CN103146982B - 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法 - Google Patents

一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法 Download PDF

Info

Publication number
CN103146982B
CN103146982B CN201310102126.5A CN201310102126A CN103146982B CN 103146982 B CN103146982 B CN 103146982B CN 201310102126 A CN201310102126 A CN 201310102126A CN 103146982 B CN103146982 B CN 103146982B
Authority
CN
China
Prior art keywords
alloy
crucible
undercooling
quartz crucible
copper mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310102126.5A
Other languages
English (en)
Other versions
CN103146982A (zh
Inventor
晏建武
罗亮
彭阿芳
张晨曙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Institute of Technology
Original Assignee
Nanchang Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Institute of Technology filed Critical Nanchang Institute of Technology
Priority to CN201310102126.5A priority Critical patent/CN103146982B/zh
Publication of CN103146982A publication Critical patent/CN103146982A/zh
Application granted granted Critical
Publication of CN103146982B publication Critical patent/CN103146982B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法,采用Fe-Ga-In-Tb新型超磁致伸缩合金成分体系,克服铁镓二元成分体系合金熔炼非常困难的缺点,首次采用纳米多孔陶瓷过滤器过滤合金熔体,提高Fe-Ga-In-Tb熔体的纯度,使合金熔体深过冷,而后再次加热合金,通过深过冷定向结晶系统使合金液态金属激发定向结晶生长。本发明所制备的合金棒材表面光滑、定向程度高、成分精确且均匀,具有较好的综合性能。

Description

一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法
技术领域
本发明涉及一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金定向结晶棒材的方法,属于材料加工工程领域的功能材料制备技术。
背景技术
Fe-Ga合金虽然表现出优异的综合性能,但是与稀土材料Terfenol-D相比超磁致伸缩性能还有一定差距。添加元素和改进工艺是制备高性能超磁致伸缩Fe-Ga合金的有效途径。
深过冷技术是近年来发展迅速的一种新型快速凝固技术。其关键技术有两点:首先是通过各种处理工艺净化熔体,使其获得热力学深过冷。然后,在合金熔体的临界过冷点附近,对熔体施加一定温度梯度的激发源(冷却源)给予激发,完成深过冷熔体激发定向凝固。
因此,深过冷技术的核心有两点:一是提高合金熔体的纯度以增大过冷度,二是减少浇铸模具表面的异质形核核心抑制非均匀形核过程。
在深过冷条件下,一旦受到激发形核,合金熔体可以高达数米每秒的速度高速生长,通过人为控制合金晶体生长时的形核条件,可以制备出成分均匀的定向材料,被认为是极具发展潜力的新型快速定向凝固技术。
1981年Lux等人提出了过冷熔体的定向凝固问题,1989年,Kiminami利用非晶形成合金 Pd77.5Cu6Si16.5研究了负温度梯度下定向凝固的可能性。1992 年,Stanescud 等报道了一种所谓自激发定向凝固(ADS-autonomous directional solidification)法制备高温合金单晶叶片的方法,但 ADS 技术存在着很多不足,比如需要借助于外加温度场才能完成定向凝固过程,因此同样需要强制冷却装置。
深过冷定向凝固技术则有可能克服 ADS 技术上的以上缺点。深过冷快速凝固在普通设备上就可以实现,无需复杂设备提供外加温度场,成本低,凝固时间短,可大幅度提高生产效率,改善凝固组织及其性能,是一种很有潜力的定向凝固方法。
    经查阅文献,王国斌(王国斌.磁场中凝固深过冷Fe81Ga19,合金的显微结构和磁致伸缩性能研究. [D] [硕士学位论文].兰州,兰州理工大学硕士论文,2012)利用熔融玻璃净化与循环过热相结合的方法使Fe81Ga19合金分别获得了198K, 270K和300K的大过冷度,将深过冷Fe-Ga合金定向激发之后,显微组织中没有高度发达的柱状晶,而是由底部激冷层、柱状晶以及等轴晶三部分组成。过冷度为198K的合金其轴向择优取向为[100]方向,晶体内部存在A2相和DO3相。
进一步检索文献发现,李建国 (J K Zhou, J G Li.Effect of denucleating glass composition on undercooling of Fe83Ga17 alloy melts. Journal of Alloys and Compounds, 2009,467:179一181)等分别利用B203,90%NaSiCa+10% B203以及70% Na-Si-Ca-Al-B +30%Na2B704二种净化剂对Fe-Ga进行深过冷处理,发现70%Na-Si-Ca-Al-B+30% Na2B704能够使Fe-Ga合金稳定获得300K左右的过冷度,并在文献(200910054907.S.Fe-Ga合金深过冷净化剂及其制备方法.中华人民共和国.C,CN 101613811A 2009年12月30日)中对该净化剂进行了系统地阐述。玻璃的粘度变化有可能造成过冷度不稳定,影响定向结晶效果。
综合分析已经公布的深过冷制备合金棒材的方法得知,现有的技术存在以下难以克服的缺点:
采用玻璃净化剂净化合金时,玻璃的粘度变化、成分波动有可能造成合金净化效果不佳,过冷度不稳定,影响定向结晶效果;
采用玻璃净化剂结合循环过热净化合金时,如果真空度不够高,金属熔体随过热度的增加,其氧化程度也增加,而氧化物将导致合金熔体的异质形核。从而难以达到预期的过冷度。
熔体过热保温时间如果过长也可能导致已经被玻璃吸附的异质形核质点重新在电磁搅拌作用下裹入金属熔体中,因而使净化效果分散性增加。
已公布的陶瓷过滤片只是简单的网状孔洞陶瓷片,过滤合金熔体时,容易堵塞,造成合金熔体流动性差,流量小,过滤速率低,如果用于制备深过冷合金则过滤净化的效果不佳。
已公布的陶瓷过滤片一般为两片过滤片单一机制完成过滤作用,过滤效果不佳。
发明内容
本发明的目的在于克服现有技术的不足,提出一种新型陶瓷过滤深过冷制备超磁致伸缩材料Fe-Ga-In-Tb合金棒材的方法。该方法采用了一种新型的纳米晶多孔陶瓷过滤器来过滤金属熔体,可以更进一步的提高熔体的纯度,并抑制异质形核结晶过程,从而进一步提高过冷度;利用移动坩埚加热方式结合液态金属过冷激发定向结晶制备有取向生长Fe-Ga-In-Tb合金棒材,解决传统的制备方法制备的Fe-Ga合金磁致伸缩性能不高、定向结晶效果欠佳等缺点。
本发明通过以下技术方案实现:
采用Fe-Ga-In-Tb 新型超磁致伸缩合金成分体系;
纳米多孔陶瓷过滤器可以自制,过滤器结构设计为三层圆片状,采取网络通孔和直通孔相结合的方式过滤Fe-Ga-In-Tb 新型超磁致伸缩合金熔体,使得熔体的纯度得到很大提高,达到深过冷的目的;
将熔体浇铸到内壁光滑的冷却模具中,一方面阻碍合金的异质形核,另一方面可以大大降低合金的欠铸率。所述的冷却铜模内壁粗糙度Ra小于0.2μm。
采用自制的可移动加热式结晶炉完成深过冷熔体激发快速定向凝固。最终获得表面光滑、定向程度高、成分精确且均匀的超磁致伸缩合金棒材。
本发明所述陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法包括以下工艺步骤:
1、装料
将小块状的Fe-Ga系合金置于加厚石英坩埚中,此Fe-Ga系合金可以为Fe-Ga-In-Tb成分系列或其他任何成分系列Fe-Ga系合金,然后将整个坩埚置于真空炉中的感应圈内; 
2、安装模具
将冷却铜模置于石英坩埚的正下方,使石英坩埚小孔对准模具型腔中心,并将冷却铜模置于大底座铜模的内圈中,与之形成紧密配合;冷却铜模内壁粗糙度Ra小于0.2μm;将多孔陶瓷过滤器置于冷却铜模上方,内镶于大底座铜模,以防止合金液的渗出;
3、深过冷合金真空熔炼及净化
(1)通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下;之后通入高纯Ar气至炉内压力0.03 MPa~0.08 MPa;
(2)然后接通电源,采用400A左右的电流将石英坩埚与合金预热一段时间;一方面,排除原料在空气中吸收的水气;另一方面防止石英坩埚产生热裂纹;之后将电流大小加至1350-1450A;待Fe-Ga-In-Tb合金熔化后,从石英坩埚底部小孔中流下来,经纳米多孔陶瓷器过滤,最终流进型腔内壁光滑的冷却铜模中,抑制异质核心的非均质形核,最大限度的实现金属熔体的净化;
上述纳米多孔陶瓷过滤器用下列方法制造;
将过滤器结构设计为三层,最上层的过滤片直通孔孔径为3~5mm,中间的孔径为2~3mm,最下面的孔径为0.5~2mm,各层直通孔互相错开;
制造工艺为:将化学纯的粒径小于0.2μm的ZrO2粉、Al2O3粉和MgO粉按照ZrO2占70%~90%,Al2O3粉占9%~25%,MgO粉占1%~5 %的比例混合,然后在高能球磨机中将原料粉球磨成20~100纳米的纳米晶颗粒,然后用粘结剂PVB即聚乙烯醇缩丁醛、无水乙醇即酒精调制成陶瓷颗粒浆料;以有机泡沫聚氨脂海绵体,作为多孔载体,将陶瓷浆料均匀涂覆其上,干燥后在高温下燃尽载体材料而形成多孔陶瓷过滤器;
4、通过深过冷定向结晶系统使合金液态金属激发定向结晶
将已经获得大过冷度的净化后的Fe-Ga-In-Tb合金样品再次置于底部无孔的石英坩埚中,然后置于真空感应熔炼炉线圈中,感应线圈底部置有大体积铜模,模内装有Ga-In-Sn液态金属;在模具的上方放置一隔热挡板和石棉保护层;
再次接通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下,之后通入高纯Ar气至炉内压力为0.03 MPa~0.08 MPa,然后接通电源,电流大小为1350-1450A,加热熔化后接着利用伺服电机带动升降装置,运动速度为:30-80 mm/min;从而带动石英坩埚逐渐移动进入Ga-In-Sn液态金属激发源,即在其临界过冷度之上的某个温度点,采用可以提供一定温度梯度的Ga-In-Sn液态金属激发源对过冷熔体进行激发,为过冷熔体提供适当的局部过冷度,完成深过冷熔体激发快速定向凝固;
上述深过冷定向结晶系统通过以下方法制作:
在只包括感应线圈、坩埚、电源、真空腔室、真空泵结构的熔炼炉基础上,按照超磁致伸缩材料定向结晶要求增添坩埚定向移动系统及合金深过冷定向结晶浇铸冷却系统;
坩埚定向移动系统包括伺服电机、丝杠、支架,其上下运动原理如下:伺服电机带动丝杠运动,丝杠再带动支架上下移动,支架带动石英坩埚上下移动;所述的坩埚移动速度为30~80 mm;
定向移动坩埚是加厚石英坩埚,上端卡在一个固定支架上;
合金深过冷浇铸冷却系统由纳米晶陶瓷过滤器、浇铸漏斗、过滤器支架、浇铸模具、大底座铜模构成。
本发明的有益效果:
陶瓷过滤片的结构设计采用了网络结构的互通孔和直通孔结合的方式,可以大大提高过滤速率,提高流动性;
直通孔采取上层与下层错开形式,避免了合金液体直接流出造成的过滤效果降低现象;
三个纳米晶多孔陶瓷过滤片通孔孔径不一样,采用组合尺寸。最上层的多孔陶瓷过滤片直通孔孔径较大,中间次之,最下面的孔径较小。这种组合尺寸可以很好地起到过滤作用。
制备陶瓷过滤片的陶瓷原料颗粒由于经过了高能球磨成为纳米晶晶粒并保留下来。由于晶粒非常细小,晶界面积很大,大幅提高了物理吸附效果,提高了合金纯度,加大过冷度,有望获得定向结晶生长较好的大体积Fe-Ga-In-Tb合金棒材。
多孔陶瓷过滤器孔隙率高,气孔率最高达90%,孔径均匀且易于控制。过滤精度高,不与鉄镓合金发生反应,适用于鉄镓合金精密过滤;
可移动加热坩埚的定向结晶炉,可以使熔体获得较大且的稳定过冷度,可较好的实现深过冷熔体激发定向结晶,适用于 Fe-Ga-In-Tb合金自身的特点,获得大体积应用尺度棒材。
与现有技术比较,本发明所制备的Fe-Ga-In-Tb合金,其熔体纯度高、烧损量小、成分均匀且定向结晶生长较好。通过严格控制Ga、In元素的挥发量达到较准确的控制合金成分的目的。
 具体实施方式
采用自制的纳米晶多孔陶瓷过滤器和可以完成深过冷定向结晶的真空感应熔炼炉。
实施例1
1、熔炼前的准备
(1)自制纳米多孔陶瓷过滤器
将过滤器结构设计为三层,最上层的过滤片直通孔孔径为5mm,中间的孔径为3mm,最下面的孔径为2mm,各层直通孔互相错开;
制备纳米晶多孔陶瓷过滤器具体制造工艺为:将化学纯的粒径为0.2μm的ZrO2粉、Al2O3粉和MgO粉按照ZrO2占90%,Al2O3粉占9%,MgO粉占1 %的比例混合,然后在高能球磨机中将原料粉球磨成100纳米的纳米晶颗粒,然后用粘结剂PVB即聚乙烯醇缩丁醛、无水乙醇即酒精调制成陶瓷颗粒浆料。以有机泡沫聚氨脂海绵体,作为多孔载体,将陶瓷浆料均匀涂覆其上,干燥后在高温下燃尽载体材料而形成多孔陶瓷过滤器;
(2)自制深过冷定向结晶系统
在原购买的熔炼炉(只包括感应线圈、坩埚、电源、真空腔室、真空泵结构)基础上,按照超磁致伸缩材料定向结晶要求进行部分改造,增添坩埚定向移动系统及合金深过冷定向结晶浇铸冷却系统。
设计制作坩埚定向移动系统。该系统包括伺服电机、丝杠、支架,其上下运动原理如下:伺服电机带动丝杠运动,丝杠再带动支架上下移动,支架带动石英坩埚上下移动; 
定做定向移动坩埚,该坩埚是一个足够长的加厚石英坩埚,上端卡在一个固定支架上。
设计加工合金深过冷浇铸冷却系统。该系统由纳米晶陶瓷过滤器、浇铸漏斗、过滤器支架、浇铸模具、大底座铜模等几部分构成。
(3)装料
将小块状的Fe-Ga系合金置于加厚石英坩埚中,此Fe-Ga系合金可以为Fe-Ga-In-Tb成分系列或其他任何成分系列Fe-Ga系合金,然后将整个坩埚置于真空炉中的感应圈内; 
(5)安装模具
将冷却铜模置于石英坩埚的正下方,使石英坩埚小孔对准模具型腔中心,并将冷却铜模置于大底座铜模的内圈中,与之形成紧密配合;冷却铜模内壁粗糙度Ra为 0.2μm;将多孔陶瓷过滤器置于冷却铜模上方,内镶于大底座铜模,以防止合金液的渗出;
2、深过冷合金真空熔炼及净化
(1)通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下;之后通入高纯Ar气至炉内压力0.08 MPa;
(2)然后接通电源,采用400A左右的电流将石英坩埚与合金预热一段时间;一方面,排除原料在空气中吸收的水气;另一方面防止石英坩埚产生热裂纹;之后将电流大小加至1450A;待Fe-Ga-In-Tb合金熔化后,从石英坩埚底部小孔中流下来,经纳米多孔陶瓷过滤,最终流进型腔内壁光滑的冷却铜模中,抑制异质核心的非均质形核。最大限度的实现金属熔体的净化;
3、深过冷合金液态金属激发定向结晶
将已经获得大过冷度的净化后的Fe-Ga-In-Tb合金样品再次置于定做的底部无孔的长石英坩埚中,然后置于真空感应熔炼炉线圈中,感应线圈底部置有大体积铜模,模内装有Ga-In-Sn液态金属;在模具的上方放置一隔热挡板和石棉保护层。
再次接通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下,之后通入高纯Ar气至炉内压力为0.08 MPa,然后接通电源,电流大小为1450A,加热熔化后接着利用伺服电机带动升降装置,运动速度为:80 mm/min;从而带动石英坩埚逐渐移动进入Ga-In-Sn液态金属激发源,即在其临界过冷度之上的某个温度点,采用可以提供一定温度梯度的Ga-In-Sn液态金属激发源对过冷熔体进行激发,为过冷熔体提供适当的局部过冷度,完成深过冷熔体激发快速定向凝固;
实施例2
1、熔炼前的准备
(1)自制纳米多孔陶瓷过滤器
将过滤器结构设计为三层,最上层的过滤片直通孔孔径为4mm,中间的孔径为2.5mm,最下面的孔径为1.5mm,各层直通孔互相错开;
制备纳米晶多孔陶瓷过滤器具体制造工艺为:将化学纯的粒径为0.15μm的ZrO2粉、Al2O3粉和MgO粉按照ZrO2占80%,Al2O3粉占16%,MgO粉占4 %的比例混合,然后在高能球磨机中将原料粉球磨成80纳米的纳米晶颗粒,然后用粘结剂PVB即聚乙烯醇缩丁醛、无水乙醇即酒精调制成陶瓷颗粒浆料。以有机泡沫聚氨脂海绵体,作为多孔载体,将陶瓷浆料均匀涂覆其上,干燥后在高温下燃尽载体材料而形成多孔陶瓷过滤器;
(2)自制深过冷定向结晶系统
所述的可以完成深过冷定向结晶的真空感应熔炼炉通过以下具体方法制作:
在原购买的熔炼炉(只包括感应线圈、坩埚、电源、真空腔室、真空泵结构)基础上,按照超磁致伸缩材料定向结晶要求进行部分改造,增添坩埚定向移动系统及合金深过冷定向结晶浇铸冷却系统。
设计制作坩埚定向移动系统。该系统包括伺服电机、丝杠、支架,其上下运动原理如下:伺服电机带动丝杠运动,丝杠再带动支架上下移动,支架带动石英坩埚上下移动; 
定做定向移动坩埚,该坩埚是一个足够长的加厚石英坩埚,上端卡在一个固定支架上。
设计加工合金深过冷浇铸冷却系统。该系统由纳米晶陶瓷过滤器、浇铸漏斗、过滤器支架、浇铸模具、大底座铜模等几部分构成。
(3)装料
将小块状的Fe-Ga系合金置于加厚石英坩埚中,此Fe-Ga系合金可以为Fe-Ga-In-Tb成分系列或其他任何成分系列Fe-Ga系合金,然后将整个坩埚置于真空炉中的感应圈内; 
(5)安装模具
将冷却铜模置于石英坩埚的正下方,使石英坩埚小孔对准模具型腔中心,并将冷却铜模置于大底座铜模的内圈中,与之形成紧密配合;冷却铜模内壁粗糙度Ra为0.15μm;将多孔陶瓷过滤器置于冷却铜模上方,内镶于大底座铜模,以防止合金液的渗出;
2、深过冷合金真空熔炼及净化
(1)通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下;之后通入高纯Ar气至炉内压力0.07 MPa;
(2)然后接通电源,采用400A左右的电流将石英坩埚与合金预热一段时间;一方面,排除原料在空气中吸收的水气;另一方面防止石英坩埚产生热裂纹;之后将电流大小加至1400A;待Fe-Ga-In-Tb合金熔化后,从石英坩埚底部小孔中流下来,经纳米多孔陶瓷过滤,最终流进型腔内壁光滑的冷却铜模中,抑制异质核心的非均质形核。最大限度的实现金属熔体的净化;
3、深过冷合金液态金属激发定向结晶
将已经获得大过冷度的净化后的Fe-Ga-In-Tb合金样品再次置于定做的底部无孔的长石英坩埚中,然后置于真空感应熔炼炉线圈中,感应线圈底部置有大体积铜模,模内装有Ga-In-Sn液态金属;在模具的上方放置一隔热挡板和石棉保护层。
再次接通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下,之后通入高纯Ar气至炉内压力为0.07 MPa,然后接通电源,电流大小为1400A,加热熔化后接着利用伺服电机带动升降装置,运动速度为:60 mm/min;从而带动石英坩埚逐渐移动进入Ga-In-Sn液态金属激发源,即在其临界过冷度之上的某个温度点,采用可以提供一定温度梯度的Ga-In-Sn液态金属激发源对过冷熔体进行激发,为过冷熔体提供适当的局部过冷度,完成深过冷熔体激发快速定向凝固;
实施例3
1、熔炼前的准备
(1)自制纳米多孔陶瓷过滤器
将过滤器结构设计为三层,每层过滤片中除了具有互通网络状孔洞外,还有直通孔。最上层的过滤片直通孔孔径为3mm,中间的孔径为2mm,最下面的孔径为0.5mm,直通孔互相错开;
制备纳米晶多孔陶瓷过滤器具体制造工艺为:将化学纯的粒径为0.15μm的ZrO2粉、Al2O3粉和MgO粉按照ZrO2占70%,Al2O3粉占25%,MgO粉占5%的比例混合,然后在高能球磨机中将原料粉球磨成70纳米的纳米晶颗粒,然后用粘结剂PVB即聚乙烯醇缩丁醛、无水乙醇即酒精调制成陶瓷颗粒浆料。以有机泡沫聚氨脂海绵体,作为多孔载体,将陶瓷浆料均匀涂覆其上,干燥后在高温下燃尽载体材料而形成多孔陶瓷过滤器;
(2)自制深过冷定向结晶系统
所述的可以完成深过冷定向结晶的真空感应熔炼炉通过以下具体方法制作:
在原购买的熔炼炉(只包括感应线圈、坩埚、电源、真空腔室、真空泵结构)基础上,按照超磁致伸缩材料定向结晶要求进行部分改造,增添坩埚定向移动系统及合金深过冷定向结晶浇铸冷却系统。
设计制作坩埚定向移动系统。该系统包括伺服电机、丝杠、支架,其上下运动原理如下:伺服电机带动丝杠运动,丝杠再带动支架上下移动,支架带动石英坩埚上下移动; 
定做定向移动坩埚,该坩埚是一个足够长的加厚石英坩埚,上端卡在一个固定支架上。
设计加工合金深过冷浇铸冷却系统。该系统由纳米晶陶瓷过滤器、浇铸漏斗、过滤器支架、浇铸模具、大底座铜模等几部分构成。
(3)装料
将小块状的Fe-Ga系合金置于加厚石英坩埚中,此Fe-Ga系合金可以为Fe-Ga-In-Tb成分系列或其他任何成分系列Fe-Ga系合金,然后将整个坩埚置于真空炉中的感应圈内; 
(5)安装模具
将冷却铜模置于石英坩埚的正下方,使石英坩埚小孔对准模具型腔中心,并将冷却铜模置于大底座铜模的内圈中,与之形成紧密配合;冷却铜模内壁粗糙度Ra为0.1μm;将多孔陶瓷过滤器置于冷却铜模上方,内镶于大底座铜模,以防止合金液的渗出;
2、深过冷合金真空熔炼及净化
(1)通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下;之后通入高纯Ar气至炉内压力0.03 MPa;
(2)然后接通电源,采用400A左右的电流将石英坩埚与合金预热一段时间;一方面,排除原料在空气中吸收的水气;另一方面防止石英坩埚产生热裂纹;之后将电流大小加至1350A;待Fe-Ga-In-Tb合金熔化后,从石英坩埚底部小孔中流下来,经纳米多孔陶瓷过滤,最终流进型腔内壁光滑的冷却铜模中,抑制异质核心的非均质形核。最大限度的实现金属熔体的净化;
3、深过冷合金液态金属激发定向结晶
将已经获得大过冷度的净化后的Fe-Ga-In-Tb合金样品再次置于定做的底部无孔的长石英坩埚中,然后置于真空感应熔炼炉线圈中,感应线圈底部置有大体积铜模,模内装有Ga-In-Sn液态金属;在模具的上方放置一隔热挡板和石棉保护层。
再次接通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×10Pa以下,再用扩散泵将真空炉抽空至10-2 Pa以下,之后通入高纯Ar气至炉内压力为0.03 MPa,然后接通电源,电流大小为1350A,加热熔化后接着利用伺服电机带动升降装置,运动速度为:30 mm/min;从而带动石英坩埚逐渐移动进入Ga-In-Sn液态金属激发源,即在其临界过冷度之上的某个温度点,采用可以提供一定温度梯度的Ga-In-Sn液态金属激发源对过冷熔体进行激发,为过冷熔体提供适当的局部过冷度,完成深过冷熔体激发快速定向凝固。

Claims (1)

1.一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法,其特征是:
(1)装料
将小块状的Fe-Ga系合金置于加厚石英坩埚中,此Fe-Ga系合金为Fe-Ga-In-Tb成分系列或其他任何成分系列Fe-Ga系合金,然后将整个坩埚置于真空炉中的感应圈内;
(2)安装模具
将冷却铜模置于石英坩埚的正下方,使石英坩埚小孔对准模具型腔中心,并将冷却铜模置于大底座铜模的内圈中,与之形成紧密配合;冷却铜模内壁粗糙度Ra小于0.2μm;将多孔陶瓷过滤器置于冷却铜模上方,内镶于大底座铜模,以防止合金液的渗出;
(3)深过冷合金真空熔炼及净化
(A)通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×102Pa以下,再用扩散泵将真空炉抽空至10-2Pa以下;之后通入高纯Ar气至炉内压力0.03MPa~0.08MPa;
(B)然后接通电源,采用400A的电流将石英坩埚与合金预热一段时间;一方面,排除原料在空气中吸收的水气;另一方面防止石英坩埚产生热裂纹;之后将电流大小加至1350-1450A;待Fe-Ga-In-Tb合金熔化后,从石英坩埚底部小孔中流下来,经纳米多孔陶瓷器过滤,最终流进型腔内壁光滑的冷却铜模中,抑制异质核心的非均质形核,最大限度的实现金属熔体的净化;
所述纳米多孔陶瓷过滤器用下列方法制造;
将过滤器结构设计为三层,最上层的过滤片直通孔孔径为3~5mm,中间的孔径为2~3mm,最下面的孔径为0.5~2mm,各层直通孔互相错开;
制造工艺为:将化学纯的粒径小于0.2μm的ZrO2粉、Al2O3粉和MgO粉按照ZrO2占70%~90%,Al2O3粉占9%~25%,MgO粉占1%~5%的比例混合,然后在高能球磨机中将原料粉球磨成20~100纳米的纳米晶颗粒,然后用粘结剂PVB即聚乙烯醇缩丁醛、无水乙醇即酒精调制成陶瓷颗粒浆料;以有机泡沫聚氨脂海绵体,作为多孔载体,将陶瓷浆料均匀涂覆其上,干燥后在高温下燃尽载体材料而形成多孔陶瓷过滤器;
(4)通过深过冷定向结晶系统使合金液态金属激发定向结晶;
将已经获得大过冷度的净化后的Fe-Ga-In-Tb合金样品再次置于底部无孔的石英坩埚中,然后置于真空感应熔炼炉线圈中,感应线圈底部置有大体积铜模,模内装有Ga-In-Sn液态金属;在模具的上方放置一隔热挡板和石棉保护层;
再次接通循环冷却水,关闭炉门,先利用真空机械泵、罗茨泵将真空炉抽空至1×102Pa以下,再用扩散泵将真空炉抽空至10-2Pa以下,之后通入高纯Ar气至炉内压力为0.03MPa~0.08MPa,然后接通电源,电流大小为1350-1450A,加热熔化后接着利用伺服电机带动升降装置,运动速度为:30-80mm/min;从而带动石英坩埚逐渐移动进入Ga-In-Sn液态金属激发源,即在其临界过冷度之上的某个温度点,采用可以提供一定温度梯度的Ga-In-Sn液态金属激发源对过冷熔体进行激发,为过冷熔体提供适当的局部过冷度,完成深过冷熔体激发快速定向凝固;
所述深过冷定向结晶系统通过以下方法制作:
在只包括感应线圈、坩埚、电源、真空腔室、真空泵结构的熔炼炉基础上,按照超磁致伸缩材料定向结晶要求增添坩埚定向移动系统及合金深过冷定向结晶浇铸冷却系统;
坩埚定向移动系统包括伺服电机、丝杠、支架,其上下运动原理如下:伺服电机带动丝杠运动,丝杠再带动支架上下移动,支架带动石英坩埚上下移动;所述的坩埚移动速度为30~80mm;
定向移动坩埚是加厚石英坩埚,上端卡在一个固定支架上;
合金深过冷浇铸冷却系统由纳米晶陶瓷过滤器、浇铸漏斗、过滤器支架、浇铸模具、大底座铜模构成。
CN201310102126.5A 2013-03-28 2013-03-28 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法 Expired - Fee Related CN103146982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310102126.5A CN103146982B (zh) 2013-03-28 2013-03-28 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310102126.5A CN103146982B (zh) 2013-03-28 2013-03-28 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法

Publications (2)

Publication Number Publication Date
CN103146982A CN103146982A (zh) 2013-06-12
CN103146982B true CN103146982B (zh) 2014-09-17

Family

ID=48545295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310102126.5A Expired - Fee Related CN103146982B (zh) 2013-03-28 2013-03-28 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法

Country Status (1)

Country Link
CN (1) CN103146982B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903266B (zh) * 2017-04-27 2019-01-22 郑州大学 一种玻璃包覆悬浮深过冷快速定向凝固装置及其凝固方法
CN115110145B (zh) * 2022-06-23 2023-09-29 宁夏盾源聚芯半导体科技股份有限公司 晶硅提拉用增氧石英坩埚、其制备设备和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613811A (zh) * 2009-07-16 2009-12-30 上海交通大学 Fe-Ga合金深过冷净化剂及其制备方法
CN101630557A (zh) * 2008-07-16 2010-01-20 宁波科宁达工业有限公司 含钆的烧结稀土永磁合金及其制备方法
CN101824578A (zh) * 2010-03-12 2010-09-08 瑞科稀土冶金及功能材料国家工程研究中心有限公司 一种铁基磁致伸缩合金丝及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630557A (zh) * 2008-07-16 2010-01-20 宁波科宁达工业有限公司 含钆的烧结稀土永磁合金及其制备方法
CN101613811A (zh) * 2009-07-16 2009-12-30 上海交通大学 Fe-Ga合金深过冷净化剂及其制备方法
CN101824578A (zh) * 2010-03-12 2010-09-08 瑞科稀土冶金及功能材料国家工程研究中心有限公司 一种铁基磁致伸缩合金丝及其制备方法

Also Published As

Publication number Publication date
CN103146982A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
CN106935350B (zh) 一种各向异性SmCo5型稀土永磁材料及制备方法
CN102693799B (zh) 永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法
CN101775518A (zh) 利用超声波制备颗粒增强梯度复合材料的装置及方法
CN103170588B (zh) 一种温型铸造方法
CN102211346B (zh) 运动磁场中功能梯度材料的压滤成型制备方法
CN102225466A (zh) 运动磁场中梯度材料的注浆成型制备方法
CN102430732A (zh) 内外双向冷却连铸镁合金和铝合金锭坯装置与工艺
CN103146982B (zh) 一种陶瓷过滤深过冷制备Fe-Ga-In-Tb合金棒材的方法
CN107619226A (zh) 一种多孔水泥膜及其制备方法和用途
CN102728823B (zh) 利用感应冷坩埚技术制备定向结晶的稀土超磁致伸缩合金的方法
CN104559943A (zh) 一种晶态磁制冷金属材料及其制备方法
CN103008623A (zh) 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置
CN102051567A (zh) 一种可调式行波磁场细化铝合金的精密铸造方法
CN103343238B (zh) 一种用于易挥发元素合金的区域熔化定向凝固方法
CN102021357A (zh) 一种颗粒增强金属基复合材料的制备方法
CN105948739B (zh) 用于超高温晶体生长炉温场的高纯钇锆固溶体陶瓷及其制备方法
CN104593630A (zh) 藕状多孔铝的定向凝固制备方法
CN103632834B (zh) 一种高性能各向异性钕铁硼磁体的制备方法
RU2013119154A (ru) Способ изготовления поршневого кольца с внедренными частицами
CN105382227A (zh) 一种用于镁合金半连续铸造的分流装置及铸造系统
CN103643063A (zh) 多元合金获得210~430k稳定过冷度的凝固方法
CN111253172B (zh) 一种制备多孔陶瓷材料的方法
CN203108322U (zh) 一种用于低熔点有色金属及其合金熔体大流量过滤装置
CN116532633A (zh) 稀土金属磁制冷工质及其制备方法
CN103060660B (zh) 一种二次加料真空感应熔炼制备Fe-Ga-In-Tb合金的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20170328