CN1032466A - 超导材料及其制备方法 - Google Patents

超导材料及其制备方法 Download PDF

Info

Publication number
CN1032466A
CN1032466A CN88106738A CN88106738A CN1032466A CN 1032466 A CN1032466 A CN 1032466A CN 88106738 A CN88106738 A CN 88106738A CN 88106738 A CN88106738 A CN 88106738A CN 1032466 A CN1032466 A CN 1032466A
Authority
CN
China
Prior art keywords
aforesaid right
during aforesaid
transition metal
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN88106738A
Other languages
English (en)
Other versions
CN1017101B (zh
Inventor
玛丽-欧迪尔·莱芬
克劳德·玛格尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Publication of CN1032466A publication Critical patent/CN1032466A/zh
Publication of CN1017101B publication Critical patent/CN1017101B/zh
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • C01G53/68Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2 containing rare earth, e.g. La1.62 Sr0.38NiO4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/777Lanthanum, e.g. La2CuO4
    • Y10S505/778Alkaline earth, i.e. Ca, Sr, Ba, Ra
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • Y10S505/781Noble metal, i.e. Ag, Au, Os, Ir, Pt, Ru, Rh, Pd or chromium, manganese, iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Insulating Materials (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)
  • Radiation-Therapy Devices (AREA)
  • Tires In General (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Compounds Of Iron (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明是将涉及基本上以至少一种稀土,至少一 种碱土,至少一种过渡金属和氧为基础制成超导细粉 的方法,其特征是其中包括以下步骤:a)制备以至少 一种稀土,至少一种碱土和至少一种过渡金属的硝酸 盐和/或乙酸盐为基础的水溶液;b)喷雾干燥该溶 液;c)焙烧干燥产品;d)必要时研磨焙烧粉。本发明 还涉及该法所得产品。

Description

本发明涉及超导材料。
人们已知,超导性的特点是极低温度下导体内电阻全部消失。
直到不久前,某些材料的超导状态还只在极限温度以下出现,极限温度即“临界温度”,一般接近于绝对零度。这一限制显然严重阻碍了超导性各种潜在实际用途的大规模发展。
但是,此后不久,研究表明已能够找出在更高温度即在70~90°K,甚至高达100°K下表现出超导性的新材料。
这些材料大部分是以稀土,碱土,过渡金属和氧为基础制成的。更具体地讲,已发现最有前途的体系似乎是以钇和/或镧,钡和/或锶和/或钙,铜和/或镍和/或钴和/或锰,和氧为基础的体系。
文献中制备这些材料的一般合成方法是让相应元素的氧化物和/或含阴离子盐(如碳酸盐)之间于高温(1000℃)下进行固相反应,后者化合物呈粉态。
不过,该法不利于精确控制并且制成的粉的烧结能力似显不够。
但是,在某些实际应用中,单独使用超导烧结产品才具有现实意义。
因此,要求既要获得致密和均匀的烧结材料,同时又要保存初始粉的内在超导本性。这就要求首先制得具有良好烧结能力的均匀超导粉。
因此,本发明的目的是解决上述问题,其中提出简单而有效的方法,该法易于用来以再现方式制得具有优良烧结能力的均匀超导粉以及高密度超导烧结材料。
作为本发明的第一目的,现已发现,用本发明方法可制得可烧结超导细粉,该法特征是其中包括以下步骤:
a)制备以至少一种稀土,至少一种碱土和至少一种过渡金属的硝酸盐和/或乙酸盐为基础的水溶液;
b)喷雾干燥该溶液;
c)焙烧干燥粉;
d)必要时研磨焙烧粉。
在本发明以下的说明中,所谓稀土一方面包括元件周期表中原子序数从57~71(包括57和71)的所有元素,另一方面包括钇,按习惯上钇在这里类似于稀土。
本发明方法特别优选的稀土为钇和镧。
另一方面,本发明可用的碱土主要为钙,钡和锶。
最后,过渡金属优先选自铜,镍,锰,钴和铁。
上述范围内的元素的选择当然要考虑到要求制得的超导粉的性质和组成。
同样,初始溶液中各元素的比例一般也要根据最终产品所要求的化学计量来加以调节,当然应使其适于获得超导性。
本发明方法还特别适于制得Y-Ba-Cu-O型超导体系。该体系已在Journal    of    Ameriean    Chemical    Society,1987,109,2528-2530的文章中作了说明。
按本发明,稀土,碱土和过渡金属在初始水溶液中的存在状态或为硝酸盐或为乙酸盐,也可为这两种盐的混合物。当然,优选的是用硝酸盐进行操作。
制备步骤之后进行溶液干燥。
按本发明,进行喷雾干燥,即将溶液喷洒入热空气中。可用各种喷雾器如喷水头或其它类型的喷嘴进行雾化。在各种适于用于本发明方法的喷雾干燥技术中,可特别参考MASTERS的题为“SPRAY    DRYING”的慰贾鳎ǖ诙妫?976,Gerge    Godwin版,London)。
但是,优选的是在“flash”反应器中进行干燥,如申请人提出并特别记述于法国专利n°2257326,2419754和2431321中。在这种情况下,使处理气作螺旋运动并在油井式涡流中流动。溶液沿着具有气体螺旋轨迹对称轴的混乱轨迹注入,这可极好地将气体的动量传递给溶液。气体还起双重作用:一方面是进行喷雾,即将溶液转化成细微雾滴,另一方面干燥所得雾滴。此外,颗粒在反应器中的停留时间极短,不足1/10秒左右,这排除了与气体接触时间过长而带来的所有过热危险。
根据气体和液体各自的流量不同,气体入口温度为600~900℃,优选为700~900℃,干固体出口温度为100~300℃,优选为150~250℃。
所得干产品粒径为几微米左右,如1~10μm。
产品然后进行焙烧。
焙烧在700~1000℃,优选在850~950℃下进行,历时30mm-24h,优选为5-15h。
焙烧在空气或各种空气/氧气混合物,但优选在空气中进行。
另一方面,按本发明特别实施方式,将焙烧产品极快速地冷至室温,相当于淬火操作,例如可用冷空气清扫。
冷却时间一般为几秒钟左右。
焙烧结束后得到超导粉,肉眼可见的粒径为1-10μ左右,这些1-10μ的颗粒是由粒径100-600
Figure 881067385_IMG1
左右的雏晶构成的。
所得粉一般还应加以研磨,优选是进行干性研磨,以进行良好的烧结。粉的平均粒径分布为0.5-2μ左右,优选为1-2μ。
这些超导粉的显著特征是烧结后可制成极均匀的超导烧结材料,其密度大于该材料理论密度的95%。
粉的烧结温度为900~1000℃,烧结时间一般为2-10h。优选的是,烧结在氧气中进行。
更具体地讲,本发明超导粉的烧结特性是按以下方法确定的:
粉首先在1.5T/cm2的单轴压力下加或不加粘结剂而制成片,然后于950℃下烧结2h并于7h内冷至室温;并测定所得产品密度。各种情况下测得的最终密度均大于所说材料理论密度的95%。
另一方面,还观察到所得产品的超导性极好。
从以下实施例中可清楚地看出本发明的其它优点和实施方案。
实施例
该实施例说明按本发明制备式Y-Ba2-Cu3-Ox(6.5≤x≤7)的超导材料的方法。
A-制粉
向11.51    70℃的水中加入1.5mol硝酸钇,3mol硝酸钡和4.5mol硝酸铜。
混合均匀后将所得溶液进行喷雾干燥。
干燥在“flash”反应器,如法国专利n°2257326,2419754和2431321所述反应器中进行。
气体入口温度为800℃,其出口温度为250℃。
干燥后所得粉然后于900℃在空气中焙烧10-15h,之后极迅速地冷却至室温。
这以后,进行干式研磨以制成平均粒径小于2μm的粉。
所得粉的特点如下:
比表面积(BET) 2.2m2/g
总孔容 0.39cm3/g
其真实孔容 0.28cm3/g
和粒间容积 0.11cm3/g
孔隙范围    0.1-3μm
平均孔径    0.9μm
平均粒径    1.7μm
晶体的平均尺寸 约300
Figure 881067385_IMG2
颗粒粒径分布如下(φ=直径)
φ>4μm    10%
0.7μm<φ<4μm    80%
φ<0.7μm    10%
B-粉的烧结
粉在干性单轴压力下制成片,压力为1.5T/cm2,然后于950°在氧气中烧结2h并于7h内冷至室温。
所得材料密度等于理论密度的96%。
该材料具有超导性,开始转变的“onset”温度从92°K开始,其平均式为Y-Ba2-Cu3-O6.9

Claims (18)

1、基本上以至少一种稀土,至少一种碱土,至少一种过渡金属和氧为基础制成超导细粉的方法,其特征是其中包括以下步骤:
a)制备以至少一种稀土,至少一种碱土和至少一种过渡金属的硝酸盐和/或乙酸盐为基础的水溶液;
b)喷雾干燥该溶液;
c)焙烧干燥产品;
d)必要时研磨焙烧粉。
2、权利要求1的方法,其特征是喷雾是将溶液沿着具有螺旋轨迹对称轴的混乱轨迹注入来进行的并且热气的油井式涡流可确保喷雾后进行干燥,颗粒在反应器中的停留时间少于1/10秒左右。
3、权利要求2的方法,其特征是热气入口温度为600~900℃。
4、权利要求3的方法,其特征是入口温度为700~900℃。
5、权利要求2~4中任一项的方法,其特征是干固体出口温度为100~300℃。
6、权利要求5的方法,其特征是出口温度为150~250℃。
7、上述权利要求中任一项的方法,其特征是焙烧在700~1000℃,优选为850~950℃下进行。
8、上述权利要求中任一项的方法,其特征是焙烧在空气中进行。
9、上述权利要求中任一项的方法,其特征是焙烧产品极迅速地冷至室温。
10、上述权利要求中任一项的方法,其特征是进行干式研磨。
11、权利要求10的方法,其特征是研磨使焙烧产品平均粒径小于2μm,优选为1~2μm。
12、上述权利要求中任一项的方法,其特征是采用硝酸盐溶液。
13、上述权利要求中任一项的方法,其特征是稀土选自钇和镧。
14、上述权利要求中任一项的方法,其特征是碱土选自钙,钡和锶。
15、上述权利要求中任一项的方法,其特征是过渡金属选自铜,镍,锰,钴和铁。
16、上述权利要求中任一项的方法,其特征是采用钇,钡和铜的硝酸盐水溶液。
17、基本上以稀土,至少一种碱土,至少一种过渡金属和氧为基础并易于用权利要求1~16中任一项所述方法制得的超导陶瓷粉。
18、基本上以稀土,至少一种碱土,至少一种过渡金属和氧为基础并易于用权利要求17的粉烧结而成的超导烧结陶瓷材料。
CN88106738A 1987-09-18 1988-07-17 超导材料及其制备方法 Expired CN1017101B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8712934A FR2620864B1 (fr) 1987-09-18 1987-09-18 Materiaux supraconducteurs et leur procede de preparation
FR87/12934 1987-09-18

Publications (2)

Publication Number Publication Date
CN1032466A true CN1032466A (zh) 1989-04-19
CN1017101B CN1017101B (zh) 1992-06-17

Family

ID=9355021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88106738A Expired CN1017101B (zh) 1987-09-18 1988-07-17 超导材料及其制备方法

Country Status (16)

Country Link
US (1) US5118659A (zh)
EP (1) EP0309322B1 (zh)
JP (1) JPH01138105A (zh)
KR (1) KR890005906A (zh)
CN (1) CN1017101B (zh)
AT (1) ATE133293T1 (zh)
AU (1) AU608892B2 (zh)
BR (1) BR8804801A (zh)
DE (1) DE3854907T2 (zh)
DK (1) DK517788A (zh)
FI (1) FI884268A (zh)
FR (1) FR2620864B1 (zh)
IL (1) IL87741A0 (zh)
NO (1) NO884117L (zh)
PT (1) PT88533B (zh)
ZA (1) ZA886907B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357308A (zh) * 2011-10-19 2012-02-22 江西稀有稀土金属钨业集团有限公司 一种从氯化钴溶液直接制取无水氯化钴粉末的方法
CN102503402A (zh) * 2011-09-19 2012-06-20 北京英纳超导技术有限公司 一种铋系超导粉的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3001989A (en) * 1988-05-02 1989-11-02 W.R. Grace & Co.-Conn. Dry monocarboxylate mixtures
US4996189A (en) * 1988-10-24 1991-02-26 At&T Bell Laboratories Method of producing mixed metal oxide material, and of producing a body comprising the material
US5122505A (en) * 1990-10-01 1992-06-16 Sri International Carbonate-free inorganic nitrates or oxides and process thereof
US5292830A (en) * 1991-06-20 1994-03-08 Tonen Corporation Thermosetting copolymers, silicon carbide-based fiber and processes for producing same
EP0545757A1 (fr) * 1991-11-29 1993-06-09 Rhone-Poulenc Chimie Procédé de préparation de pérovskites à base de manganèse ou de chrome et pérovskites ainsi obtenues
FR2688207B1 (fr) * 1992-03-06 1994-04-15 Alcatel Alsthom Cie Gle Electric Procede de preparation d'une poudre d'ybacuo (phase 123) en vue d'une mise en forme par etirage-laminage.
US5395821A (en) * 1992-10-30 1995-03-07 Martin Marietta Energy Systems, Inc. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom
FR2702216B1 (fr) * 1993-03-03 1995-05-24 Rhone Poulenc Chimie Nouveaux pigments minéraux colorés à base de terres rares, procédé de synthèse et utilisations.
US6209190B1 (en) * 1996-05-03 2001-04-03 The Korea Institute Of Machinery & Materials Production of MgO dispersed Bi-2223 superconductor
KR100820747B1 (ko) 2006-12-11 2008-04-11 한국기계연구원 점도 특성이 개선된 전구용액 제조방법
EP3175844A1 (en) 2010-04-09 2017-06-07 Pacira Pharmaceuticals, Inc. Large diameter synthetic membrane vesicles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2419754A1 (fr) * 1978-03-14 1979-10-12 Rhone Poulenc Ind Dispositif pour la mise en contact de substances se presentant sous au moins deux phases differentes
FR2422435A1 (fr) * 1978-04-10 1979-11-09 Rhone Poulenc Ind Procede et dispositif pour la mise en contact de substances se presentant sous au moins deux phases differentes
EP0122665B1 (en) * 1983-04-04 1988-09-14 Sonodyne Industries, Inc. Dehydrating apparatus
US4898851A (en) * 1987-06-22 1990-02-06 E. I. Du Pont De Nemours And Company Process for making 90 k superconductors using a spray dried oxalate precursor
JP2632514B2 (ja) * 1987-06-29 1997-07-23 日本セメント株式会社 セラミックス超電導体の製造方法
JP2622117B2 (ja) * 1987-07-17 1997-06-18 日本電信電話株式会社 超伝導体の製造方法
JP2622116B2 (ja) * 1987-07-17 1997-06-18 日本電信電話株式会社 超伝導体の製造方法
NL8701787A (nl) * 1987-07-29 1989-02-16 Philips Nv Werkwijze voor het vervaardigen van oxidisch supergeleidend materiaal.
JPH0791055B2 (ja) * 1987-07-31 1995-10-04 三菱マテリアル株式会社 複合金属酸化物の製法
JPS6476985A (en) * 1987-09-17 1989-03-23 Seiko Epson Corp Production of superconducting material
US4863521A (en) * 1988-07-07 1989-09-05 W. R. Grace & Co.-Conn. Spray drying monocarboxylate mixtures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503402A (zh) * 2011-09-19 2012-06-20 北京英纳超导技术有限公司 一种铋系超导粉的制备方法
CN102503402B (zh) * 2011-09-19 2014-06-18 北京英纳超导技术有限公司 一种铋系超导粉的制备方法
CN102357308A (zh) * 2011-10-19 2012-02-22 江西稀有稀土金属钨业集团有限公司 一种从氯化钴溶液直接制取无水氯化钴粉末的方法

Also Published As

Publication number Publication date
AU2223288A (en) 1989-03-23
IL87741A0 (en) 1989-02-28
DK517788D0 (da) 1988-09-16
KR890005906A (ko) 1989-05-17
FI884268A (fi) 1989-03-19
EP0309322B1 (fr) 1996-01-17
EP0309322A1 (fr) 1989-03-29
DE3854907T2 (de) 1996-09-05
FR2620864B1 (fr) 1990-04-20
BR8804801A (pt) 1989-04-25
CN1017101B (zh) 1992-06-17
NO884117D0 (no) 1988-09-16
US5118659A (en) 1992-06-02
NO884117L (no) 1989-03-20
PT88533B (pt) 1992-11-30
DE3854907D1 (de) 1996-02-29
FR2620864A1 (fr) 1989-03-24
DK517788A (da) 1989-06-30
AU608892B2 (en) 1991-04-18
JPH01138105A (ja) 1989-05-31
ZA886907B (en) 1989-05-30
PT88533A (pt) 1988-10-01
FI884268A0 (fi) 1988-09-16
ATE133293T1 (de) 1996-02-15

Similar Documents

Publication Publication Date Title
CN1032466A (zh) 超导材料及其制备方法
CN1028390C (zh) 改进的制造90k超导体的方法
JPH06115934A (ja) 錯体重合法による複合酸化物の製造方法
JPH0230619A (ja) 酸化物超電導体の製造方法及び酸化物超電導体の前駆体である複合酸化物粉体及びその製造方法
KR0163568B1 (ko) 비스무트계 산화물 초전도체의 제조방법
CN1032260A (zh) 超导材料制备方法及所得产品
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
JP2631243B2 (ja) 耐熱導電性セラミックスおよびその製造方法
JP2632514B2 (ja) セラミックス超電導体の製造方法
JPH07196304A (ja) 高い臨界温度を有する超伝導セラミック前駆物質の獲得方法
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH02271920A (ja) 酸化物超電導体材料の製造方法
JP3444930B2 (ja) 酸化物超電導体の製造方法
JPH01275411A (ja) 酸化物超電導体の原料粉末の合成法
JP2879448B2 (ja) Bi―Pb―Sr―Ca―Cu―O系超電導物質
JPH035359A (ja) 超伝導性セラミック材料、この材料の先駆組成物及び製造法
JP3151558B2 (ja) Bi―Pb―Sr―Ca―Cu―O系超電導物質
Tomizawa et al. Preparation of Bi Pb Sr Ca Cu O superconductors by the spray pyrolysis method using ultrasonic atomization techniques
JPH0532452A (ja) 酸化物超電導体の製造方法
JPH0477316A (ja) 酸化物超電導体及びその製造法
JPS63310722A (ja) Ba−Y−Cu−O系超伝導材料の製造方法
JPH01224227A (ja) Bi−アルカリ土類元素−Cu酸化物系超電導セラミックス焼結用粉末の調製法
JPH04503657A (ja) 超伝導性金属酸化物組成物の製造方法
JPH0222164A (ja) 酸化物超伝導材料の製造方法
JPH02141420A (ja) 酸化物超電導体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned