三象限中(PSD的导通方向上)的运行时的工作原理也可以视为MOSFET在第一象限中在源极连接端和漏极连接端S和D互换的情况下的运行。于是源极区S成为漏极连接端D’并且漏极区D成为源极连接端S’。通过所述再命名,第三象限中的运行在通常表示中成为第一象限中的运行。于是,p掺杂的体区B、高n掺杂的漏极区D’(以前的源极区S)和栅极G位于漏极电势UD’上。然而在这种情况下,D’和S’之间的电压不会升高超过二极管导通电压UF。根据所述观察可以看出,由于UD’S’=UGS’晶体管总是在饱和中运行,并且由于UD’S’=UBS’>0,相对于S’正地预加载p掺杂的体区。但体区上的正电压降低MOSFET的阈电压UTH。由更高的反向载荷来平衡通过体区上的正势能降低的空间载荷。
为了获得与HED相当的导通电压UON,在适合作为PSD的MOSFET中,阈电压UTH不仅必须非常低而且必须由于体效应而显著降低。这两个要求原则上相互矛盾。为了获得大的体效应,有利地尽可能高地选择栅极氧化物厚度和体掺杂。然而,体掺杂已经由所选择的截止电压确定。这另一方面与对低的阈电压UTH的要求相矛盾。出于所述原因,必须通过附加的措施与体效应无关地调节阈电压。这例如可以通过借助供体的阈限注入实现。由此降低体区的表面处的p掺杂,并且由此也降低阈电压UTH。通过这些措施获得具有与HED相当的导通电压的伪肖特基二极管,其还充当Z二极管。
在图2中以横截面视图示出了伪肖特基二极管(PSD)的实施方式的示例。在此仅仅局部地考虑一个单元。n掺杂的层2位于高n+掺杂的半导体1上,在所述n掺杂的层2中引入p掺杂的层3——体区。与体区3的边缘相距一定间距(沟道长度L)的、薄的、非常高n+掺杂的区域4——源极区S位于体区3内。介电层5位于半导体表面上,所述介电层例如由具有大约50-200nm范围内的厚度tox的二氧化硅组成,所述介电层覆盖体区3之间的n掺杂区域2、沟道L区域中的体区3以及部分覆盖源极区4。介电层5以高掺杂的多晶硅层6(栅极电极)覆盖。
至此,所述结构相应于通常的平面DMOS结构。
但是,不同于通常的平面DMOS结构,现在栅极电极不与源极区和体区4和3电绝缘而是与它们电连接。金属层7位于多晶硅层6和不由多晶硅层覆盖的源极区和体区4和3上方,所述金属层将这三个区域彼此电连接。源极区4附加地也直接与区6连接。但这不是强制必需的,因为连接也通过金属7实现。金属层7优选由AlSiCu或AlCu或由铜组成。金属层系统8和9位于金属层7上方和衬底1下方,所述金属层系统确保衬底1的欧姆接触并且还构成能够焊接的前侧8和背侧9。金属层系统例如可以是Ti/NiV/Ag。部件具有仅仅两个连接端——正极连接端A(区8)和负极连接端K(区9)。为了降低阈电压,PSD的p掺杂的体区3在其表面处——至少在沟道区域中——较弱地掺杂。出于简明的原因,在附图2中没有绘出所述区域。
现在又根据图1阐明本发明的另一个实施例。附图标记和功能与前面描述的实施例一致。整流元件又分别涉及具有短接的栅极区、源极区和体区的MOSFET,所述MOSFET在第三象限中运行。这又可以视作在源极连接端和漏极连接端S’和D’互换的情况下在第一象限中在饱和中的运行。但不同于前面描述的实施例,在这里在很大程度上取消体效应的正影响。相反地,比在前面描述的实施例中低得多地选择阈电压UTH。优选通过以下方式实现低的阈电压UTH:使用非常薄的栅极氧化物,所述栅极氧化物优选具有小于20nm、例如10nm的厚度并且附加地以供体实施p掺杂的基极6的阈限注入。替代通常的SiO2栅极氧化物,使用具有更高介电常数的介电材料,例如HfO2、ZrO2、Si3N4等等——所谓的高K材料。例如在US2010/0078707中描述了这些材料。
如果仅仅由于PSD在负载突降情况下的电压限制不够,则在整流器中传统的Z二极管与PSD并联连接。在这种情况下,必须比Z二极管的击穿电压更大地选择PSD的击穿电压。于是,PSD在正向上接收电流,而击穿仅仅在附加的Z二极管中发生。
此外,在PSD中集成例如附加地具有另一pn结的结构,所述另一pn结确定击穿电压。
此外,可以使用以下电路:在所述电路中分别仅仅正二极管或者替代地仅仅负二极管由PSD替代。

Claims (14)

1.一种用于机动车的供电的发电机装置,所述发电机装置具有至少一个用于对由所述发电机提供的交流电压进行整流的整流器元件,其特征在于,所述整流器元件具有n沟道MOS场效应晶体管,在所述n沟道MOS场效应晶体管中,栅极、体区和源极区固定地彼此电连接,并且在所述n沟道MOS场效应晶体管中漏极区用作负极。
2.根据权利要求1所述的发电机装置,其特征在于,为了表面处的阈电压降低,所述体区的掺杂降低。
3.根据权利要求1或2所述的发电机装置,其特征在于,所述整流器元件具有小于pn二极管的导通电压的击穿电压(UON)。
4.根据权利要求3所述的发电机装置,其特征在于,当所述整流器元件由500A/cm2的电流流过时,所述整流器元件具有小于0.7V的击穿电压(UON)。
5.根据权利要求4所述的发电机装置,其特征在于,当所述整流器元件由500A/cm2的电流流过时,所述整流器元件具有0.5V和0.7V之间的击穿电压(UON)。
6.根据以上权利要求中任一项所述的发电机装置,其特征在于,源极接触部和栅极接触部的连接是单片集成的。
7.根据以上权利要求中任一项所述的发电机装置,其特征在于,所述整流器元件的栅极氧化物厚度(tox)大于50nm。
8.根据权利要求1至6中任一项所述的发电机装置,其特征在于,所述整流器元件的栅极氧化物厚度小于20nm。
9.根据以上权利要求中任一项所述的发电机装置,其特征在于,所述整流器元件具有可焊接的前侧和背侧。
10.根据以上权利要求中任一项所述的发电机装置,其特征在于,所述整流器元件具有集成的电压限制(负载突降保护)。
11.根据权利要求10所述的发电机装置,其特征在于,集成的电压限制通过体二极管的雪崩击穿实现。
12.根据以上权利要求中任一项所述的发电机装置,其特征在于,所述MOSFET作为平面技术中的功率MOSFET制造或者作为沟道技术中的功率MOSFET制造。
13.根据以上权利要求中任一项所述的发电机装置,其特征在于,所述发电机装置具有多个整流器元件,所述多个整流器元件分别集成在一个双极的压入式二极管壳体中。
14.根据以上权利要求中任一项所述的发电机装置,其特征在于,用于电压限制的元件与所述整流器元件并联连接。
CN2011800592954A 2010-12-09 2011-10-20 用于机动车的供电的发电机装置 Pending CN103262251A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010062677.5 2010-12-09
DE102010062677A DE102010062677A1 (de) 2010-12-09 2010-12-09 Generatorvorrichtung zur Spannungsversorgung eines Kraftfahrzeugs
PCT/EP2011/068298 WO2012076231A2 (de) 2010-12-09 2011-10-20 Generatorvorrichtung zur spannungsversorgung eines kraftfahrzeugs

Publications (1)

Publication Number Publication Date
CN103262251A true CN103262251A (zh) 2013-08-21

Family

ID=44872314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800592954A Pending CN103262251A (zh) 2010-12-09 2011-10-20 用于机动车的供电的发电机装置

Country Status (6)

Country Link
US (1) US9660550B2 (zh)
EP (1) EP2649649B1 (zh)
JP (1) JP5939260B2 (zh)
CN (1) CN103262251A (zh)
DE (1) DE102010062677A1 (zh)
WO (1) WO2012076231A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576360A (zh) * 2013-10-23 2015-04-29 无锡华润上华半导体有限公司 功率二极管的制备方法
CN104576361A (zh) * 2013-10-23 2015-04-29 无锡华润上华半导体有限公司 功率二极管的制备方法
CN111555645A (zh) * 2020-04-09 2020-08-18 北京中航智科技有限公司 一种输出可控电压的稳压电路
CN116435354A (zh) * 2023-06-12 2023-07-14 广东巨风半导体有限公司 一种逆导型绝缘栅双极型晶体管、制造方法及器件

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324625B2 (en) 2012-05-31 2016-04-26 Infineon Technologies Ag Gated diode, battery charging assembly and generator assembly
DE102013204701A1 (de) 2013-03-18 2014-10-02 Robert Bosch Gmbh Pseudo-Schottky-Diode
DE102014208257A1 (de) * 2014-04-30 2015-11-05 Continental Automotive Gmbh Stabilisierungsschaltung für ein Bordnetz
EP3295555A4 (en) * 2015-05-15 2019-01-16 Bjorn J. Gruenwald CIRCUIT FOR THE DETECTION OF ELECTRICAL ENERGY FROM VIBRATING MOLECULAR CHARGES
JP6988518B2 (ja) * 2018-01-26 2022-01-05 株式会社デンソー 整流装置及び回転電機
US11932111B2 (en) * 2018-08-03 2024-03-19 Mitsubishi Electric Corporation Rectifier and vehicle AC generator provided therewith
US11508808B2 (en) * 2018-10-11 2022-11-22 Actron Technology Corporation Rectifier device, rectifier, generator device, and powertrain for vehicle
CN114512402A (zh) * 2022-04-19 2022-05-17 深圳芯能半导体技术有限公司 一种沟槽型碳化硅肖特基二极管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744994A (en) * 1996-05-15 1998-04-28 Siliconix Incorporated Three-terminal power mosfet switch for use as synchronous rectifier or voltage clamp
DE10042526A1 (de) * 2000-08-30 2001-08-02 Audi Ag Generator zur elektrischen Spannungsversorgung eines Kraftfahrzeuges
US6979861B2 (en) * 2002-05-30 2005-12-27 Apd Semiconductor, Inc. Power device having reduced reverse bias leakage current
CN101065848A (zh) * 2004-11-24 2007-10-31 罗伯特·博世有限公司 半导体装置和整流装置
CN101897112A (zh) * 2007-12-14 2010-11-24 罗伯特.博世有限公司 具有整流器的发电机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481287B2 (ja) * 1994-02-24 2003-12-22 三菱電機株式会社 半導体装置の製造方法
DE19549202B4 (de) 1995-12-30 2006-05-04 Robert Bosch Gmbh Gleichrichterdiode
US5818084A (en) * 1996-05-15 1998-10-06 Siliconix Incorporated Pseudo-Schottky diode
DE19733212A1 (de) * 1997-08-01 1999-02-04 Bosch Gmbh Robert Verfahren zur Regelung eines von einer Brennkraftmaschine antreibbaren Generators
US6349047B1 (en) 2000-12-18 2002-02-19 Lovoltech, Inc. Full wave rectifier circuit using normally off JFETs
FR2833776B1 (fr) * 2001-10-09 2005-09-09 Valeo Equip Electr Moteur Alternateur a pont de redressement, notamment pour vehicule automobile
JP4221999B2 (ja) * 2002-10-29 2009-02-12 トヨタ自動車株式会社 発電電動装置
TW200527618A (en) * 2003-11-10 2005-08-16 Bosch Gmbh Robert Diode
JP4519713B2 (ja) * 2004-06-17 2010-08-04 株式会社東芝 整流回路とこれを用いた無線通信装置
US7142015B2 (en) * 2004-09-23 2006-11-28 International Business Machines Corporation Fast turn-off circuit for controlling leakage
CN101232916A (zh) 2005-07-08 2008-07-30 Med-El电气医疗器械有限公司 Cmos全波整流器
JP5262101B2 (ja) * 2007-12-17 2013-08-14 パナソニック株式会社 電力変換回路
US8445947B2 (en) * 2008-07-04 2013-05-21 Stmicroelectronics (Rousset) Sas Electronic circuit having a diode-connected MOS transistor with an improved efficiency
US8022474B2 (en) 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
US8531226B2 (en) * 2011-03-22 2013-09-10 Fairchild Semiconductor Corporation Bridge circuit providing a polarity insensitive power connection
US20130313948A1 (en) * 2012-05-24 2013-11-28 Oved Zucker Electric Motor/Generator With Multiple Individually Controlled Turn-Less Structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744994A (en) * 1996-05-15 1998-04-28 Siliconix Incorporated Three-terminal power mosfet switch for use as synchronous rectifier or voltage clamp
DE10042526A1 (de) * 2000-08-30 2001-08-02 Audi Ag Generator zur elektrischen Spannungsversorgung eines Kraftfahrzeuges
US6979861B2 (en) * 2002-05-30 2005-12-27 Apd Semiconductor, Inc. Power device having reduced reverse bias leakage current
CN101065848A (zh) * 2004-11-24 2007-10-31 罗伯特·博世有限公司 半导体装置和整流装置
CN101897112A (zh) * 2007-12-14 2010-11-24 罗伯特.博世有限公司 具有整流器的发电机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576360A (zh) * 2013-10-23 2015-04-29 无锡华润上华半导体有限公司 功率二极管的制备方法
CN104576361A (zh) * 2013-10-23 2015-04-29 无锡华润上华半导体有限公司 功率二极管的制备方法
CN104576360B (zh) * 2013-10-23 2017-08-08 无锡华润上华半导体有限公司 功率二极管的制备方法
CN104576361B (zh) * 2013-10-23 2017-09-22 无锡华润上华半导体有限公司 功率二极管的制备方法
CN111555645A (zh) * 2020-04-09 2020-08-18 北京中航智科技有限公司 一种输出可控电压的稳压电路
CN111555645B (zh) * 2020-04-09 2022-01-11 北京中航智科技有限公司 一种输出可控电压的稳压电路
CN116435354A (zh) * 2023-06-12 2023-07-14 广东巨风半导体有限公司 一种逆导型绝缘栅双极型晶体管、制造方法及器件

Also Published As

Publication number Publication date
US20130329476A1 (en) 2013-12-12
JP2014502425A (ja) 2014-01-30
JP5939260B2 (ja) 2016-06-22
WO2012076231A3 (de) 2012-09-07
EP2649649A2 (de) 2013-10-16
DE102010062677A1 (de) 2012-06-14
EP2649649B1 (de) 2019-06-05
US9660550B2 (en) 2017-05-23
WO2012076231A2 (de) 2012-06-14

Similar Documents

Publication Publication Date Title
CN103262251A (zh) 用于机动车的供电的发电机装置
TWI580169B (zh) Rectifier, rectifier configuration and generator for motorized vehicle
US9960156B2 (en) Integrated semiconductor device having a level shifter
US10050140B2 (en) Rectifier diode
US9245888B2 (en) Reverse polarity protection for n-substrate high-side switches
US10290704B2 (en) Semiconductor device and method for manufacturing same, power conversion device, three-phase motor system, automobile, and railway carriage
US9780204B2 (en) DMOS transistor with trench schottky diode
US8395231B2 (en) Semiconductor device supplying charging current to element to be charged
US7608907B2 (en) LDMOS gate controlled schottky diode
US20020113286A1 (en) Semiconductor device
US20170365595A1 (en) Schottky Integrated High Voltage Terminations and Related HVIC Applications
US8362830B2 (en) Power semiconductor device
CN104835820B (zh) 半导体装置、开关电源用控制ic以及开关电源装置
CN101897112B (zh) 具有整流器的发电机
US20160148996A1 (en) Diode and signal output circuit including the same
CN103715273A (zh) 半导体装置
CN110556371A (zh) 整流器器件
CN116190458B (zh) 一种包含肖特基二极管的肖特基接触超势垒整流器
DE112014006726T5 (de) Halbleitervorrichtung, Leistungsmodul, Stromrichtvorrichtung, Fahrzeug und Schienenfahrzeug
CN112151533B (zh) 一种双向导电的功率半导体器件结构
CN114586178A (zh) 半导体装置以及使用其的整流元件、交流发电机
US11677033B2 (en) Passive element on a semiconductor base body

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130821

WD01 Invention patent application deemed withdrawn after publication