CN103234868B - 一种测量线性聚合物重均分子量的方法 - Google Patents

一种测量线性聚合物重均分子量的方法 Download PDF

Info

Publication number
CN103234868B
CN103234868B CN201310147593.XA CN201310147593A CN103234868B CN 103234868 B CN103234868 B CN 103234868B CN 201310147593 A CN201310147593 A CN 201310147593A CN 103234868 B CN103234868 B CN 103234868B
Authority
CN
China
Prior art keywords
viscosity
molecular weight
curve
average molecular
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310147593.XA
Other languages
English (en)
Other versions
CN103234868A (zh
Inventor
廖华勇
陆鸿博
陶国良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rudong Wenyuan investment and Development Co., Ltd
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201310147593.XA priority Critical patent/CN103234868B/zh
Publication of CN103234868A publication Critical patent/CN103234868A/zh
Application granted granted Critical
Publication of CN103234868B publication Critical patent/CN103234868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种测量线性聚合物重均分子量的方法,尤其涉及用流变学测量方法测试线性高分子的黏度曲线,并用黏度模型进行非线性拟合求解重均分子量。本发明从流变学的角度出发,不需将聚合物溶解,克服了传统测试方式不能或难以测量不溶或难溶物的限制,能廉价、快速、环保、较为可靠地测量出线形聚合物的重均分子量;本发明提供的方法要做到精确给出重均分子量有困难,存在一定误差,但是测量成本低,简易,也可以将本发明编写程序嵌入流变测试软件,拓展流变仪的应用范围。

Description

一种测量线性聚合物重均分子量的方法
技术领域
本发明涉及一种测量线性聚合物重均分子量的方法,尤其涉及用流变学测量方法测试线性高分子的黏度曲线,并用黏度模型进行非线性拟合求解重均分子量。
背景技术                                              
目前测量高分子材料分子量的方法主要是GPC法,包括高温GPC法。由于仪器昂贵或缺乏合适的溶剂,使得测量一些高分子的分子量变得困难,利用流变学方法可以间接地估算高分子材料的分子量参数,值得重视;本发明采用流变学方法测量线性高分子材料的重均分子量。
发明内容
本发明目的是为解决上述问题而提供一种利用流变学方法间接测量线性高分子材料重均分子量方法。
为了实现上述目的,本发明是这样实现的:
第一步,测量线性聚合物的黏度曲线:将旋转流变仪和毛细管流变仪结合,先用旋转流变仪的稳态模式或小振幅剪切的动态模式测量线性聚合物的稳态表观黏度-剪切速率或动态复数黏度-角频率曲线,由于旋转流变仪测量的剪切速率范围或角频率范围有限,再用毛细管流变仪测量线性聚合物的高剪切速率下的稳态表观黏度曲线,衔接线性聚合物的两段曲线即旋转流变仪测得的稳态表观黏度-剪切速率曲线和毛细管流变仪测得的线性聚合物的稳态表观黏度曲线,或者衔接旋转流变仪测得的线性聚合物的动态复数黏度-角频率曲线与毛细管流变仪测得的线性聚合物的稳态表观黏度曲线,从而得到线性聚合物的黏度曲线;由于线性聚合物的两段曲线即旋转流变仪测得的动态复数黏度-角频率曲线与毛细管流变仪测得的稳态表观黏度曲线符合Cox-Merz关系式,可较好地衔接。
如图1所示为高密度聚乙烯(HDPE 5306)材料在190℃时的黏度曲线。
衔接:是在同一测试温度下,旋转流变仪测得的黏度曲线末段与毛细管流变仪测得的黏度曲线的首段能够较好地重合,这是一种流变学现象,不需要专门技术实现之;当然,确定爬行时间                                                仅有旋转流变仪测得的黏度曲线也可以实现,但后面提到的Cross 模型需要两段曲线组合而成的完整曲线。
测得黏度曲线的温度是要使得聚合物材料处于熔融状态,即由熔融温度Tm范围确定,如聚乙烯一般在190-230℃范围内处于熔融状态。
第二步,求出线性聚合物发生剪切变稀时的松弛时间:随着角频率的增加,当剪切黏度降为平台黏度(零剪切黏度)的95%时对应的角频率即为,即为小振幅剪切流中聚合物开始发生剪切变稀时对应的角频率,此时对应的松弛时间为=1/,该时间即为管道模型中的爬行时间,即=;如图1所示平台段为零剪切粘度曲线,当剪切速率(角频率)高于=0.387s-1时,材料发生剪切变稀,此时对应的松弛时间为=1/=1/0.387=2.58s,该时间即为管道模型中的爬行时间,即=
第三步,求解Rouse时间:Cross 模型的一种表达形式为:
(1);              
式(1)即为通用公式;其中为零剪切黏度,为松弛时间,n为幂律指数。
代入和n的初始数值,用方程(1)对步骤(1)中的黏度曲线进行非线性拟合,即能得到和n的具体数值,将松弛时间作为Rouse时间的初始数值可取高分子材料的黏度曲线的平台值,n的初始数值取大于0小于1之间的数值,优选0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8和0.9中任意一个数值,的初始数值取 值的1/100。
用方程(1)拟合图1中HDPE的黏度曲线,得到=1685.4Pa.s,=0.0257s,n=0.6016,因此式(1)化为
所述拟合方法是非线性拟合,这是公知的,将零剪切黏度,松弛时间,幂律指数n三个参数作为未知参数进行拟合,得到三个参数的值。
由图可见,式(2)能较好地拟合HDPE 5306的黏度曲线,由式(2)可知,松弛时间=0.0257s,该时间与Rouse时间接近,将其作为Rouse时间。
第四步,求解重均分子量:根据文献,爬行时间与Rouse时间之间的关系为
                                                               (2)
   式中分别为缠结分子量和分子量。由式(2)可知
                                            (3)
由式(3)求得线性聚合物的重均分子量。
本发明从流变学的角度出发,不需将聚合物溶解,克服了传统测试方式不能或难以测量不溶或难溶物的限制,能廉价、快速、环保、较为可靠地测量出线形聚合物的重均分子量;本发明提供的方法要做到精确给出重均分子量有困难,存在一定误差,但是测量成本低,简易,
也可以将本发明编写程序嵌入流变测试软件,拓展流变仪的应用范围。
附图说明
图1为高密度聚乙烯(HDPE 5306)在190℃时稳态剪切粘度-剪切速率曲线和动态复数黏度-角频率曲线;
图2为HDPE 5306J在190℃时稳态剪切粘度-剪切速率曲线和动态复数黏度-角频率曲线;
图3为PMVS在40℃时稳态剪切粘度-剪切速率曲线和动态复数黏度-角频率曲线;
图4为LLDPE在150℃时稳态剪切粘度-剪切速率曲线和动态复数黏度-角频率曲线。
具体实施方式
实施例1
根据上述步骤,由步骤一测量了高密度聚乙烯(HDPE 5306J)的黏度曲线,如图2所示,由第二步,求出材料发生剪切变稀时的松弛时间即=2.58s,由第三步获得Rouse时间
=0.0257s,拟合曲线为,又聚乙烯的缠结分子量=828,由第四步求得HDPE 5306J的重均分子量==8.31104,而用高温GPC方法测得HDPE 5306J的=9.4×104,(另外,测得=1.5104,分子量分布=7.5),可见用本发明的方法求得的重均分子量接近GPC测量值,误差为11.6%。
实施例2
  根据上述步骤,由步骤一测量了聚甲基乙烯基硅氧烷(PMVS 110-2)的黏度曲线,如图3
所示,由第二步,求出材料发生剪切变稀时的松弛时间即=41.667s,由第三步获得Rouse
时间=0.7856s,拟合曲线为。又=10000,由第四步求得PMVS 110-2重均分子量为5.3105,而高温GPC方法测得PMVS 110-2的=5.7×105,(另外,测得=3.7×105,分子量分布=1.6),可见用本发明的方法求得的重均分子量接近GPC测量值,误差为7%。
实施例3
根据上述步骤,由步骤一测量了线性低密度聚乙烯(LLDPE DFDA7042)的黏度曲线,如图
4所示,由第二步,求出材料发生剪切变稀时的松弛时间即=2.72s,由第三步获得Rouse
时间=0.1s,拟合曲线为。又=828,由第四步求得LLDPE DFDA7042重均分子量为2.25104,而高温GPC方法测得LLDPE DFDA7042的=2.71×104,(另外,测得=1.16×105,分子量分布=4.3),可见用本发明的方法求得的重均分子量接近GPC测量值,误差为17%。

Claims (2)

1.一种测量线性聚合物重均分子量的方法,包括如下步骤:
第一步,测量线性聚合物的黏度曲线:将旋转流变仪和毛细管流变仪结合,先用旋转流变仪的稳态模式或小振幅剪切的动态模式测量线性聚合物的稳态表观黏度-剪切速率或动态复数黏度-角频率曲线,由于旋转流变仪测量的剪切速率范围或角频率范围有限,再用毛细管流变仪测量线性聚合物的高剪切速率下的稳态表观黏度曲线,衔接线性聚合物的两段曲线即旋转流变仪测得的稳态表观黏度-剪切速率曲线和毛细管流变仪测得的线性聚合物的稳态表观黏度曲线,或者衔接旋转流变仪测得的线性聚合物的动态复数黏度-角频率曲线与毛细管流变仪测得的线性聚合物的稳态表观黏度曲线,从而得到线性聚合物的黏度曲线; 
第二步,求出线性聚合物发生剪切变稀时的松弛时间:随着角频率的增加,当剪切黏度降为平台黏度(零剪切黏度)的95%时对应的角频率即为                                                ,即为小振幅剪切流中聚合物开始发生剪切变稀时对应的角频率,此时对应的松弛时间为=1/,该时间即为管道模型中的爬行时间,即=
第三步,求解Rouse时间:Cross 模型的一种表达形式为:
(1);
式(1)即为通用公式;其中为零剪切黏度,为松弛时间,n为幂律指数,
代入和n的初始数值,用方程(1)对第一步中的线性聚合物的黏度曲线进行非线性拟合,即能得到和n的具体数值,将松弛时间作为Rouse时间的初始数值可取高分子材料的黏度曲线的平台值,n的初始数值取大于0小于1之间的数值,的初始数值取 值的1/100;
第四步,求解重均分子量:根据文献,爬行时间与Rouse时间之间的关系为(2);式中分别为缠结分子量和分子量,由式(2)可知(3),由式(3)求得线性聚合物的重均分子量。
2.如权利要求1所述的一种测量线性聚合物重均分子量的方法,其特征在于:所述n的初始数值0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8和0.9中任意一个数值。
CN201310147593.XA 2013-04-25 2013-04-25 一种测量线性聚合物重均分子量的方法 Active CN103234868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310147593.XA CN103234868B (zh) 2013-04-25 2013-04-25 一种测量线性聚合物重均分子量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310147593.XA CN103234868B (zh) 2013-04-25 2013-04-25 一种测量线性聚合物重均分子量的方法

Publications (2)

Publication Number Publication Date
CN103234868A CN103234868A (zh) 2013-08-07
CN103234868B true CN103234868B (zh) 2015-04-22

Family

ID=48882919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310147593.XA Active CN103234868B (zh) 2013-04-25 2013-04-25 一种测量线性聚合物重均分子量的方法

Country Status (1)

Country Link
CN (1) CN103234868B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675440A (zh) * 2014-11-20 2016-06-15 中国石油天然气股份有限公司 快速确定纤维型聚丙烯专用料分子量分布的检测方法
TWI671128B (zh) * 2016-12-30 2019-09-11 財團法人工業技術研究院 非牛頓流體材料的塗佈方法及其塗佈系統
CN107894374B (zh) * 2017-10-23 2021-01-29 常州大学 毛细管-旋转流变仪
CN109443956A (zh) * 2018-10-17 2019-03-08 常州大学 一种测量聚合物重均分子量的方法
CN110487673B (zh) * 2019-08-09 2021-10-08 上海化工研究院有限公司 一种定量测定超高分子量聚乙烯树脂缠结程度的方法
CN112014268B (zh) * 2020-05-18 2024-05-14 交通运输部公路科学研究所 一种动态剪切流变仪的校准方法
CN112198092A (zh) * 2020-08-24 2021-01-08 浙江南都电源动力股份有限公司 测试电池浆料稳定性的方法
WO2023024607A1 (zh) * 2022-05-20 2023-03-02 复向丝泰医疗科技(苏州)有限公司 基于ai算法的生物大分子材料分子量的计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025267A3 (en) * 2000-09-20 2002-06-13 Gen Electric Method and apparatus for rapid determination of polymer molecular weight
CN101458246A (zh) * 2009-01-08 2009-06-17 浙江大学 测量线形聚合物分子量分布的方法
JP4298249B2 (ja) * 2002-09-30 2009-07-15 三菱化学株式会社 高分子流体の分子量測定方法及びその装置並びに高分子流体の分子量制御方法及びその装置
CN102466604A (zh) * 2010-11-04 2012-05-23 中国石油天然气股份有限公司 聚乙烯分子量的测定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025267A3 (en) * 2000-09-20 2002-06-13 Gen Electric Method and apparatus for rapid determination of polymer molecular weight
JP4298249B2 (ja) * 2002-09-30 2009-07-15 三菱化学株式会社 高分子流体の分子量測定方法及びその装置並びに高分子流体の分子量制御方法及びその装置
CN101458246A (zh) * 2009-01-08 2009-06-17 浙江大学 测量线形聚合物分子量分布的方法
CN102466604A (zh) * 2010-11-04 2012-05-23 中国石油天然气股份有限公司 聚乙烯分子量的测定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"动态流变法测四氟乙烯_六氟丙烯共聚物分子量及分子量分布";李新军;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20100815(第8期);全文 *
廖华勇等."两种高密度聚乙烯熔体的黏度曲线".《常州大学学报(自然科学版)》.2012,第24卷(第4期),第37-41页. *

Also Published As

Publication number Publication date
CN103234868A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103234868B (zh) 一种测量线性聚合物重均分子量的方法
Gao et al. Rheological behaviors of PVA/H2O solutions of high‐polymer concentration
Liu et al. Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels
Bu et al. Design of highly stretchable deep eutectic solvent‐based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor
CN107073789A (zh) 用于由交替聚(乙烯四氟乙烯)制备多孔制品的方法以及由该方法制得的制品
Hu et al. Is the constitutive relation for entangled polymers monotonic?
CN103822852B (zh) 一种高剪切速率流动垂直叠加振荡流变测试方法及装置
Brassinne et al. Dissociating sticker dynamics from chain relaxation in supramolecular polymer networks—The importance of free partner!
Koopmans Extrudate swell of high density polyethylene. Part I: Aspects of molecular structure and rheological characterization methods
JP2018516427A5 (zh)
Fang et al. Shear inhomogeneity in poly (ethylene oxide) melts
Tomkovic et al. Nonlinear rheology of poly (ethylene-co-methacrylic acid) ionomers
Wagner et al. Constant force elongational flow of polymer melts: Experiment and modelling
Thomas Hu Mechanisms of shear thickening in transient guar network
Yudhowijoyo et al. Developing nanocomposite gels from biopolymers for leakage control in oil and gas wells
CN101458246A (zh) 测量线形聚合物分子量分布的方法
Aoki et al. Structure and rheology of poly (vinylidene difluoride-co-hexafluoropropylene) in an ionic liquid: The solvent behaves as a weak cross-linker through ion–dipole interaction
Yadav et al. Rheological study of partially hydrolyzed polyacrylamide-hexamine-pyrocatechol gel system
CN103234854B (zh) 一种测定淀粉基塑料中淀粉含量的方法
Tan et al. Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution during thermal-induced gelation
Hu et al. Effects of crosslinking chemistry on proppant suspension in guar networks
Dordinejad et al. A qualitative assessment of long chain branching content in LLDPE, LDPE and their blends via thermorheological analysis
Yan et al. Concentration effect on aggregation and dissolution behavior of poly (N‐isopropylacrylamide) in water
Ghannam Rheological properties of aqueous polyacrylamide/NaCl solutions
Fang et al. Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201105

Address after: Fengli town Xinjian West Road, Rudong County, Nantong City, Jiangsu Province 226400

Patentee after: Rudong Wenyuan investment and Development Co., Ltd

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1 Changzhou University

Patentee before: CHANGZHOU University

TR01 Transfer of patent right