CN103147066A - 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 - Google Patents
致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 Download PDFInfo
- Publication number
- CN103147066A CN103147066A CN2013100740001A CN201310074000A CN103147066A CN 103147066 A CN103147066 A CN 103147066A CN 2013100740001 A CN2013100740001 A CN 2013100740001A CN 201310074000 A CN201310074000 A CN 201310074000A CN 103147066 A CN103147066 A CN 103147066A
- Authority
- CN
- China
- Prior art keywords
- film
- pore
- precursor
- creating agent
- silane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02348—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Physical Vapour Deposition (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/115,087 | 2008-05-05 | ||
| US12/115,087 US20080268177A1 (en) | 2002-05-17 | 2008-05-05 | Porogens, Porogenated Precursors and Methods for Using the Same to Provide Porous Organosilica Glass Films with Low Dielectric Constants |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2009101380007A Division CN101575700A (zh) | 2008-05-05 | 2009-05-05 | 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103147066A true CN103147066A (zh) | 2013-06-12 |
Family
ID=40996827
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2009101380007A Pending CN101575700A (zh) | 2008-05-05 | 2009-05-05 | 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 |
| CN2013100740001A Pending CN103147066A (zh) | 2008-05-05 | 2009-05-05 | 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2009101380007A Pending CN101575700A (zh) | 2008-05-05 | 2009-05-05 | 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20080268177A1 (enExample) |
| EP (1) | EP2116632A3 (enExample) |
| JP (2) | JP5270442B2 (enExample) |
| KR (5) | KR20090115915A (enExample) |
| CN (2) | CN101575700A (enExample) |
| TW (1) | TWI397606B (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107636852A (zh) * | 2015-03-09 | 2018-01-26 | 弗萨姆材料美国有限责任公司 | 用于沉积用作电阻随机存取存储器的多孔有机硅酸盐玻璃膜的方法 |
| CN113166937A (zh) * | 2018-11-27 | 2021-07-23 | 弗萨姆材料美国有限责任公司 | 1-甲基-1-异丙氧基-硅杂环烷烃和由其制备的致密有机硅膜 |
| CN114429990A (zh) * | 2020-10-29 | 2022-05-03 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8703625B2 (en) | 2010-02-04 | 2014-04-22 | Air Products And Chemicals, Inc. | Methods to prepare silicon-containing films |
| EP2363512A1 (en) * | 2010-02-04 | 2011-09-07 | Air Products And Chemicals, Inc. | Methods to prepare silicon-containing films |
| CN102859666B (zh) * | 2010-02-09 | 2015-05-13 | 西江大学校产学协力团 | 纳米多孔超低介电薄膜及其包括高温臭氧处理的制备方法 |
| KR20130043084A (ko) * | 2010-02-17 | 2013-04-29 | 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 | SiCOH 로우-K 필름의 증착 방법 |
| CN102770580A (zh) * | 2010-02-25 | 2012-11-07 | 应用材料公司 | 藉由等离子体增强化学气相沉积使用含有具有机官能基的硅的杂化前驱物所形成的超低介电材料 |
| CN101789418B (zh) * | 2010-03-11 | 2011-12-28 | 复旦大学 | 一种多孔超低介电常数材料薄膜及其制备方法 |
| US8460753B2 (en) * | 2010-12-09 | 2013-06-11 | Air Products And Chemicals, Inc. | Methods for depositing silicon dioxide or silicon oxide films using aminovinylsilanes |
| US8441006B2 (en) * | 2010-12-23 | 2013-05-14 | Intel Corporation | Cyclic carbosilane dielectric films |
| US8772154B2 (en) * | 2011-06-17 | 2014-07-08 | GlobalFoundries, Inc. | Integrated circuits including barrier polish stop layers and methods for the manufacture thereof |
| US9054110B2 (en) | 2011-08-05 | 2015-06-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-K dielectric layer and porogen |
| DE102013215400A1 (de) * | 2013-08-06 | 2015-02-12 | Robert Bosch Gmbh | Silicat-Aerogel und Verfahren zu seiner Herstellung |
| CN104008997A (zh) * | 2014-06-04 | 2014-08-27 | 复旦大学 | 一种超低介电常数绝缘薄膜及其制备方法 |
| US9922818B2 (en) * | 2014-06-16 | 2018-03-20 | Versum Materials Us, Llc | Alkyl-alkoxysilacyclic compounds |
| TWI585230B (zh) * | 2015-02-06 | 2017-06-01 | 氣體產品及化學品股份公司 | 用於碳摻雜的含矽膜的組合物及其方法 |
| US20170125241A1 (en) * | 2015-10-30 | 2017-05-04 | Applied Materials, Inc. | Low temp single precursor arc hard mask for multilayer patterning application |
| US10249489B2 (en) * | 2016-11-02 | 2019-04-02 | Versum Materials Us, Llc | Use of silyl bridged alkyl compounds for dense OSG films |
| US11749563B2 (en) * | 2018-06-27 | 2023-09-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Interlayer dielectric layer |
| EP4325548A3 (en) * | 2018-08-10 | 2024-04-10 | Versum Materials US, LLC | Silicon compounds and methods for depositing films using same |
| KR102373339B1 (ko) | 2018-08-10 | 2022-03-10 | 버슘머트리얼즈 유에스, 엘엘씨 | 규소 화합물 및 이를 사용하여 막을 증착시키는 방법 |
| KR102860289B1 (ko) * | 2019-08-09 | 2025-09-15 | 메르크 파텐트 게엠베하 | 저유전 상수 규산질 필름의 제조 조성물 및 이를 이용한 경화된 필름 및 전자 디바이스의 제조 방법 |
| US20220301862A1 (en) * | 2019-09-13 | 2022-09-22 | Versum Materials Us, Llc | Monoalkoxysilanes and dense organosilica films made therefrom |
| TW202442660A (zh) * | 2019-09-13 | 2024-11-01 | 美商慧盛材料美國責任有限公司 | 製造具有改善的機械性質的密有機二氧化矽膜之方法 |
| US20230103933A1 (en) * | 2020-03-31 | 2023-04-06 | Versum Materials Us, Llc | New precursors for depositing films with elastic modulus |
| US11572622B2 (en) * | 2020-09-14 | 2023-02-07 | Applied Materials, Inc. | Systems and methods for cleaning low-k deposition chambers |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030198742A1 (en) * | 2002-04-17 | 2003-10-23 | Vrtis Raymond Nicholas | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants |
| US20030232137A1 (en) * | 2002-04-17 | 2003-12-18 | Vrtis Raymond Nicholas | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants |
Family Cites Families (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2536013A1 (de) * | 1975-08-13 | 1977-03-03 | Bosch Gmbh Robert | Verfahren zur verbesserung der haltbarkeit von aus siliciumoxiden bestehenden schutzschichten |
| US5296624A (en) * | 1992-11-25 | 1994-03-22 | Huls America, Inc. | Preparation of sterically-hindered organosilanes |
| MY113904A (en) | 1995-05-08 | 2002-06-29 | Electron Vision Corp | Method for curing spin-on-glass film utilizing electron beam radiation |
| JP3173426B2 (ja) * | 1997-06-09 | 2001-06-04 | 日本電気株式会社 | シリカ絶縁膜の製造方法及び半導体装置の製造方法 |
| US6068884A (en) * | 1998-04-28 | 2000-05-30 | Silcon Valley Group Thermal Systems, Llc | Method of making low κ dielectric inorganic/organic hybrid films |
| US6054206A (en) * | 1998-06-22 | 2000-04-25 | Novellus Systems, Inc. | Chemical vapor deposition of low density silicon dioxide films |
| US6171945B1 (en) * | 1998-10-22 | 2001-01-09 | Applied Materials, Inc. | CVD nanoporous silica low dielectric constant films |
| JP3888794B2 (ja) * | 1999-01-27 | 2007-03-07 | 松下電器産業株式会社 | 多孔質膜の形成方法、配線構造体及びその形成方法 |
| US6207555B1 (en) | 1999-03-17 | 2001-03-27 | Electron Vision Corporation | Electron beam process during dual damascene processing |
| JP3084367B1 (ja) | 1999-03-17 | 2000-09-04 | キヤノン販売株式会社 | 層間絶縁膜の形成方法及び半導体装置 |
| US6312793B1 (en) * | 1999-05-26 | 2001-11-06 | International Business Machines Corporation | Multiphase low dielectric constant material |
| US6204201B1 (en) | 1999-06-11 | 2001-03-20 | Electron Vision Corporation | Method of processing films prior to chemical vapor deposition using electron beam processing |
| US6541367B1 (en) | 2000-01-18 | 2003-04-01 | Applied Materials, Inc. | Very low dielectric constant plasma-enhanced CVD films |
| SG137694A1 (en) * | 2000-10-25 | 2007-12-28 | Ibm | Ultralow dielectric constant material as an intralevel or interlevel dieletric in a semiconductor device and electronic device containing the same |
| US6768200B2 (en) * | 2000-10-25 | 2004-07-27 | International Business Machines Corporation | Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device |
| US6790789B2 (en) * | 2000-10-25 | 2004-09-14 | International Business Machines Corporation | Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made |
| US6583048B2 (en) * | 2001-01-17 | 2003-06-24 | Air Products And Chemicals, Inc. | Organosilicon precursors for interlayer dielectric films with low dielectric constants |
| KR100432152B1 (ko) * | 2001-04-12 | 2004-05-17 | 한국화학연구원 | 다분지형 폴리알킬렌 옥시드 포로젠과 이를 이용한저유전성 절연막 |
| US6716770B2 (en) * | 2001-05-23 | 2004-04-06 | Air Products And Chemicals, Inc. | Low dielectric constant material and method of processing by CVD |
| JP3418383B2 (ja) * | 2001-05-31 | 2003-06-23 | 沖電気工業株式会社 | 半導体装置の製造方法 |
| US7456488B2 (en) * | 2002-11-21 | 2008-11-25 | Advanced Technology Materials, Inc. | Porogen material |
| US8293001B2 (en) * | 2002-04-17 | 2012-10-23 | Air Products And Chemicals, Inc. | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants |
| ATE499458T1 (de) * | 2002-04-17 | 2011-03-15 | Air Prod & Chem | Verfahren zur herstellung einer porösen sioch- schicht |
| US7056560B2 (en) * | 2002-05-08 | 2006-06-06 | Applies Materials Inc. | Ultra low dielectric materials based on hybrid system of linear silicon precursor and organic porogen by plasma-enhanced chemical vapor deposition (PECVD) |
| JP4139952B2 (ja) * | 2002-07-31 | 2008-08-27 | 日本電気株式会社 | 共重合高分子膜及びその形成方法、並びに共重合高分子膜を用いた半導体装置 |
| US7098149B2 (en) * | 2003-03-04 | 2006-08-29 | Air Products And Chemicals, Inc. | Mechanical enhancement of dense and porous organosilicate materials by UV exposure |
| US20040197474A1 (en) * | 2003-04-01 | 2004-10-07 | Vrtis Raymond Nicholas | Method for enhancing deposition rate of chemical vapor deposition films |
| US8137764B2 (en) * | 2003-05-29 | 2012-03-20 | Air Products And Chemicals, Inc. | Mechanical enhancer additives for low dielectric films |
| US20050048795A1 (en) * | 2003-08-27 | 2005-03-03 | Chung-Chi Ko | Method for ultra low-K dielectric deposition |
| CN1229400C (zh) * | 2003-09-18 | 2005-11-30 | 中国石油化工股份有限公司 | 用于烯烃聚合的催化剂组分及其催化剂 |
| US7018941B2 (en) * | 2004-04-21 | 2006-03-28 | Applied Materials, Inc. | Post treatment of low k dielectric films |
| US7049247B2 (en) * | 2004-05-03 | 2006-05-23 | International Business Machines Corporation | Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made |
| US7332445B2 (en) * | 2004-09-28 | 2008-02-19 | Air Products And Chemicals, Inc. | Porous low dielectric constant compositions and methods for making and using same |
| KR101478636B1 (ko) * | 2005-09-12 | 2015-01-07 | 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. | 사이클릭 알켄 유도체의 분해를 방지하기 위한 첨가제 |
| US20070299239A1 (en) * | 2006-06-27 | 2007-12-27 | Air Products And Chemicals, Inc. | Curing Dielectric Films Under A Reducing Atmosphere |
-
2008
- 2008-05-05 US US12/115,087 patent/US20080268177A1/en not_active Abandoned
-
2009
- 2009-05-01 JP JP2009112216A patent/JP5270442B2/ja active Active
- 2009-05-04 EP EP09159354A patent/EP2116632A3/en not_active Withdrawn
- 2009-05-04 KR KR1020090038919A patent/KR20090115915A/ko not_active Ceased
- 2009-05-04 TW TW098114769A patent/TWI397606B/zh active
- 2009-05-05 CN CNA2009101380007A patent/CN101575700A/zh active Pending
- 2009-05-05 CN CN2013100740001A patent/CN103147066A/zh active Pending
-
2011
- 2011-12-20 JP JP2011278688A patent/JP2012084912A/ja active Pending
-
2012
- 2012-06-05 KR KR1020120060323A patent/KR20120073190A/ko not_active Ceased
-
2015
- 2015-04-30 KR KR1020150061429A patent/KR20150059149A/ko not_active Ceased
-
2017
- 2017-07-21 KR KR1020170092984A patent/KR101911798B1/ko active Active
- 2017-07-21 KR KR1020170092987A patent/KR101912534B1/ko active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030198742A1 (en) * | 2002-04-17 | 2003-10-23 | Vrtis Raymond Nicholas | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants |
| US20030232137A1 (en) * | 2002-04-17 | 2003-12-18 | Vrtis Raymond Nicholas | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107636852A (zh) * | 2015-03-09 | 2018-01-26 | 弗萨姆材料美国有限责任公司 | 用于沉积用作电阻随机存取存储器的多孔有机硅酸盐玻璃膜的方法 |
| CN107636852B (zh) * | 2015-03-09 | 2021-06-25 | 弗萨姆材料美国有限责任公司 | 用于沉积用作电阻随机存取存储器的多孔有机硅酸盐玻璃膜的方法 |
| CN113166937A (zh) * | 2018-11-27 | 2021-07-23 | 弗萨姆材料美国有限责任公司 | 1-甲基-1-异丙氧基-硅杂环烷烃和由其制备的致密有机硅膜 |
| CN114429990A (zh) * | 2020-10-29 | 2022-05-03 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2116632A2 (en) | 2009-11-11 |
| JP2009272632A (ja) | 2009-11-19 |
| KR101911798B1 (ko) | 2018-10-26 |
| EP2116632A3 (en) | 2010-08-25 |
| KR20170089803A (ko) | 2017-08-04 |
| KR101912534B1 (ko) | 2018-10-26 |
| US20080268177A1 (en) | 2008-10-30 |
| JP5270442B2 (ja) | 2013-08-21 |
| TW200946710A (en) | 2009-11-16 |
| JP2012084912A (ja) | 2012-04-26 |
| KR20090115915A (ko) | 2009-11-10 |
| TWI397606B (zh) | 2013-06-01 |
| KR20170089804A (ko) | 2017-08-04 |
| KR20150059149A (ko) | 2015-05-29 |
| CN101575700A (zh) | 2009-11-11 |
| KR20120073190A (ko) | 2012-07-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103147066A (zh) | 致孔剂,致孔的前体以及使用其来提供低介电常数的多孔有机硅玻璃膜的方法 | |
| JP4897505B2 (ja) | 低誘電率の多孔質有機シリカガラス膜を得るための化学蒸着方法 | |
| US8293001B2 (en) | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants | |
| US6846515B2 (en) | Methods for using porogens and/or porogenated precursors to provide porous organosilica glass films with low dielectric constants | |
| EP1666632B1 (en) | Porous low dielectric constant compositions and methods for making and using same | |
| JP4216768B2 (ja) | 有機ケイ酸塩ガラス膜及びその作製方法並びに有機ケイ酸塩ガラス膜作製のための混合物 | |
| JP5711176B2 (ja) | 組成物 | |
| US9061317B2 (en) | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants | |
| JP2004320005A (ja) | 有機シリカ多孔性膜製造のための化学気相成長方法 | |
| TWI676632B (zh) | 烷氧基矽環狀或醯氧基矽環狀化合物及使用其沉積薄膜的方法 | |
| CN109722648A (zh) | 硅杂环状化合物和使用其沉积含硅膜的方法 | |
| JP2011014925A5 (enExample) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20170329 Address after: American Pennsylvania Applicant after: Hui Sheng materials Co., Ltd. Address before: American Pennsylvania Applicant before: Air Products and Chemicals, Inc. |