CN103730354A - 锗硅异质结双极晶体管的制造方法 - Google Patents

锗硅异质结双极晶体管的制造方法 Download PDF

Info

Publication number
CN103730354A
CN103730354A CN201210382772.7A CN201210382772A CN103730354A CN 103730354 A CN103730354 A CN 103730354A CN 201210382772 A CN201210382772 A CN 201210382772A CN 103730354 A CN103730354 A CN 103730354A
Authority
CN
China
Prior art keywords
implantation
outer base
base area
type
shallow trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210382772.7A
Other languages
English (en)
Inventor
陈曦
陈帆
刘冬华
段文婷
潘嘉
陈雄斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201210382772.7A priority Critical patent/CN103730354A/zh
Publication of CN103730354A publication Critical patent/CN103730354A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • H01L29/1008Base region of bipolar transistors of lateral transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种锗硅异质结双极晶体管的制造方法,发射区形成后进行外基区离子注入,外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,垂直外基区离子注入的注入方向和硅衬底表面垂直、注入杂质为P型杂质、注入剂量1e14cm-2~1e16cm-2;带角度外基区离子注入的注入方向和硅衬底表面垂直线相差一倾角、注入杂质为P型杂质、所述带角度外基区离子注入的注入剂量比所述垂直外基区离子注入的注入剂量小一个数量级。本发明能够在不改变现有工艺方法和流程的基础上就能实现降低器件的本征基区面积和CB结漏电,同时能使器件的基本特性不受影响。

Description

锗硅异质结双极晶体管的制造方法
技术领域
本发明涉及一种半导体集成电路制造工艺方法,特别是涉及一种锗硅异质结双极晶体管的制造方法。
背景技术
由于现代通信对高频带下高性能、低噪声和低成本的射频(RF)组件的需求,传统的硅(Si)材料器件无法满足性能规格、输出功率和线性度新的要求,功率锗硅(SiGe)异质结双极晶体管(HBT)则在更高、更宽的频段的功放中发挥重要作用。与砷化镓器件相比,虽然在频率上还处劣势,但SiGe HBT凭着更好的热导率和良好的衬底机械性能,较好地解决了功放的散热问题,SiGe HBT还具有更好的线性度、更高集成度;SiGe HBT仍然属于硅基技术,和CMOS工艺有良好的兼容性,SiGe BiCMOS工艺为功放与逻辑控制电路的集成提供极大的便利,也降低了工艺成本。
国际上目前已经广泛采用SiGe HBT作为高频大功率功放器件应用于无线通讯产品,如手机中的功率放大器和低噪声放大器等。为了降低器件的功耗,需要使电路在相同功率下获得较小电流,因此在如何保持器件的特征频率的同时减小结的漏电越来越成为锗硅HBT器件的研究热点。
如图1所示,是现有方法中外基区注入时的锗硅异质结双极晶体管结构示意图;现有方法中首先是在P型硅衬底101上形成由浅沟槽场氧102组成的浅沟槽隔离结构,以及形成赝埋层103,形成集电区104;形成由P型锗硅外延层光刻刻蚀而成的基区107,形成发射区窗口介质层105并对所述发射区窗口介质层105进行光刻刻蚀形成发射区窗口,生长N型多晶硅并光刻刻蚀形成发射区107。之后是进行外基区离子注入,外基区离子注入为垂直离子注入。外基区离子注入的边界由发射区107的边界自对准,发射区107覆盖范围以外的基区107中注入了外基区离子注入的杂质从而形成外基区;发射区107覆盖的基区107中没有注入外基区离子注入的杂质从而保持为本征掺杂结构的本征基区。现有方法形成的基区107的本征基区和外基区的交界面离基区107中的单晶结构和多晶结构的交界面很近,如图1中的虚线框108所示,其中基区107的单晶结构为位于集电区104上方的部分、多晶结构为位于浅沟槽场氧102上方的部分。由于本征基区的掺杂较低,本征基区和集电区104形成的CB(集基)结会使本征基区全部耗尽,而本征基区和外基区的交界面离基区107中的单晶结构和多晶结构的交界面很近,故CB结的耗尽区也会离基区107中的单晶结构和多晶结构的交界面很近,从而使CB结在基区107中的单晶结构和多晶结构的交界面附件容易发生击穿,造成漏电。
发明内容
本发明所要解决的技术问题是提供一种锗硅异质结双极晶体管的制造方法,能够在不改变现有工艺方法和流程的基础上就能实现降低器件的本征基区面积和CB结漏电,同时能使器件的基本特性不受影响。
为解决上述技术问题,本发明的锗硅异质结双极晶体管的制造方法是在发射区形成后进行外基区离子注入,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,所述垂直外基区离子注入的注入方向和硅衬底表面垂直、注入杂质为P型杂质、注入能量3KeV~10KeV、注入剂量1e14cm-2~1e16cm-2;所述带角度外基区离子注入的注入方向和硅衬底表面垂直线的角度为10°~45°、注入杂质为P型杂质、所述带角度外基区离子注入的注入能量为10KeV~20KeV、注入剂量为1e13cm-2~1e15cm-2
进一步的改进是,包括如下步骤:
步骤一、在P型硅衬底上形成浅沟槽,由所述浅沟槽隔离出有源区。
步骤二、在所述有源区周侧的所述浅沟槽底部的进行N型离子注入形成赝埋层,所述赝埋层在横向位置上和所述有源区相隔一横向距离,通过调节所述赝埋层和所述有源区的横向距离调节锗硅异质结双极晶体管的击穿电压。
步骤三、在所述浅沟槽中填入氧化硅形成浅沟槽场氧。
步骤四、在所述有源区中进行N型离子注入形成集电区,所述集电区深度大于所述浅沟槽场氧底部的深度、且所述集电区横向延伸进入所述有源区周侧的所述浅沟槽场氧底部并和所述赝埋层形成接触。
步骤五、在所述硅衬底正面进行外延生长形成P型锗硅外延层,对所述锗硅外延层进行光刻刻蚀形成基区,所述基区位于所述有源区上方并延伸到所述有源区周侧的所述浅沟槽场氧上方,所述基区的位于所述有源区上方的部分和所述集电区相接触。
步骤六、在所述硅衬底正面形成发射区窗口介质层,对所述发射区窗口介质层进行光刻刻蚀形成发射区窗口,所述发射区窗口的尺寸小于所述有源区的尺寸且位于所述有源区的正上方,所述发射区窗口将位于其底部的所述基区露出。
步骤七、在所述硅衬底正面生长N型多晶硅,采用光刻刻蚀对所述N型多晶硅和所述发射区窗口介质层进行刻蚀形成发射区并去除所述发射区外部的发射区窗口介质层,所述发射区位于所述发射区窗口内并和所述发射区窗口底部的所述基区相接触,所述发射区还延伸到所述发射区窗口外的所述发射区窗口介质层上。
步骤八、进行外基区离子注入,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,所述垂直外基区离子注入的注入方向和硅衬底表面垂直、注入杂质为P型杂质、注入能量3KeV~10KeV、注入剂量1e14cm-2~1e16cm-2;所述带角度外基区离子注入的注入方向和硅衬底表面垂直线的角度为10°~45°、注入杂质为P型杂质、所述带角度外基区离子注入的注入能量为10KeV~20KeV、注入剂量为1e13cm-2~1e15cm-2
步骤九、在所述赝埋层顶部的所述浅沟槽场氧中形成深孔接触引出集电极。
进一步的改进是,步骤二中所述赝埋层的N型离子注入工艺条件为:注入剂量1e14cm-2~1e16cm-2,注入能量2KeV~50KeV。
进一步的改进是,步骤四中所述集电区的N型离子注入工艺条件为:注入剂量2e11cm-2~5e14cm-2,注入能量为30KeV~350KeV。
进一步的改进是,步骤六中所述发射区的N型多晶硅通过N型离子注入进行掺杂,所述N型离子注入的注入剂量大于2e15cm-2
相对于现有技术中的外基区离子注入为垂直注入工艺,本发明方法的外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,且带角度外基区离子注入的注入剂量比垂直外基区离子注入的注入剂量小一个数量级,其中带角度外基区离子注入由于增加了注入时的角度,使杂质横扩更多,从而能使有源区即基区中的本征基区部分的面积减少;同时由于增加的带角度外基区离子注入将CB结的位置向集电极端推进了,使CB结的耗尽区离开锗硅基区单晶与多晶交界面的距离大了,所以能降低器件的结漏电。另外,本发明带角度外基区离子注入的注入剂量比垂直外基区离子注入的注入剂量小一个数量级,所以器件的基本特性如器件的特征频率主要是由垂直外基区离子注入决定的,故带角度外基区离子注入并不会对器件的基本特性造成影响。由于本发明仅通过在现有工艺方法和流程的基础上增加一个带角度外基区离子注入就能实现,所以在不需要改变现有工艺方法和流程,不会增加额外的成本。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是现有方法中外基区注入时的锗硅异质结双极晶体管结构示意图;
图2是本发明实施例方法流程图;
图3A-图3C是本发明实施例方法各步骤中的锗硅异质结双极晶体管结构示意图。
具体实施方式
如图2所示,是本发明实施例方法流程图;如图3A至图3C所示,是本发明实施例方法各步骤中的锗硅异质结双极晶体管结构示意图。本发明实施例锗硅异质结双极晶体管的制造方法包括如下步骤:
步骤一、如图3A所示,利用有源区光刻在P型硅衬底1上打开浅沟槽形成区域,有源区由光刻胶覆盖,采用刻蚀工艺对所述硅衬底1进行刻蚀形成浅沟槽,由所述浅沟槽隔离出有源区,之后去除有源区上方的光刻胶。
步骤二、如图3A所示,形成赝埋层3。首先,用光刻定义赝埋层3区域,即用光刻胶形成所述赝埋层3离子注入时赝埋层3保护窗口,该赝埋层3保护窗口边缘和所述有源区边缘相隔一横向距离,通过调节该横向距离调节所述锗硅异质结双极晶体管的击穿电压。通过所述光刻胶形成的所述赝埋层3保护窗口在所述有源区周侧的所述浅沟槽底部的进行N型离子注入形成所述赝埋层3,形成的所述赝埋层3在横向位置上和所述有源区相隔一由所述赝埋层3保护窗口定义的横向距离。所述赝埋层3的N型离子注入工艺条件为:注入剂量1e14cm-2~1e16cm-2,注入能量2KeV~50KeV。
步骤三、如图3A所示,在所述浅沟槽中填入氧化硅形成浅沟槽场氧2。
步骤四、如图3B所示,形成集电区4。首先,用光刻定义集电区4区域,即用光刻胶形成所述集电区4离子注入时集电区4保护窗口。通过所述集电区4保护窗口在所述有源区中进行N型离子注入形成所述集电区4。所述集电区4深度大于所述浅沟槽场氧2底部的深度、且所述集电区4横向延伸进入所述有源区周侧的浅沟槽场氧2底部并和所述赝埋层103互相重叠并形成良好接触。最后再进行热推阱工艺。所述集电区4的N型离子注入工艺条件为:注入剂量2e11cm-2~5e14cm-2,注入能量为30KeV~350KeV。
步骤五、如图3B所示,在所述硅衬底1正面进行外延生长形成P型锗硅外延层,位于所述有源区上方的所述P型锗硅外延层为的单晶结构、位于所述浅沟槽场氧2上方的所述P型锗硅外延层为的单晶结构。对所述锗硅外延层进行光刻刻蚀形成基区7,所述基区7位于所述有源区上方并延伸到所述有源区周侧的所述浅沟槽场氧2上方,所述基区7的位于所述有源区上方的部分和所述集电区4相接触。
步骤六、如图3C所示,在所述硅衬底1正面形成发射区窗口介质层5,对所述发射区窗口介质层5进行光刻刻蚀形成发射区窗口,所述发射区窗口的尺寸小于所述有源区的尺寸且位于所述有源区的正上方,所述发射区窗口将位于其底部的所述基区露出。
步骤七、如图3C所示,在所述硅衬底1正面生长N型多晶硅,该N型多晶硅通过N型离子注入进行掺杂,所述N型离子注入的注入剂量大于2e15cm-2,注入剂量有N型多晶硅的厚度决定,使整个N型多晶硅都均匀掺杂。采用光刻刻蚀对所述N型多晶硅和所述发射区窗口介质层进行刻蚀形成发射区6并去除所述发射区6外部的发射区窗口介质层5,所述发射区6位于所述发射区窗口内并和所述发射区窗口底部的所述基区7相接触,所述发射区6还延伸到所述发射区窗口外的所述发射区窗口介质层5上。
步骤八、如图3C所示,进行外基区离子注入,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成。
所述垂直外基区离子注入的注入方向和硅衬底1表面垂直、注入杂质为P型杂质、注入剂量1e14cm-2~1e16cm-2、注入能量为3Kev~10Kev。
所述带角度外基区离子注入的注入方向和硅衬底1表面垂直线的角度为10°~45°、注入杂质为P型杂质、所述带角度外基区离子注入的注入能量为10KeV~20KeV、注入剂量为1e13cm-2~1e15cm-2
由于本发明实施例的所述带角度外基区离子注入的注入剂量比垂直外基区离子注入的注入剂量小一个数量级,所以器件的基本特性如器件的特征频率主要是由垂直外基区离子注入决定的,故带角度外基区离子注入并不会对器件的基本特性造成影响。
其中所述带角度外基区离子注入由于增加了注入时的角度,使注入到基区7中的杂质横扩更多,即所述带角度外基区离子注入的杂质还注入到所述发射区6的覆盖区域内的所述基区7上,从而能使基区7中的本征基区部分的面积减少,从而也将CB结的位置向集电极端推进了,使CB结的耗尽区离开基区7的单晶结构与多晶结构交界面的距离大了,所以能降低器件的结漏电。
步骤九、在所述赝埋层3顶部的所述浅沟槽场氧2中形成深孔接触引出集电极所述深孔接触是通过在所述赝埋层3顶部的所述浅沟槽场氧2中开一深孔并在所述深孔中淀积钛/氮化钛阻挡金属层后、再填入钨形成的。还包括在所述发射区6顶部形成金属接触引出发射极,以及在位于所述发射区6外部的所述基区7即外基区上形成金属接触引出基极,以及其它后道工艺。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (5)

1.一种锗硅异质结双极晶体管的制造方法,其特征在于:发射区形成后进行外基区离子注入,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,所述垂直外基区离子注入的注入方向和硅衬底表面垂直、注入杂质为P型杂质、注入能量3KeV~10KeV、注入剂量1e14cm-2~1e16cm-2;所述带角度外基区离子注入的注入方向和硅衬底表面垂直线的角度为10°~45°、注入杂质为P型杂质、所述带角度外基区离子注入的注入能量为10KeV~20KeV、注入剂量为1e13cm-2~1e15cm-2
2.如权利要求1所述的方法,其特征在于,包括如下步骤:
步骤一、在P型硅衬底上形成浅沟槽,由所述浅沟槽隔离出有源区;
步骤二、在所述有源区周侧的所述浅沟槽底部的进行N型离子注入形成赝埋层,所述赝埋层在横向位置上和所述有源区相隔一横向距离,通过调节所述赝埋层和所述有源区的横向距离调节锗硅异质结双极晶体管的击穿电压;
步骤三、在所述浅沟槽中填入氧化硅形成浅沟槽场氧;
步骤四、在所述有源区中进行N型离子注入形成集电区,所述集电区深度大于所述浅沟槽场氧底部的深度、且所述集电区横向延伸进入所述有源区周侧的所述浅沟槽场氧底部并和所述赝埋层形成接触;
步骤五、在所述硅衬底正面进行外延生长形成P型锗硅外延层,对所述锗硅外延层进行光刻刻蚀形成基区,所述基区位于所述有源区上方并延伸到所述有源区周侧的所述浅沟槽场氧上方,所述基区的位于所述有源区上方的部分和所述集电区相接触;
步骤六、在所述硅衬底正面形成发射区窗口介质层,对所述发射区窗口介质层进行光刻刻蚀形成发射区窗口,所述发射区窗口的尺寸小于所述有源区的尺寸且位于所述有源区的正上方,所述发射区窗口将位于其底部的所述基区露出;
步骤七、在所述硅衬底正面生长N型多晶硅,采用光刻刻蚀对所述N型多晶硅和所述发射区窗口介质层进行刻蚀形成发射区并去除所述发射区外部的发射区窗口介质层,所述发射区位于所述发射区窗口内并和所述发射区窗口底部的所述基区相接触,所述发射区还延伸到所述发射区窗口外的所述发射区窗口介质层上;
步骤八、进行外基区离子注入,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,所述外基区离子注入由垂直外基区离子注入和带角度外基区离子注入两步组成,所述垂直外基区离子注入的注入方向和硅衬底表面垂直、注入杂质为P型杂质、注入能量3KeV~10KeV、注入剂量1e14cm-2~1e16cm-2;所述带角度外基区离子注入的注入方向和硅衬底表面垂直线的角度为10°~45°、注入杂质为P型杂质、所述带角度外基区离子注入的注入能量为10KeV~20KeV、注入剂量为1e13cm-2~1e15cm-2
步骤九、在所述赝埋层顶部的所述浅沟槽场氧中形成深孔接触引出集电极。
3.如权利要求2所述方法,其特征在于:步骤二中所述赝埋层的N型离子注入工艺条件为:注入剂量1e14cm-2~1e16cm-2,注入能量2KeV~50KeV。
4.如权利要求2所述方法,其特征在于:步骤四中所述集电区的N型离子注入工艺条件为:注入剂量2e11cm-2~5e14cm-2,注入能量为30KeV~350KeV。
5.如权利要求2所述方法,其特征在于:步骤七中所述发射区的N型多晶硅通过N型离子注入进行掺杂,所述N型离子注入的注入剂量大于2e15cm-2
CN201210382772.7A 2012-10-10 2012-10-10 锗硅异质结双极晶体管的制造方法 Pending CN103730354A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210382772.7A CN103730354A (zh) 2012-10-10 2012-10-10 锗硅异质结双极晶体管的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210382772.7A CN103730354A (zh) 2012-10-10 2012-10-10 锗硅异质结双极晶体管的制造方法

Publications (1)

Publication Number Publication Date
CN103730354A true CN103730354A (zh) 2014-04-16

Family

ID=50454376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210382772.7A Pending CN103730354A (zh) 2012-10-10 2012-10-10 锗硅异质结双极晶体管的制造方法

Country Status (1)

Country Link
CN (1) CN103730354A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258037A (zh) * 2018-01-11 2018-07-06 上海华虹宏力半导体制造有限公司 锗硅异质结双极晶体管及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226446A1 (en) * 2003-03-25 2006-10-12 Matsushita Electric Industrial Co., Ltd. Bipolar transistor and method for fabricating the same
CN102403222A (zh) * 2010-09-09 2012-04-04 上海华虹Nec电子有限公司 锗硅异质结双极晶体管的制造方法
CN102544081A (zh) * 2010-12-16 2012-07-04 上海华虹Nec电子有限公司 锗硅异质结npn三极管及制造方法
CN102544080A (zh) * 2010-12-15 2012-07-04 上海华虹Nec电子有限公司 锗硅异质结双极晶体管及制造方法
CN102543725A (zh) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 高速锗硅异质结双极晶体管的制造方法
US20130113022A1 (en) * 2011-11-08 2013-05-09 Shanghai Hua Hong Nec Electronics Co., Ltd. Sige hbt and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226446A1 (en) * 2003-03-25 2006-10-12 Matsushita Electric Industrial Co., Ltd. Bipolar transistor and method for fabricating the same
CN102403222A (zh) * 2010-09-09 2012-04-04 上海华虹Nec电子有限公司 锗硅异质结双极晶体管的制造方法
CN102544080A (zh) * 2010-12-15 2012-07-04 上海华虹Nec电子有限公司 锗硅异质结双极晶体管及制造方法
CN102544081A (zh) * 2010-12-16 2012-07-04 上海华虹Nec电子有限公司 锗硅异质结npn三极管及制造方法
CN102543725A (zh) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 高速锗硅异质结双极晶体管的制造方法
US20130113022A1 (en) * 2011-11-08 2013-05-09 Shanghai Hua Hong Nec Electronics Co., Ltd. Sige hbt and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258037A (zh) * 2018-01-11 2018-07-06 上海华虹宏力半导体制造有限公司 锗硅异质结双极晶体管及制造方法

Similar Documents

Publication Publication Date Title
CN102347354B (zh) 锗硅异质结双极晶体管及制造方法
CN102522425B (zh) 超高压锗硅hbt晶体管器件的结构及制备方法
CN102403222A (zh) 锗硅异质结双极晶体管的制造方法
CN102088029B (zh) SiGe BiCMOS工艺中的PNP双极晶体管
CN102044560A (zh) 超高频硅锗异质结双极晶体管
CN102104064B (zh) SiGe HBT工艺中的寄生横向型PNP三极管及其制造方法
CN102931220B (zh) 锗硅异质结双极型三极管功率器件的制造方法
CN103035690B (zh) 击穿电压为7-10v锗硅异质结双极晶体管及其制备方法
CN103035674A (zh) 射频横向双扩散场效应晶体管及其制造方法
US8455975B2 (en) Parasitic PNP bipolar transistor in a silicon-germanium BiCMOS process
CN103137676B (zh) 一种锗硅异质结双极晶体管及其制造方法
CN103730354A (zh) 锗硅异质结双极晶体管的制造方法
CN103137675B (zh) 具有高击穿电压的锗硅异质结双极晶体管结构及其制作方法
CN102104065B (zh) SiGe HBT工艺中的寄生横向型PNP三极管
CN102412275B (zh) 锗硅BiCMOS工艺中纵向PNP器件及制作方法
CN103050519B (zh) 锗硅hbt器件及制造方法
CN103050518B (zh) 锗硅异质结双极型晶体管及其制造方法
US9012279B2 (en) SiGe HBT and method of manufacturing the same
CN103178086B (zh) 一种SiGe HBT工艺中的VPNP器件及其制造方法
CN104425577A (zh) 自对准锗硅异质结双极型三极管器件及其制造方法
CN103066119B (zh) 锗硅异质结双极晶体管及制造方法
CN103117300A (zh) 寄生横向型pnp器件及制造方法
CN102420243A (zh) 锗硅异质结双极晶体管及制造方法
CN103094328B (zh) 一种SiGe BiCMOS工艺中的寄生PNP器件结构及其制造方法
CN103050520B (zh) 一种SiGe HBT器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140416