CN103230942A - 轧机间张力调节控制方法 - Google Patents

轧机间张力调节控制方法 Download PDF

Info

Publication number
CN103230942A
CN103230942A CN2013101525835A CN201310152583A CN103230942A CN 103230942 A CN103230942 A CN 103230942A CN 2013101525835 A CN2013101525835 A CN 2013101525835A CN 201310152583 A CN201310152583 A CN 201310152583A CN 103230942 A CN103230942 A CN 103230942A
Authority
CN
China
Prior art keywords
milling train
frame
rolling
current value
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101525835A
Other languages
English (en)
Other versions
CN103230942B (zh
Inventor
陈宏�
候凯
梁虎荣
郑启蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN201310152583.5A priority Critical patent/CN103230942B/zh
Publication of CN103230942A publication Critical patent/CN103230942A/zh
Application granted granted Critical
Publication of CN103230942B publication Critical patent/CN103230942B/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种轧机间张力调节控制方法,在粗轧区,使粗轧机组的相邻机架间轧件适度微堆,粗轧机组的轧制状态为适度微堆;在中轧区,相邻的中轧机组的机架采用微张力轧制。本发明通过调整粗轧和中轧轧机间的堆拉关系来抵消因轧件头尾与中间段的温差所带来的不利影响,提高产品质量。

Description

轧机间张力调节控制方法
技术领域
本发明涉及一种轧钢技术,具体说,涉及一种轧机间张力调节控制方法。
背景技术
包钢钢联股份有限公司棒材厂新高线生产线于2007年底建成投产,主要生产产品规格为:φ6.5~φ16mm光面盘卷和φ8~φ16mm螺纹盘卷。保证速度为85m/s,最高速度为90m/s,全部为国产设备。主轧线由粗轧机组(6台)、中轧机组(6台)、预精轧机组(6台)、精轧机组(10台)组成。在28架轧机中,前11架轧机采用微张力控制,后续轧机采用活套控制,对轧机进行调速。
理论上连轧机工作的稳定过程要求相邻机架金属的“秒流量”相等。但是在实际轧制过程中,由于在粗轧和中轧段钢坯质量大、温度不均匀、轧辊热膨胀和磨损、压下调整等因素的影响,机架之间线速度不匹配现象总是存在的,所以采用了微张力控制方法。张力的大小可以通过电机负荷电流的变化进行判断。生产中如果轧机张力调节不当,再加上温度的影响,可引起堆钢、拉断钢和产品质量事故,严重时甚至可损坏设备。
在实际生产中时常存在以下问题:盘条成品尺寸超差,通条尺寸不一致,水平尺寸(即“两旁”尺寸)不稳定,即头尾肥,中间瘦,严重时出现废品,造成头部10多圈耳子,尾部30多圈耳子。实际生产中存在的问题通常是由以下情况造成的:
1、钢坯头中尾温差影响成品尺寸。
实际生产中因钢坯通长方向温度不均,故轧件从头至尾温度逐步降低,轧件尾部温度最低。温度低会造成轧件变形抗力增加,导致轧机弹跳增大,轧件出口面积增大,破坏机架间秒流量相等的原则,造成堆拉关系失调,影响产品通条尺寸的稳定性。
如图1所示,是现有技术中钢温不均和头尾温差大所产生的轧制电流的不平稳状态图。图中AB段为轧件头部自由轧制时的电流值,BC段为轧件处于张力轧制时的电流值,CD段为轧件尾部自由轧制时的电流值。从整根钢的轧制电流来看,除去张力因素外,我们发现尾部温差最大,头部次之,中间段比较均匀(BC段),造成成品尺寸出现两头肥、中间瘦的问题。因此当出现温度不均时,一方面需要提高钢坯加热质量,另一方面需要采取快速有效的方法及时消除坯料温差带来的不利影响,保证产品质量。
发明内容
本发明所解决的技术问题是提供一种轧机间张力调节控制方法,通过调整粗轧和中轧轧机间的堆拉关系来抵消因轧件头尾与中间段的温差所带来的不利影响,提高产品质量。
技术方案如下:
一种轧机间张力调节控制方法,在粗轧区,使粗轧机组的相邻机架间轧件适度微堆,粗轧机组的轧制状态为适度微堆;在中轧区,相邻的中轧机组的机架采用微张力轧制。
进一步:在所述粗轧区,以轧件尾部的轧机负荷电流值为第一基准电流值,利用所述第一基准电流值对上游轧机进行转速调节,使轧件头部和中间部位的轧机负荷电流值达到所述第一基准电流值,以此类推,使整个粗轧机组实现适度微堆的轧制状态;在所述中轧区,中轧机组的相邻机架间张力调整采用轧件头、中和尾段的轧机负荷电流平均值为第二基准电流值,按照所述第二基准电流值对相邻的轧机机架的张力进行调整,以此实现微张力轧制。
进一步:采用调整轧机转速来调整张力。
进一步:在采用调整轧机转速来调整张力时,从首架开始,逐架向后调整。
进一步:在升速调整机架间张力时采用少量累进的原则,边升速边观察轧机间的张力情况。
本发明技术效果包括:
1、本发明通过调整粗、中轧轧机间的堆拉关系来抵消轧件因头尾与中间段的温差所带来的不利影响,提高产品质量。
利用本发明后,成品质量得到了大幅度提高,头部超差圈数由原来10多圈降低到1.5圈,同比降低了85%;尾部超差圈数由原来30多圈降低到3圈左右,同比下降了90%。
3、本发明能够带来巨大的经济社会效益。
在各班组应用以来,产生的直接经济效益=80吨/小时×0.5小时/天(调质量耽误时间×15天×150元/吨(加工利润)=9万元/月。
每年产生的长期经济和社会效益=9万元/月×12个月/年+50万(年节约设备维检费)=158万元。
4、本发明的推广及应用前景非常广阔。
本发明的应用极大地提高了成品质量,降低了检废,降低了事故时间,提高了生产作业率。根据我厂实际情况所研究总结出的该先进操作法是可供其它与我厂设备类似企业所借鉴的,由此及彼,可在轧钢行业中长期观察、不断改进。此方法是在线依据电流观察手动调速的先例,在我厂实际应用的非常成功。
附图说明
图1是现有技术中钢温不均和头尾温差大所产生的轧制电流的不平稳状态图;
图2是本发明中调整前A机架的轧机负荷电流图;
图3是本发明中调整后A机架的轧机负荷电流图;
图4是本发明中转速调整前4-7号机架的轧机负荷电流图;
图5是本发明中转速调整后4-7号机架的轧机负荷电流图;
图6是本发明中调整后3、4、5号机架轧机负荷电流曲线图;
图7是本发明中调整后5、6、7号机架轧机电流曲线图。
具体实施方式
下面参考附图和优选实施例,对本发明技术方案作详细说明。
设A和B是两架相邻连轧机,当轧件进入A机架后测得A机架的轧机电机的稳态电流。在轧件未咬入B机架之前,轧件在A机架为自由轧制,A机架电机稳态电流所对应的电流可以说是无张无堆轧制时电流,并以此作为调节的基准。当轧件咬入B机架后,连轧关系建立,此时由于堆拉关系将引起A机架的轧机电机负荷电流变化,并偏离原无张无堆轧制时的稳态电流值。A机架的轧机电流值有增长,说明机架间存在着堆力。A机架的轧机电流值有减小,表明机架间存在着张力。这样通过A机架的调速系统调节A机架的轧机电机的转速,使A机架的轧机电流恢复到基准值,以实现A和B机架之间的小张力轧制。以此类推,实现了整个机组的小张力手动调节控制。
如图2所示,是本发明中调整前A机架的轧机电流图,图3是本发明中调整后A机架的轧机电流图。比较两图可以看出,通过调整调节A机架的轧机电机的转速后,成品的头尾尺寸状况得到了明显的改善。
通过对连续10根钢坯进行测温并做好头、中、尾三段的温度记录,我们取前5根(钢坯头尾温差较大的情况下)按照设计标准速度进行轧制,吐丝后对头、中、尾三段取样测量并做好记录,取4-7号机架的轧机电流值(如图4所示)。
对后5根钢坯进行精细化提温后,运用手动干预进行转速调整,使得粗轧1-6号机架为小张力轧制,吐丝后对头、中、尾三段取样测量并做好记录,取4-7架轧机电流(如图5所示)
通过上述实验可以看出,在钢坯头尾与中间段温差较小的情况下,将该张力控制方法用于粗轧区域后,由于粗轧机组实现了小张力轧制,轧件头尾电流明显得到了改善,这一点从图4和图5的对比中充分得到了体现,该方法在很大程度上弥补了因头尾温差所带来的影响。
下面对本发明技术方案作进一步说明。
在粗轧区,利用轧件截面积比较大的特点,使粗轧机组的相邻机架间轧件适度微堆。在开始轧制时,利用小张力轧制的手动调节控制方法,将成品尺寸初步调整好,等轧制速度、轧制状态稳定后,观察粗轧机组的相邻机架上轧件的头部、中部、尾部的机架电机负荷电流的变化区间。因为张力和温差的存在,轧机电机在轧件头、中、尾部的电流大小是不同的,在一个区间内变化。一般来讲,轧件头部的轧机负荷电流值略大于轧件中部的轧机负荷电流值,而轧件尾部的轧机负荷电流值最大,以轧件尾部的轧机负荷电流值为第一基准电流值,对上游轧机进行转速调节,使头部和中间部位轧机负荷电流值达到第一基准电流值。以此类推,使整个粗轧机组实现适度微堆的轧制状态。
如图6所示,是本发明中调整后3、4、5号机架轧机负荷电流曲线图,图7是本发明中调整后5、6、7号机架轧机负荷电流曲线图。
在中轧区,中轧机组的相邻机架间张力的调整则不能采用粗轧机组的调整方式,因为该段轧件截面积小,受上游机架间张力和温差的影响较大,中轧机组的相邻机架间张力调整采用取平均值,以轧件头、中、尾段的轧机负荷电流平均值为第二基准电流值,利用第二基准电流值对相邻的轧机机架的张力进行调整,以此实现微张力轧制。
机架间张力的变化将引起金属秒流量和轧件尺寸的变化,在连轧过程中,这种变化将由上游机架向下游机架方向传递,在各个机架间存在张力轧制时,各机架间金属秒流量及轧件尺寸的变化将是一个很复杂的过程,所以在采用调整轧机转速来调整张力时,要从首架开始,逐架向后调整,否则会因上游机架张力的变化,使得金属秒流量在向下游机架传递过程中使下游机架已调好的张力关系得到破坏,从而引起堆钢事故。在升速调整机架间张力时应本着少量累进的原则,边升速边观察轧机间的张力情况,特别要观察轧机间轧件是否有抖动或立套的产生,直至调整到张力合适。
张力调整的主要方法是通过调整轧机转速来实现的,但是在实现这一过程之前,必须保证各机架的轧件尺寸符合工艺要求,在张力调整认为合适之后,可检查轧件尺寸是否合适,切不可又调转速又同时调整辊缝,两项同时进行必导致调整混乱,甚至出现堆钢事故,为了避免此类事故的发生,要求机旁人员与主控台操作人员保持密切联系,做到台上台下动作一致,这样才能建立起稳定合理的连轧状态。

Claims (5)

1.一种轧机间张力调节控制方法,其特征在于:在粗轧区,使粗轧机组的相邻机架间轧件适度微堆,粗轧机组的轧制状态为适度微堆;在中轧区,相邻的中轧机组的机架采用微张力轧制。
2.如权利要求1所述的轧机间张力调节控制方法,其特征在于:在所述粗轧区,以轧件尾部的轧机负荷电流值为第一基准电流值,利用所述第一基准电流值对上游轧机进行转速调节,使轧件头部和中间部位的轧机负荷电流值达到所述第一基准电流值,以此类推,使整个粗轧机组实现适度微堆的轧制状态;在所述中轧区,中轧机组的相邻机架间张力调整采用轧件头、中和尾段的轧机负荷电流平均值为第二基准电流值,按照所述第二基准电流值对相邻的轧机机架的张力进行调整,以此实现微张力轧制。
3.如权利要求1或者2所述的轧机间张力调节控制方法,其特征在于:采用调整轧机转速来调整张力。
4.如权利要求3所述的轧机间张力调节控制方法,其特征在于:在采用调整轧机转速来调整张力时,从首架开始,逐架向后调整。
5.如权利要求3所述的轧机间张力调节控制方法,其特征在于:在升速调整机架间张力时采用少量累进的原则,边升速边观察轧机间的张力情况。
CN201310152583.5A 2013-04-27 2013-04-27 轧机间张力调节控制方法 Withdrawn - After Issue CN103230942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310152583.5A CN103230942B (zh) 2013-04-27 2013-04-27 轧机间张力调节控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310152583.5A CN103230942B (zh) 2013-04-27 2013-04-27 轧机间张力调节控制方法

Publications (2)

Publication Number Publication Date
CN103230942A true CN103230942A (zh) 2013-08-07
CN103230942B CN103230942B (zh) 2015-06-03

Family

ID=48879050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310152583.5A Withdrawn - After Issue CN103230942B (zh) 2013-04-27 2013-04-27 轧机间张力调节控制方法

Country Status (1)

Country Link
CN (1) CN103230942B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537487A (zh) * 2013-10-31 2014-01-29 中冶南方工程技术有限公司 一种多机架轧机的末两个机架间张力的控制方法
CN108655185A (zh) * 2017-03-30 2018-10-16 宝山钢铁股份有限公司 防止单机架轧机卡钢的方法
CN111715705A (zh) * 2020-07-02 2020-09-29 山西中阳钢铁有限公司 一种用于高速线材轧机间的张力检测及控制方法
CN112222203A (zh) * 2020-10-13 2021-01-15 阳春新钢铁有限责任公司 一种双高线单双线轧制张力调节系统用控制系统及控制方法
CN114682631A (zh) * 2022-03-29 2022-07-01 北京首钢冷轧薄板有限公司 一种冷连轧机机架电流负荷的调节方法
CN116493419A (zh) * 2023-06-27 2023-07-28 山西建龙实业有限公司 一种热轧钢筋尾部轧制微张力柔性控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998427A (en) * 1989-11-29 1991-03-12 Aeg Westinghouse Industrial Automation Corporation Method for rolling on-gauge head and tail ends of a workpiece
CN1128181A (zh) * 1995-06-09 1996-08-07 周孝椿 小型半连续式线、棒材轧制工艺及其设备
CN1299712A (zh) * 1999-12-10 2001-06-20 青岛中杰高速冷轧设备有限公司 全自动连续冷轧钢筋方法及设备
JP4210481B2 (ja) * 2002-07-18 2009-01-21 東芝三菱電機産業システム株式会社 タンデム圧延機の張力制御装置
CN101439356A (zh) * 2008-12-23 2009-05-27 南京钢铁联合有限公司 辊箱型紧凑式轧机生产大直径盘条的轧机张力控制方法
JP2010240662A (ja) * 2009-04-01 2010-10-28 Hitachi Ltd 圧延機の制御装置およびその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998427A (en) * 1989-11-29 1991-03-12 Aeg Westinghouse Industrial Automation Corporation Method for rolling on-gauge head and tail ends of a workpiece
CN1053199A (zh) * 1989-11-29 1991-07-24 Aeg西屋工业自动化公司 一种轧制具有合格头部和尾部的轧件的方法
CN1128181A (zh) * 1995-06-09 1996-08-07 周孝椿 小型半连续式线、棒材轧制工艺及其设备
CN1299712A (zh) * 1999-12-10 2001-06-20 青岛中杰高速冷轧设备有限公司 全自动连续冷轧钢筋方法及设备
JP4210481B2 (ja) * 2002-07-18 2009-01-21 東芝三菱電機産業システム株式会社 タンデム圧延機の張力制御装置
CN101439356A (zh) * 2008-12-23 2009-05-27 南京钢铁联合有限公司 辊箱型紧凑式轧机生产大直径盘条的轧机张力控制方法
JP2010240662A (ja) * 2009-04-01 2010-10-28 Hitachi Ltd 圧延機の制御装置およびその制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张志钢等: "高速线材轧制的微张力控制", 《包钢科技》 *
胡兵: "高速线材生产线的张力控制与应用", 《武钢技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537487A (zh) * 2013-10-31 2014-01-29 中冶南方工程技术有限公司 一种多机架轧机的末两个机架间张力的控制方法
CN103537487B (zh) * 2013-10-31 2016-04-20 中冶南方工程技术有限公司 一种多机架轧机的末两个机架间张力的控制方法
CN108655185A (zh) * 2017-03-30 2018-10-16 宝山钢铁股份有限公司 防止单机架轧机卡钢的方法
CN111715705A (zh) * 2020-07-02 2020-09-29 山西中阳钢铁有限公司 一种用于高速线材轧机间的张力检测及控制方法
CN112222203A (zh) * 2020-10-13 2021-01-15 阳春新钢铁有限责任公司 一种双高线单双线轧制张力调节系统用控制系统及控制方法
CN112222203B (zh) * 2020-10-13 2022-04-01 阳春新钢铁有限责任公司 一种双高线单双线轧制张力调节系统用控制系统及控制方法
CN114682631A (zh) * 2022-03-29 2022-07-01 北京首钢冷轧薄板有限公司 一种冷连轧机机架电流负荷的调节方法
CN114682631B (zh) * 2022-03-29 2023-11-28 北京首钢冷轧薄板有限公司 一种冷连轧机机架电流负荷的调节方法
CN116493419A (zh) * 2023-06-27 2023-07-28 山西建龙实业有限公司 一种热轧钢筋尾部轧制微张力柔性控制方法

Also Published As

Publication number Publication date
CN103230942B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN103230942B (zh) 轧机间张力调节控制方法
CN103203358B (zh) 改善可逆轧机轧制过程中咬入条件的轧制方法
CN106269888B (zh) 一种实现esp精轧机组在线换辊的逆流换辊方法
CN204397050U (zh) 飞剪切头精度控制系统
CN104511482A (zh) 一种热轧带钢凸度控制方法
CN104384199B (zh) 一种冷连轧动态变规格时的控制方法
CN111014307A (zh) 一种炉卷和精轧机组连轧的轧机速度控制方法
CN110000209A (zh) 0.005mm厚度铝箔4道次轧制方法
CN108971233A (zh) 一种炉卷轧机厚度控制工艺
CN103599927A (zh) 一种热轧钛板生产方法及系统
Khramshin et al. Algorithm of no-pull control in the continuous mill train
CN103071683A (zh) 一种双机架s型四辊冷轧机综合调整轧制技术
CN103191916B (zh) 一种圆钢的轧制方法
CN103042043A (zh) 采用热卷箱生产工艺带钢头尾宽度控制方法
CN103191934B (zh) 一种热连轧机活套套量预判方法
CN205571839U (zh) 一种多功能轧制生产线
CN103861873B (zh) 一种ucmw冷连轧机毛化辊轧制系统及方法
CN104324951B (zh) 单机架启动轧制力设定和控制方法
CN100515593C (zh) 普通四辊热带钢连轧机带钢边部增厚综合控制方法
CN105598169A (zh) 一种2250mm轧机飞剪切尾带钢实际速度的控制方法
CN106311762A (zh) 提高热轧薄带轧制稳定性的负荷分配方法
CN104475453B (zh) 一种连轧无缝钢管轧制工艺及装置
CN103357661B (zh) 一种圆钢的万能法轧制工艺
KR20150065862A (ko) 스트립 형상으로 압연된 재료를 위한 폭 변경 시스템
CN202921661U (zh) 一种铝板带冷轧机用展平辊

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20150603

Effective date of abandoning: 20220627

AV01 Patent right actively abandoned

Granted publication date: 20150603

Effective date of abandoning: 20220627