CN103035688A - 一种锗硅hbt器件及其制造方法 - Google Patents

一种锗硅hbt器件及其制造方法 Download PDF

Info

Publication number
CN103035688A
CN103035688A CN2012101398943A CN201210139894A CN103035688A CN 103035688 A CN103035688 A CN 103035688A CN 2012101398943 A CN2012101398943 A CN 2012101398943A CN 201210139894 A CN201210139894 A CN 201210139894A CN 103035688 A CN103035688 A CN 103035688A
Authority
CN
China
Prior art keywords
buried regions
layer
germanium
hbt device
silicium hbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101398943A
Other languages
English (en)
Other versions
CN103035688B (zh
Inventor
刘冬华
石晶
段文婷
钱文生
胡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN201210139894.3A priority Critical patent/CN103035688B/zh
Publication of CN103035688A publication Critical patent/CN103035688A/zh
Priority to US13/888,596 priority patent/US8779473B2/en
Application granted granted Critical
Publication of CN103035688B publication Critical patent/CN103035688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种锗硅HBT器件,包括:P型硅衬底上形成有集电区,所述集电区两侧形成有赝埋层和场氧,锗硅外延层形成于所述集电区和场氧上方,隔离氧化层和多晶硅层形成于所述锗硅外延层上方,隔离侧墙形成于锗硅外延层和多晶硅层两侧,所述赝埋层通过深接触孔引出连接金属线,所述锗硅外延层、多晶硅层通过接触孔引出连接金属线;其中,所述P型硅衬底上还形成有一埋层氧化层。本发明还公开了一种锗硅HBT器件的制造方法。本发明要的锗硅HBT器件对硅衬底噪声具有隔离作用,该器件与现有锗硅HBT器件相比较能提高锗硅HBT器件自身隔离噪声特性,进而实现LNA电路的良好高频噪声指标。

Description

一种锗硅HBT器件及其制造方法
技术领域
本发明涉及半导体制造领域,特别是涉及一种锗硅HBT器件。本发明还涉及一种锗硅HBT器件的制造方法。
背景技术
由于现代通信对高频带下高性能、低噪声和低成本的RF(射频)组件的需求,传统的Si(硅)材料器件无法满足性能规格、输出功率和线性度新的要求,功率SiGe HBT(硅锗异质结双极晶体管)则在更高、更宽的频段的功放中发挥重要作用。与砷化镓器件相比,虽然在频率上还处劣势,但SiGe HBT凭着更好的热导率和良好的衬底机械性能,较好地解决了功放的散热问题,SiGe HBT还具有更好的线性度、更高集成度;SiGe HBT仍然属于硅基技术,和CMOS(互补金属氧化物半导体)工艺有良好的兼容性,SiGe BiCMOS(硅锗双极互补金属氧化半导体)工艺为功放与逻辑控制电路的集成提供极大的便利,也降低了工艺成本。
国际上目前已经广泛采用SiGe HBT作为LNA(低噪声放大器)的电路元件,用于全球定位系统等信号接收系统的前端放大电路。在这种电路中,高频噪声系数是电路的最关键指标。虽然LNA电路的噪声性能与电路设计的优劣相关,但主要还是由器件本身的噪声特性决定。而提高器件本身的高频噪声性能的重要方式之一就是提高隔离性能。
发明内容
本发明要解决的技术问题是提供一种对硅衬底噪声具有隔离性能的锗硅HBT器件,该器件与现有锗硅HBT器件相比较能提高锗硅HBT器件自身隔离噪声特性,进而实现LNA电路的良好高频噪声指标。本发明还提供一种锗硅HBT器件的制造方法。
为解决上述技术问题,本发明的锗硅HBT器件,包括:P型硅衬底上形成有集电区,所述集电区两侧形成有赝埋层和场氧,锗硅外延层形成于所述集电区和场氧上方,隔离氧化层(用于定义发射区、基区接触面积)和多晶硅层形成于所述锗硅外延层上方,隔离侧墙形成于锗硅外延层和多晶硅层两侧,所述赝埋层通过深接触孔引出连接金属线,所述锗硅外延层、多晶硅层通过接触孔引出连接金属线;其中,所述P型硅衬底上还形成有一埋层氧化层,该埋层氧化层位于所述集电区下方。
其中,所述埋层氧化层下方具有穿透区,所述集电区和赝埋层之间形成有交叠区,所述交叠区实现赝埋层对集电区的链接。
其中,所述赝埋层部分位于所述埋层氧化层上方,部分位于所述埋层氧化层旁侧,与P型硅衬底具有相邻区域。
其中,所述埋层氧化层厚度为100埃~1000埃。
其中,所述集电区具有砷或磷。
其中,所述赝埋层具有砷或磷。
本发明锗硅HBT器件的制造方法,包括:
(1)在P型硅衬底上注入氧,进行高温退火,在P型硅衬底中形成埋层氧化层;
(2)淀积一二氧化硅层,在所述二氧化硅层上方淀积一氮化硅层,刻蚀形成沟槽;
(3)在所述沟槽底部注入N型离子成赝埋层,再对赝埋层进行热退火处理;
(4)在沟槽进行二氧化硅填充,形成场氧;
(5)进行N型离子注入形成集电区;
(6)采用常规锗硅HBT制作工艺,制作锗硅外延层、隔离氧化层、多晶硅层和隔离侧墙,引出器件发射极、基极和集电极。
实施步骤(1)时,注入氧浓度为1e21cm-3~1e22cm-3,形成埋层氧化层厚度为100埃~1000埃。
实施步骤(2)时,淀积二氧化硅层厚度为135埃,淀积氮化硅层厚度为1500埃,以氮化硅作为硬掩膜层刻蚀沟槽。
实施步骤(3)时,注入砷或磷离子,注入剂量为1e14cm-2~1e16cm-2,注入能量为2KeV~50KeV,热退火处理后形成的赝埋层部分位于所述埋层氧化层位于上方,部分位于所述埋层氧化层旁侧,与P型硅衬底具有相邻区域。
实施步骤(5)时,注入砷或磷,能量为100KeV~350KeV。
本发明的锗硅HBT器件通过在锗硅HBT的硅衬底底部形成一埋层氧化层,该埋层氧化层是在硅衬底中注入适当浓度的氧(1e21cm-3~1e22cm-3),在硅衬底的底部形成一层富含氧的区域;然后通过高温热退火,从而在高浓度的有氧区形成了一埋层氧化层。这层埋层氧化层能实现对硅衬底底部噪声的隔离,能提高锗硅HBT器件的噪声隔离性能。
附图说明
下面结合附图与具体实施方式对本发明作进一步详细的说明:
图1是本发明锗硅HBT器件的结构示意图。
图2是本发明锗硅HBT器件制造方法的流程图。
图3是本发明锗硅HBT器件制造方法的示意图一,其显示步骤(1)所形成的器件结构。
图4是本发明锗硅HBT器件制造方法的示意图二,其显示步骤(2)所形成的器件结构。
图5是本发明锗硅HBT器件制造方法的示意图三,其显示步骤(3)热退火处理前所形成的器件结构。
图6是本发明锗硅HBT器件制造方法的示意图四,其显示步骤(3)热退火处理后所形成的器件结构。
图7是本发明锗硅HBT器件制造方法的示意图五,其显示步骤(4)所形成的器件结构。
图8是本发明锗硅HBT器件制造方法的示意图六,其显示步骤(5)所形成的器件结构。
图9是本发明锗硅HBT器件制造方法的示意图七,其显示步骤(6)所形成的器件结构。
附图标记说明
101是P型硅衬底
102是埋层氧化层
201是二氧化硅层
202是氮化硅层
203是沟槽
301是赝埋层(热退火前)
401是赝埋层(热退火后)
501是场氧
601是集电区
602是穿透区
603是交叠区
701是锗硅外延层
702是隔离氧化层
703是多晶硅层
801是隔离侧墙
802是接触孔
803是深接触孔
804是金属线
具体实施方式
如图1所示,本发明锗硅HBT器件一实施例,包括:P型硅衬底101上形成有集电区601,集电区601两侧形成有赝埋层401和场氧501,锗硅外延层701形成于集电区601和场氧501上方,隔离氧化层702和多晶硅层703形成于锗硅外延层701上方,隔离氧化层702形成于多晶硅层703两侧,部分多晶硅层703位于隔离氧化层702上方,隔离侧墙801形成于锗硅外延层701和多晶硅层703两侧,隔离侧墙801形成于隔离氧化层702的一边旁侧,赝埋层401通过深接触孔803引出连接金属线804,锗硅外延层701、多晶硅层703通过接触孔802引出连接金属线804;其中,P型硅衬底101上还形成有一埋层氧化层102,该埋层氧化层102位于集电区601下方,埋层氧化层102下方具有穿透区602,交叠区603形成于赝埋层401和集电区601之间,赝埋层401部分位于埋层氧化层102上方,赝埋层401部分位于埋层氧化层102旁侧,赝埋层401与P型硅衬底101具有相邻区域;本实施例中,埋层氧化层102厚度为100埃~1000埃,集电区601具有砷或磷,赝埋层401具有砷或磷。
如图2所示,本发明锗硅HBT器件的制造方法,包括:
如图3所示,在P型硅衬底101注入浓度为1e21cm-3~1e22cm-3的氧,进行高温退火,在P型硅衬底101中形成埋层氧化层102,形成埋层氧化层102厚度为100埃~1000埃;
如图4所示,淀积一二氧化硅层201,厚度为135埃,在二氧化硅层201上方淀积一氮化硅层202,刻蚀形成沟槽203;
如图5、图6所示,在沟槽203底部注入砷或磷离子,注入剂量为1e14cm-2~1e16cm-2,注入能量为2KeV~50KeV形成赝埋层301,对赝埋层301进行热退火处理形成赝埋层401;热退火后所形成赝埋层401部分位于埋层氧化层102位于上方,赝埋层401部分位于埋层氧化层102旁侧,赝埋层401与P型硅衬底101具有相邻区域
如图7所示,在沟槽203进行二氧化硅填充,形成场氧501;
如图8所示,进行注入砷或磷,能量为100KeV~350KeV,形成集电区601,在集电区601注入过程中由于注入较深,会在集电区两侧形成交叠区603,在埋层氧化层102下方形成穿透区602(其为N型离子穿透埋层氧化层形成);
如图9所示,采用常规锗硅HBT制作工艺,制作锗硅外延层701、隔离氧化层702、多晶硅层703和隔离侧墙801,将多晶硅层703通过接触孔802引出连接金属线804作为发射极901,将锗硅外延层701通过接触孔引出连接金属线作为基极902,将赝埋层401通过深接触孔引出连接金属线作为集电极903,最后形成如图1所示锗硅HBT器件。
以上通过具体实施方式和实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (14)

1.一种锗硅HBT器件,包括:P型硅衬底上形成有集电区,所述集电区两侧形成有赝埋层和场氧,锗硅外延层形成于所述集电区和场氧上方,多晶硅层形成于所述锗硅外延层上方,隔离侧墙形成于锗硅外延层和多晶硅层两侧,所述赝埋层通过深接触孔引出连接金属线,所述锗硅外延层、多晶硅层通过接触孔引出连接金属线;其特征是:所述P型硅衬底上还形成有一埋层氧化层,该埋层氧化层位于所述集电区下方。
2.如权利要求1所述的锗硅HBT器件,其特征是:所述埋层氧化层下方具有穿透区。
3.如权利要求1所述的锗硅HBT器件,其特征是:所述集电区和赝埋层之间形成有交叠区。
4.如权利要求1所述的锗硅HBT器件,其特征是:所述赝埋层部分位于所述埋层氧化层上方,部分位于所述埋层氧化层旁侧,与P型硅衬底具有相邻区域。
5.如权利要求1所述的锗硅HBT器件,其特征是:所述埋层氧化层厚度为100埃~1000埃。
6.如权利要求1所述的锗硅HBT器件,其特征是:所述集电区具有砷或磷。
7.如权利要求1所述的锗硅HBT器件,其特征是:所述赝埋层具有砷或磷。
8.一种锗硅HBT器件的制造方法,包括:
(1)在P型硅衬底注入氧,进行高温退火,在P型硅衬底中形成埋层氧化层;
(2)淀积一二氧化硅层,在所述二氧化硅层上方淀积一氮化硅层,刻蚀形成沟槽;
(3)在所述沟槽底部注入N型离子形成赝埋层,再对赝埋层进行热退火处理;
(4)在沟槽进行二氧化硅填充,形成场氧;
(5)进行N型离子注入形成集电区;
(6)采用常规锗硅HBT制作工艺,制作锗硅外延层、隔离氧化层、多晶硅层和隔离侧墙,引出器件发射极、基极和集电极。
9.如权利要求8所述锗硅HBT器件的制造方法,其特征是:实施步骤(1)时,注入氧浓度为1e21cm-3~1e22cm-3
10.如权利要求8所述锗硅HBT器件的制造方法,其特征是:实施步骤(1)时,形成埋层氧化层厚度为100埃~1000埃。
11.如权利要求8所述锗硅HBT器件的制造方法,其特征是:实施步骤(2)时,淀积二氧化硅层厚度为135埃,淀积氮化硅层厚度为1500埃,以氮化硅作为硬掩膜层刻蚀沟槽。
12.如权利要求8所述锗硅HBT器件的制造方法,其特征是:实施步骤(3)时,注入砷或磷离子,注入剂量为1e14cm-2~1e16cm-2注入能量为2KeV~50KeV。
13.如权利要求12所述锗硅HBT器件的制造方法,其特征是:实施步骤(3)时,热退火处理后形成的赝埋层部分位于所述埋层氧化层位于上方,部分位于所述埋层氧化层旁侧,与P型硅衬底具有相邻区域。
14.如权利要求8所述锗硅HBT器件的制造方法,其特征是:实施步骤(5)时,注入砷或磷,能量为100KeV~350KeV。
CN201210139894.3A 2012-05-08 2012-05-08 一种锗硅hbt器件及其制造方法 Active CN103035688B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210139894.3A CN103035688B (zh) 2012-05-08 2012-05-08 一种锗硅hbt器件及其制造方法
US13/888,596 US8779473B2 (en) 2012-05-08 2013-05-07 SiGe HBT device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210139894.3A CN103035688B (zh) 2012-05-08 2012-05-08 一种锗硅hbt器件及其制造方法

Publications (2)

Publication Number Publication Date
CN103035688A true CN103035688A (zh) 2013-04-10
CN103035688B CN103035688B (zh) 2015-06-03

Family

ID=48022406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210139894.3A Active CN103035688B (zh) 2012-05-08 2012-05-08 一种锗硅hbt器件及其制造方法

Country Status (2)

Country Link
US (1) US8779473B2 (zh)
CN (1) CN103035688B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205717B2 (en) * 2016-09-30 2021-12-21 Intel Corporation Epitaxially fabricated heterojunction bipolar transistors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250289A1 (en) * 2002-10-30 2005-11-10 Babcock Jeffrey A Control of dopant diffusion from buried layers in bipolar integrated circuits
US20080164494A1 (en) * 2007-01-05 2008-07-10 International Business Machines Corporation Bipolar transistor with silicided sub-collector
CN102347354A (zh) * 2010-08-05 2012-02-08 上海华虹Nec电子有限公司 锗硅异质结双极晶体管及制造方法
CN102437180A (zh) * 2011-11-21 2012-05-02 上海华虹Nec电子有限公司 超高压锗硅hbt器件及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492794B2 (en) * 2011-03-15 2013-07-23 International Business Machines Corporation Vertical polysilicon-germanium heterojunction bipolar transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250289A1 (en) * 2002-10-30 2005-11-10 Babcock Jeffrey A Control of dopant diffusion from buried layers in bipolar integrated circuits
US20080164494A1 (en) * 2007-01-05 2008-07-10 International Business Machines Corporation Bipolar transistor with silicided sub-collector
CN102347354A (zh) * 2010-08-05 2012-02-08 上海华虹Nec电子有限公司 锗硅异质结双极晶体管及制造方法
CN102437180A (zh) * 2011-11-21 2012-05-02 上海华虹Nec电子有限公司 超高压锗硅hbt器件及其制造方法

Also Published As

Publication number Publication date
US20130299879A1 (en) 2013-11-14
US8779473B2 (en) 2014-07-15
CN103035688B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN102522425B (zh) 超高压锗硅hbt晶体管器件的结构及制备方法
CN102412274B (zh) 锗硅hbt工艺中垂直寄生型pnp器件及制造方法
CN102487077B (zh) BiCMOS工艺中的垂直寄生型PNP器件及制造方法
CN103035688B (zh) 一种锗硅hbt器件及其制造方法
CN103137676B (zh) 一种锗硅异质结双极晶体管及其制造方法
CN103035690B (zh) 击穿电压为7-10v锗硅异质结双极晶体管及其制备方法
CN102931220A (zh) 锗硅异质结双极型三极管功率器件及制造方法
CN102386218B (zh) BiCMOS工艺中的垂直寄生型PNP器件及其制造方法
CN102956480A (zh) 有赝埋层的锗硅hbt降低集电极电阻的制造方法及器件
CN101866947A (zh) 硅锗异质结双极型晶体管
CN102412286B (zh) 一种高速锗硅hbt器件结构及其制造方法
CN102097466B (zh) 硅锗异质结晶体管及其制造方法
US9012279B2 (en) SiGe HBT and method of manufacturing the same
CN103050519B (zh) 锗硅hbt器件及制造方法
US8785977B2 (en) High speed SiGe HBT and manufacturing method thereof
CN102569371A (zh) BiCMOS工艺中的垂直寄生型PNP三极管及制造方法
CN103107185A (zh) 锗硅功率hbt、其制造方法及锗硅功率hbt多指器件
CN102386183B (zh) BiCMOS工艺中的寄生PIN器件组合结构及制造方法
CN103050518A (zh) 锗硅异质结双极型晶体管及其制造方法
CN103094328B (zh) 一种SiGe BiCMOS工艺中的寄生PNP器件结构及其制造方法
CN102403343B (zh) BiCMOS工艺中的垂直寄生型PNP器件及制造方法
CN103050520B (zh) 一种SiGe HBT器件及其制造方法
CN103137677B (zh) 锗硅hbt工艺中的寄生横向型pnp三极管及制造方法
CN103178086A (zh) 一种SiGe HBT工艺中的VPNP器件及其制造方法
CN103730354A (zh) 锗硅异质结双极晶体管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140113

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140113

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant