CN103025262A - 能量递送系统及其用途 - Google Patents

能量递送系统及其用途 Download PDF

Info

Publication number
CN103025262A
CN103025262A CN2011800327925A CN201180032792A CN103025262A CN 103025262 A CN103025262 A CN 103025262A CN 2011800327925 A CN2011800327925 A CN 2011800327925A CN 201180032792 A CN201180032792 A CN 201180032792A CN 103025262 A CN103025262 A CN 103025262A
Authority
CN
China
Prior art keywords
energy
energy delivery
delivery apparatus
catheter
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800327925A
Other languages
English (en)
Other versions
CN103025262B (zh
Inventor
D.W.范德维德
F.T.小李
C.L.布雷斯
R.W.谢菲尔克
L.金
M.托姆
M.蒂尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NeuWave Medical Inc
Original Assignee
NeuWave Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NeuWave Medical Inc filed Critical NeuWave Medical Inc
Priority to CN201911134613.3A priority Critical patent/CN110801282B/zh
Publication of CN103025262A publication Critical patent/CN103025262A/zh
Application granted granted Critical
Publication of CN103025262B publication Critical patent/CN103025262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1892Details of electrical isolations of the antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0681Systems with catheter and outer tubing, e.g. sheath, sleeve or guide tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0136Handles therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires

Abstract

本发明涉及用于为范围广泛的应用将能量递送到组织的综合系统、装置和方法,这些应用包括医疗操作(例如,组织消融、切除、烧灼、血管血栓形成、心律失常和不整的治疗、电外科手术、组织采集等)。在某些实施方案中,提供用于将能量递送到难以达到的组织区域(例如,周围肺组织)和/或减少能量递送过程中非期望的发热量的系统、装置和方法。

Description

能量递送系统及其用途
相关申请的交叉引用
本申请要求2010年5月3日提交的美国临时专利申请序列号61/330,800,的优先权,其通过引用全部并入本文。
技术领域
本发明涉及用于为范围广泛的应用将能量递送到组织的综合系统、装置和方法,这些应用包括医疗操作(例如,组织消融、切除、烧灼、血管血栓形成、心律失常和不整的治疗、电外科手术、组织采集等)。在某些实施方案中,提供用于将能量递送到难以介入的组织区域(例如,周围肺组织)和/或减少能量递送过程中非期望的发热量的系统、装置和方法。
背景技术
消融是治疗如良性和恶性肿瘤、心律失常、心律不整和心跳过速的某些组织的一种重要的治疗策略。大多数获认可的消融系统利用射频(RF)能量作为消融能量源。相应地,目前有多种基于RF的导管和功率源可供医生使用。但是,RF能量具有若干局限,包括能量在表面组织快速扩散导致浅“烧灼”且无法触及较深的肿瘤或节律失常组组织。RF消融系统的另一个局限是往往在能量发射电极上形成焦痂和血块形成,这样限制了电能的进一步沉积。
微波能量是用于将生物组织加热的有效能量源且用于诸如例如癌症治疗和输液之前血液的预热的应用。相应地,鉴于常规消融技术的缺点,最近在使用微波能量作为消融能量源方面已有大量关注。微波能量较之RF的优势在于更深地穿透到组织中、对焦化的灵敏性、无需接地线、更可靠的能量沉积、更快速的组织加热以及能够产生比RF的更大热切口,这大大地简化实际的消融操作。相应地,有多种开发中的装置,利用微波频率范围中的电磁能量作为消融能量源(参见例如美国专利号4,641,649、5,246,438、5,405,346、5,314,466、5,800,494、5,957,969、6,471,696、6,878,147和6,962,586;每个专利通过引用并入本文)。
遗憾的是,目前的装置对于它们能够递送能量的身体区域来说受限于尺寸和灵活性。例如,在肺部中,支气管树的气道随着它们分支渐增地深入到肺部周围中而逐渐地变窄。将能量递送装置精确地安置到此类难以达到的区域利用目前的装置是不现实的。需要改进型系统和装置以用于将能量递送到难以达到的组织区域。
发明内容
本发明涉及用于为范围广泛的应用将能量递送到组织的系统、装置和方法,这些应用包括医疗操作(例如,组织消融、切除、烧灼、血管血栓形成、心律失常和不整的治疗、电外科手术、组织采集等)。在某些实施方案中,提供用于通过施加能量治疗组织区域(例如,肿瘤)的系统、装置和方法。在一些实施方案中,提供用于利用能量递送装置介入难以达到的组织区域的系统、装置和方法。在一些实施方案中,提供用于减少沿能量传送线的热释放的系统、装置和方法。
本发明提供采用用于向组织区域(例如,肿瘤、管腔、器官等)递送能量的组件的系统、装置和方法。在一些实施方案中,该系统包括能量递送装置和如下一个或多个装置:处理器、功率源、引导、控制和递送功率的装置(例如,功率分配器)、成像系统、调谐系统、温度调节系统和装置安置系统。
本发明不限于特定类型的能量递送装置。本发明可设想在本发明的系统中使用任何公知或将来开发的能量递送装置。在一些实施方案中,利用现有商用能量递送装置。在其他实施方案中,使用具有优化的特征(例如,小尺寸、优化的能量递送、优化的阻抗、优化的散热等)的改进型能量递送装置。在一些此类实施方案中,能量递送装置配置成向组织区域递送能量(例如,微波能量)。在一些实施方案中,能量递送装置配置成以优化的特性阻抗递送微波能量(例如,配置成以高于50Ω的特性阻抗工作)(例如在50与90Ω之间;例如高于50、...、55、56、57、58、59、60、61、62、...90Ω,优选为77Ω)(参见例如美国专利申请序列号11/728,428;通过引用全文并入本文)。
在一些实施方案中,本发明提供用于将能量递送装置安置于难以达到的结构、组织区域和/或器官(例如,分支性结构(例如,人类肺部))的装置、系统和方法。相应地,在一些实施方案中,本发明提供多导管系统或装置,其包括:主导管,其包括内管腔(主管腔);通道导管或护套,其包括内管腔(通道管腔),其中该通道导管配置成安装在主管腔内;以及一个或多个可插入工具(例如,可转向导航导管、治疗工具(例如,能量递送装置、活检钳、针等)等),其中一个或多个可插入工具配置成安装在通道管腔内。在一些实施方案中,本发明提供一种用于介入难以介入的组织区域(例如,高分支性组织,如肺部周围)的方法,其包括:在通道导管的通道管腔内提供可转向导航导管,其中通道导管在主导管的主管腔内。在一些实施方案中,可转向导航导管包括:i)可转向端头,其允许临床医师或操作者在患者、器官、管腔和/或组织内操纵其位置,以及ii)位置感测器,其允许跟踪穿过患者、器官、管腔和/或组织的可转向导航导管。在一些实施方案中,可转向导航导管的可转向端头通过沿着期望的运动方向指向导管的端头来实现功能。在一些实施方案中,导管的人工或自动化移动促成在端头的方向上引导的移动。在一些实施方案中,将主导管、通道导管和可转向导航导管插入到患者体内的组织区域(例如支气管)中,并且将主导管(例如,支气管镜)插入到组织区域中达到可用空间(例如,管腔(例如支气管管腔))的尺寸所允许的那么远。在一些实施方案中,通过主导管内的可转向导航导管的可转向端头和/或转向机构穿过患者、器官、管腔和/或组织移动主导管、通道导管和可转向导航导管。在一些实施方案中,通道导管和可转向导航导管延伸超出主导管的端部以介入更小、更深和/或更难以介入的组织区域(例如,周围支气管、细支气管等)。在一些实施方案中,通过可转向导航导管的可转向端头穿过患者、器官、管腔和/或组织移动通道导管和可转向导航导管。在一些实施方案中,通过可转向导航导管的位置感测器来监视通道导管和可转向导航导管的位置。在一些实施方案中,将通道导管和可转向导航导管的远端安置于患者、器官、管腔和/或组织(例如,肺部的周围支气管、周围肺结节等)中的靶点(例如,治疗点)处。在一些实施方案中,在将通道导管和可转向导航导管的远端恰当地安置于靶点(例如,治疗点)时,将通道导管(例如,通道导管的远端)固定就位。在一些实施方案中,使用任何适合的稳固机构(例如,螺钉、夹子、翼片等)将通道导管的远端固定在恰当位置,正如本领域中所公知的。在一些实施方案中,在将通道导管和可转向导航导管的远端恰当地安置于靶点(例如,治疗点)时,经由通道导管抽回可转向导航导管并从通道导管的近端抽出。在一些实施方案中,从通道导管的近端抽回可转向导管使通道导管保留就位,作为利用任何适合的可插入工具(例如,治疗工具(例如,能量递送装置、活检装置等)等)介入靶点(例如,治疗点)的通道。在一些实施方案中,移除可转向导航导管的恰当安置且固定的通道导管包括用于以可插入工具(例如,能量递送装置、活检装置等)从受试者体外介入靶点(例如,肺部的周围支气管)的引导通道。在一些实施方案中,经由空通道导管(例如引导通道)插入一个或多个可插入工具(例如,治疗工具(例如能量递送装置、活检装置等),并将可插入工具的远端头安置于靶点(例如,治疗点)处。在一些实施方案中,经由空通道导管(例如,引导通道)插入能量递送装置(例如,微波消融装置),并将能量递送装置的远端头安置于靶点(例如,治疗点)处。在一些实施方案中,通过插入的能量递送装置经由通道导管递送能量(例如微波能量),以将能量递送到靶点(例如,以消融靶点处的组织)。
在一些实施方案中,本发明提供一种用于转向导管穿过分支性结构到靶位点的方法,其包括:(a)提供可转向导航导管,其中可转向导航导管包括位于接近导管远端头的位置感测器元件,该位置感测器元件是测量导管的端头相对于三维参照系的位置和指向的系统的一部分;(b)相对于三维参照系指定靶位点;(c)将导管推进到分支性结构中;以及(d)显示由导管的端头的指向与从导管的端头朝靶位点的方向之间的几何关系所定义的至少一个参数的表示。在一些实施方案中,可转向导航导管留置在通道导管的管腔中。在一些实施方案中,可转向导航导管通过上文的机构指引通道导管的移动。在一些实施方案中,可转向导航导管和通道导管留置在主导管(例如支气管镜)的管腔中。在一些实施方案中,可转向导航导管通过上文的机构指引通道导管和主导管的移动。在一些实施方案中,主导管具有与可转向导航导管分开的指引控制(转向)机构。
在一些实施方案中,显示由(i)可转向导航导管的端头的指向与(ii)从可转向导航导管的端头朝靶位点之间的方向之间的几何关系所定义的至少一个参数的表示(例如以便向使用者提供有关可转向导航导管的位置和/或方向的信息)。在一些实施方案中,至少一个参数包括可转向导航导管的端头的指向与从可转向导航导管的端头朝靶位点的方向之间的角度偏离。在一些实施方案中,至少一个参数包括将可转向导航导管的指向变为与靶位点对齐所需的偏转的方向。在一些实施方案中,至少一个参数的表示在沿着可转向导航导管的端头的指向截取的视图表示的环境中显示。在一些实施方案中,位置感测器元件是以三个平移自由度和三个旋转自由度测量可转向导航导管的端头的位置和高度的六自由度位置测量系统的一部分。在一些实施方案中,进一步为可转向导航导管提供多方向转向机构,多方向转向机构配置成用于将导管的远端部分朝至少三个不同方向的任一个方向选择性地偏转。在一些实施方案中,该转向机构由使用者通过位于可转向导航导管的近端的控制装置来控制。在一些实施方案中,该转向机构由使用者通过遥控装置来控制。在一些实施方案中,通过使用位置感测器元件监视可转向导航导管端头所行进的路径,并将所行进的路径的表示与端头的当前位置一起显示,将该表示投影为从与端头的指向不平行的至少一个方向所查看到的。
在一些实施方案中,通过如下步骤指定靶位点(例如治疗位置(例如肿瘤)):(a)使用受试者的计算机断层扫描数据来指定靶位点;以及(b)将计算机断层扫描数据与三维参照系对位。在一些实施方案中,在本文描述的本发明的任何实施方案中,以其他映射数据(例如,MRI、X射线、PET等)替代计算机断层扫描数据。在一些实施方案中,通过如下步骤执行对位:(a)为可转向导管提供摄像头;(b)生成接受试者体内的至少三个不同特征的每一个的摄像头视图;(c)由计算机断层扫描数据生成至少三个不同特征的每一个的模拟视图,每个摄像头视图和模拟视图中的对应视图构成一对相似视图;(d)允许操作者指定在每个摄像头视图内查看的参照点和每个对应模拟视图内查看的对应参照点;以及(e)由指定的参照点导出计算机断层扫描数据与三维参照系之间的最佳拟合对位。在一些实施方案中,使用计算机断层扫描数据指定穿过接受试者(例如,穿过受试者体内的分支性结构(例如,肺部结构(例如支气管))到靶位点的预设路线,并将预设路线的表示与端头的当前位置一起显示,该表示投影为从与端头的指向不平行的至少一个方向所查看到的。在一些实施方案中:(a)检测位置感测器元件的当前位置;(b)根据与摄像头将查看到的图像对应的计算机断层扫描数据生成虚拟内窥镜图像,该摄像头设为相对于位置感测器元件成预定义空间关系且对齐;以及(c)显示虚拟内窥镜图像。
在一些实施方案中,本发明的导管系统包括可转向导航导管和具有从近端插入口向远端开口延伸的管腔的通道导管;以及配置成穿过护套的近端开口插入到插入位置的引导元件,插入位置沿着管腔延伸到远端开口。在一些实施方案中,通道导管是护套,可转向导航导管(或能量递送装置)能够经由护套插入和/或抽回。在一些实施方案中,使用可转向导航导管将通道导管置位成使得可转向导航导管的远端头和通道导管邻近靶位点(例如治疗点(例如肿瘤))。在一些实施方案中,将通道导管锁定在靶位点处的适合位置中。在一些实施方案中,将可转向导航导管从通道管腔抽回,而保留从插入到接受试者体内的点延伸到靶点的开口通道。在一些实施方案中,通道导管可用于插入可插入工具(例如,医疗工具(例如,能量递送装置))。在一些实施方案中,本发明提供一种方法,其包括:(a)利用端头将通道导管内的可转向导航导管引导到邻近靶位点的位置;以及(b)从通道导管抽回可转向导航导管以保留可用于插入医疗工具(例如,能量递送装置)的通道管腔。
在一些实施方案中,导管系统提供具有操作手柄和主管腔的主导管(例如,柔性内窥镜、柔性支气管镜等)、部署在主管腔内且具有通道管腔的通道导管以及部署在通道管腔内的可转向导航导管。在一些实施方案中,本发明提供一种方法,其包括:插入主导管,将通道导管和可转向导航导管装入受试者、器官、组织和/或管腔中,直到主导管达到其最大插入距离(例如受限于尺寸而不能进一步插入);(b)将可转向导航导管锁定在通道管腔内以防止可转向导航导管相对于通道导管移动;(c)将可转向导航导管和通道导管超出主导管远端引导到靶位点;(d)将通道导管锁定在主管腔内以防止通道导管相对于主导管和/或操作手柄的相对移动;以及(e)将可转向导航元件解锁并将其从通道导管中抽回,以保留通道就位来作为将工具(例如,能量递送装置)插入到靶位点的引导。在一些实施方案中,本发明的系统或装置包括稳定和/或锚定机构,其用于在受试者和/或身体区域中部署时将一个或多个元件固定就位。在一些实施方案中,将可选择性致动的锚定机构与通道导管的一部分关联。在一些实施方案中,该可选择性致动的锚定机构包括可膨胀元件。在一些实施方案中,该可选择性致动的锚定机构包括机械方式部署的元件。
在一些实施方案中,通道导管和/或可转向导航导管包括部署以用于生成在导管的指向上的图像的图像传感器。在一些实施方案中,该图像传感器配置成随着可转向导航导管被抽回。
在一些实施方案中,本发明提供用于实现计算机断层扫描数据(或其他映射数据,例如,MRI、PET、X射线等)与位置测量系统的三维参照系之间的对位的方法,该方法包括:(a)提供附有如下的导管:(i)位置感测器元件,其作为位置测量系统的一部分工作以允许测量导管的端头相对于三维参照系的位置和指向,以及(ii)图像传感器;(b)根据计算机断层扫描数据生成分支性结构内的不同特征的至少三个模拟视图;(c)生成这些不同特征的至少三个摄像头视图,每个摄像头视图与模拟视图中对应的一个视图构成一对相似视图;(d)允许操作者指定在每个摄像头视图内查看的参照点和每个对应模拟视图内查看的对应参照点;以及(e)由指定的参照点导出计算机断层扫描图像与三维参照系之间的最佳拟合对位。在一些实施方案中,操作者在每个摄像头视图指定参照点通过操作者使位置感测器元件与参照点邻近来执行。在一些实施方案中,操作者在每个模拟视图内指定参照点通过如下步骤执行:(a)操作者选择每个模拟视图内的模拟图像参照点;(b)根据模拟图像参照点计算模拟查看点至参照点向量;以及(c)计算模拟查看点至参照点向量与根据计算机断层扫描数据导出的身体部位的数值模型中的组织表面之间的相交点。在一些实施方案中:(a)标识计算机断层扫描数据内的至少一个位点;(b)在三维参照系内计算至少一个位点的位置;以及(c)将至少一个位点的表示与位置感测器元件的位置的表示一起显示。在一些实施方案中,该至少一个位点包括要将医疗工具(例如能量递送装置(例如微波消融装置)等)指向的靶位点(例如,治疗位点(例如,肿瘤、支气管(例如,周围支气管)等))。在一些实施方案中,该至少一个位点是定义要指引医疗工具所沿用的规划路径的一系列位点。在一些实施方案中,一种用于实现计算机断层扫描数据与位置测量系统的三维参照系之间的对位的方法,该方法包括:(a)提供可转向导航导管,其具有:(i)位置感测器元件,其作为位置测量系统的一部分工作以允许测量导管的端头相对于三维参照系的位置和指向,以及(ii)图像传感器;(b)沿着分支性结构的第一分支部分移动导管的端头并从摄像头导出多个图像,每个图像与位置感测器在三维参照系中的对应位置数据关联;(c)处理这些图像和对应位置数据以导出预定义几何形状模型对三维参照系中的第一分支部分的最佳拟合;(d)对分支性结构的第二分支部分重复步骤(b)和(c);以及(e)将第一和第二分支部分的几何形状模型与计算机断层扫描数据相关以导出计算机断层扫描数据与三维参照系之间的最佳拟合对位。在一些实施方案中,处理这些图像和对应位置数据包括:(a)标识可视特征,每个可视特征存在于在不同位置中拍摄的多个图像中;(b)对于每个可视特征,导出多个图像的每一个图像中的摄像头至特征的方向;(c)采用摄像头至特征的方向和对应位置数据来确定每个可视特征的特征位置;以及(d)导出预定义几何形状模型对这些特征位置的最佳拟合。在一些实施方案中,预定义几何形状模型是圆柱体。在一些实施方案中:(a)标识计算机断层扫描数据内的至少一个位点;(b)计算该至少一个位点在三维参照系内的位置;以及(c)将至少一个位点的表示与位置感测器元件的位置的表示一起显示。在一些实施方案中,该至少一个位点包括要将医疗工具(例如能量递送装置(例如微波消融装置))指向的靶位点(例如,治疗位点(例如,肿瘤(例如周围支气管中的肿瘤)))。在一些实施方案中,该至少一个位点是定义要指引医疗工具所沿用的规划路径的一系列位点。
在一些实施方案中,本发明提供一种转向机构,其用于将可转向导航导管的远端部分朝至少两个独立方向的任一个方向选择性地偏转,该机构包括:(a)至少三个细长拉紧元件,其沿着导管延伸并配置成使得施加于拉紧元件的任何一个拉紧元件的张力促使导管的端头朝对应的预定义方向偏转;(b)致动器,其可从第一位置移位到第二位置;以及(c)选择器机构,其配置成用于选择性地将细长拉紧元件中选定的至少其中之一和致动器机械互连,以使致动器从第一位置到第二位置的移位对细长拉紧元件中选定的至少其中之一施加张力。在一些实施方案中,选择器机构的第一状态将细长拉紧元件中的单一的一个细长拉紧元件与致动器机械互连,以使致动器的移位产生端头朝预定义方向的其中之一的偏转,以及选择器机构的第二状态将细长拉紧元件中的两个细长拉紧元件与致动器机械互连,以使致动器的移位产生端头朝两个预定义方向之间的中间方向的偏转。在一些实施方案中,该至少三个拉紧元件包括偶数个拉紧元件,成对的拉紧元件作为单个细长元件来实现,该单个细长元件从选择器机构沿着导管延伸到端头并沿着可转向导航导管延伸回选择器机构。在一些实施方案中,这些至少三个拉紧元件作为四个拉紧元件来实现,该四个拉紧元件部署成每个拉紧元件在被单独致动时,促使端头朝基本间隔90°的倍数的四个预定义方向的不同方向偏转。在一些实施方案中,选择器机构的第一状态将细长拉紧元件中的单一的一个细长拉紧元件与致动器机械互连,以使致动器的移位产生端头朝四个预定义方向的其中之一的偏转,以及选择器机构的第二状态将细长拉紧元件中的两个细长拉紧元件与致动器机械互连,以使致动器的移位产生端头朝四个中间方向的其中之一的偏转,该四个中间方向各位于四个预定义方向中的两个方向之间。在一些实施方案中,该致动器包括可相对于与导管关联的手柄滑动的环,以及其中选择器机构包括附接到每个拉紧元件且可滑动地部署在手柄内的滑杆以及从环突起的至少一个突起部,其使得环旋转时,至少一个突起部选择性地接合滑杆的至少其中之一,以使环的移位促成至少一个滑杆的移动。
在一些实施方案中,本发明提供用于减少对受试者体内组织进行能量递送期间的过热的装置、系统和方法。装置的一个重要的非期望过热源是绝缘体(例如同轴绝缘体)的电介质加热,这潜在地导致伴随的组织受损。本发明的能量递送装置设计成防止非期望的过热。这些能量递送装置不限于防止特定方式的非期望的装置发热。在一些实施方案中,这些装置采用冷却剂的循环。在一些实施方案中,这些装置配置成检测装置内(例如,沿着外层导体)的温度非期望升高,并通过将冷却剂流经冷却剂通道来自动地或人工方式降低此类非期望温度升高。在一些实施方案中,一些装置采用多孔性绝缘体作为电介质材料,从而允许冷却剂流经电介质材料。在一些实施方案中,一个或多个冷却剂通道提供用于减少从传输线到周围组织的热损失的装置。在一些实施方案中,递送恒定的低功率或脉冲式高功率能量以减少过热。在一些实施方案中,冷却剂通道穿过电介质材料延续。在一些实施方案中,冷却剂用作电介质材料。在一些实施方案中,将电介质空间全部或部分地填充以冷却剂材料。
在一些实施方案中,能量递送装置具有改进的冷却特征。例如,在一些实施方案中,这些装置允许使用冷却剂而不会增加装置的直径。这与使冷却剂流经外部套筒或其他方式从而增加装置的直径来容纳冷却剂流的现有装置形成对比。在一些实施方案中,这些能量递送装置其中具有一个或多个冷却剂通道,其目的用于减少非期望的散热(参见例如美国专利申请序列号11/728,460,其通过引用全部并入本文)。在一些实施方案中,能量递送装置其中具有延续装置的长度或部分地延续装置的长度的管(例如,针管、塑料管等),其设计成通过冷却剂材料的循环来防止装置过热。在一些实施方案中,多个通道或管将材料从位于同轴电缆的内层和外层导体之间的电介质组分移位。在一些实施方案中,冷却剂材料(例如,空气、CO2等)是电介质材料。在一些实施方案中,冷却剂材料包括电介质空间的全部或一部分(例如,同轴传输线的内层导体与外层导体之间的空间)。在一些实施方案中,通道或管替代电介质材料或基本替代电介质材料。在一些实施方案中,使用多孔性电介质材料来容纳流经电介质材料的冷却剂。在一些实施方案中,通道或管替代外层导体的一部分。例如,在一些实施方案中,移除或刮掉外层导体的一部分以产生冷却剂流的通路。图12中示出一个此类实施方案。同轴电缆900具有外层导体910、内层导体920和电介质材料930。移除外层导体的区域940,从而形成用于冷却剂流的空间。仅在远端950和近端960区域,余下的外层导体材料包围或基本包围同轴电缆。导电材料970的细条连接远端950和近端960区域。从近端区域960处的导电材料切削出细通道980以便允许冷却剂流进入已移除(或制造成没有)外层导电材料的区域940中。本发明不受限于通路的尺寸或形状,只要能够递送冷却剂即可。例如,在一些实施方案中,通路是延续同轴电缆的长度的直线路径。在一些实施方案中,采用螺旋形通道。在一些实施方案中,管或通道置换或替代内层导体的至少一部分。例如,可以将内层导体的大部分替代以冷却剂通道,仅保留靠近装置的近端和远端处的小部分金属以允许进行调节,其中这些部分被细条的导电材料连接。在一些实施方案中,在内层或外层导体内形成内部空间区域以形成一个或多个用于冷却剂的通道。例如,可以将内层导体作为导电材料的中空管来提供,其在中心提供冷却剂通道。在此类实施方案中,可以将内层导体用于冷却剂的流入或流出(或二者兼有)。在一些实施方案中,冷却剂通道置换电介质材料的一部分。在一些实施方案中,由电介质材料内的间隙形成通道。
在装置内设置冷却剂管的一些实施方案中,管具有用于穿过装置引入和引出冷却剂的多个通道。该装置不限于电介质材料内的管(例如,冷却剂针管)的特定定位。在一些实施方案中,该管沿着电介质材料的外侧边缘、电介质材料的中部或电介质材料的任何位置处安置。在一些实施方案中,该电介质材料预先形成有通道,该通道设计成接收和固定管。在一些实施方案中,将手柄与装置附接,其中该手柄配置成例如控制冷却剂传递进入和离开管。在一些实施方案中,该管是柔性的。在一些实施方案中,该管是非柔性的(例如非柔性的区域)。在一些实施方案中,管的多个部分是柔性的,而其他部分是非柔性的。在一些实施方案中,该管是可压缩的。在一些实施方案中,该管是不可压缩的。在一些实施方案中,管的多个部分是可压缩的,而其他部分是不可压缩的。该管不限于特定形状或尺寸。在一些实施方案中,其中该管是装配在同轴电缆内且具有等于或小于12标准针头的直径的冷却剂针头(例如,29标准针头或等效尺寸)。在一些实施方案中,该管的外部具有粘性和/或油脂状涂层以固定管或允许在装置内滑动。在一些实施方案中,该管具有沿着其长度的一个或多个孔,这样允许冷却剂释放到装置的期望区域中。在一些实施方案中,这些孔最初以可熔材料阻塞,以便需要特定阈值的热才能将该材料熔化并释放冷却剂通过受影响的一个或多个特定的孔。由此,仅在达到阈值热水平的区域中释放冷却剂。
在一些实施方案中,将冷却剂预先加载到本发明的装置的天线、手柄或其他组件中。在其他实施方案中,该冷却剂在使用过程中添加。在一些预先加载的实施方案中,在形成自保持真空的情况下,将液体冷却剂预先加载到例如天线的远端。在一些此类实施方案中,随着液体冷却剂蒸发,真空吸入更多液体。
本发明不受限于所采用的冷却剂材料的属性。冷却剂包括但是不限于,液体和气体。示范冷却剂液体包括但不限于,水、二醇、空气、惰性气体、二氧化碳、氮气、氦气、六氟化硫、离子溶液(例如,含有或不含钾离子和其他离子的氯化钠)、葡萄糖液、林格乳酸盐液、有机化学溶液(例如,乙二醇、二乙二醇或丙二醇)、油(例如,矿物油、硅油、氟碳油)、液体金属、氟利昂、卤代甲烷、液化丙烷、其他卤代烷、无水氨、二氧化硫中的一种或多种或组合。在一些实施方案中,冷却剂液体还用作电介质材料。在一些实施方案中,冷却剂是在其临界点处或附近压缩的气体。在一些实施方案中,至少部分地通过更改冷却剂的浓度、压力或体积来进行降温。例如,降温可以使用焦耳-汤普森效应通过气体冷却剂来实现降温。在一些实施方案中,通过化学反应来提供降温。这些装置不限于特定类型的降温化学反应。在一些实施方案中,降温化学反应是吸热反应。这些装置不限于为防止非期望的发热而施以吸热反应的特定方式。在一些实施方案中,使第一种和第二化学物质流入装置中,以使它们反应来降低装置的温度。在一些实施方案中,该装置准备有预先加载在装置中的第一种和第二种化学物质。在一些实施方案中,这些化学物质由期望时移除的阻隔装置隔开。在一些实施方案中,该阻隔装置配置成在暴露于预定温度或温度范围时熔化。在此类实施方案中,该装置仅在达到需要降温的热水平时才启动吸热反应。在一些实施方案中,多个不同阻隔装置遍布装置来设置,以便仅在装置中发生非期望的发热的那些部分处进行局部降温。在一些实施方案中,使用的阻隔装置是包含两种化学物质之一的珠子。在一些实施方案中,阻隔装置是熔化则将两种化学物质混合的壁(例如,垫圈形状的盘子)。在一些实施方案中,阻隔装置由蜡制成,其配置成在预定温度下熔化。这些装置不限于特定类型、种类和数量的可熔化材料。在一些实施方案中,该可熔化材料是生物相容的。这些装置不限于特定类型、种类或数量的第一种和第二种化学物质,只要它们的混合产生降温化学反应即可。在一些实施方案中,第一种材料包括八水氢氧化钡晶体以及第二种材料是干氯化铵。在一些实施方案中,第一种材料是水,以及第二种材料是氯化铵。在一些实施方案中,第一种材料是亚硫酰氯(SOCl2)以及第二种材料是七水硫酸钴(II)。在一些实施方案中,第一种材料是水,以及第二种材料是硝酸铵。在一些实施方案中,第一种材料是水,以及第二种材料是氯化钾。在一些实施方案中,第一种材料是乙酸,以及第二种采用是碳酸钠。在一些实施方案中,使用可熔化材料,该可熔化材料本身通过熔化成流体以使装置外表面的热减少的方式减少热。
在一些实施方案中,这些能量递送装置通过随着温度升高调节从装置发射的能量的量来防止非期望的发热和/或保持期望的能量递送特性(例如调节从装置谐振的能量波长)。这些装置不限于用于调节从装置发射的能量的量的特定方法。在一些实施方案中,这些装置配置成随着装置达到某个阈值温度或随着装置发热超过一定范围,调节从装置谐振的能量波长。这些装置不限于用于调节从装置谐振的能量波长的特定方法。在一些实施方案中,该装置其中具有体积随着温度升高而变化的材料。使用体积变化移动或调节影响能量递送的装置的组件。例如,在一些实施方案中,使用随着升高的温度而膨胀的材料。利用膨胀向外移动装置的远端头(增加它与装置的近端的距离),从而改变装置的能量递送特性。这可具有与本发明的中心馈电双极实施方案结合的特定应用。在一些实施方案中,这些能量递送装置通过调节能量递送程序而不降低能量波长来防止非期望的发热和/或保持期望的能量递送特性。在一些实施方案中,脉冲式程序将多个能量突发递送到治疗点(例如,足够执行期望的任务(例如,消融)的多个突发能量)而不会沿着传输路径引起非期望的发热。在一些实施方案中,与连续递送程序相比时,脉冲式程序降低沿着传输路径的热。在一些实施方案中,不同模式的脉冲程序有效地平衡递送到治疗点的大量能量的需要与减少沿递送路径的热的潜在冲突。在一些实施方案中,利用不同的脉冲模式(例如,递送能量的时间长度、能量脉冲之间的时间长度)和不同的能量级(例如,能量波长)以优化能量递送和路径发热。
在某些实施方案中,本发明提供一种包括配置成用于将能量递送到组织的天线的装置,其中天线的远端包括中心馈电双极组件,该中心馈电双极组件包括含有导体的刚性中空管,其中将针芯固定在中空管内。在一些实施方案中,该中空管具有等于或小于20标准针头的直径。在一些实施方案中,该中空管具有等于或小于17标准针头的直径。在一些实施方案中,该中空管具有等于或小于12标准针头的直径。在一些实施方案中,该装置还包括用于调节递送到组织的能量的量的调谐元件。在一些实施方案中,该装置配置成递送足够量的能量以消融组织或促使血栓形成。在一些实施方案中,该导体半途延伸穿过中空管。在一些实施方案中,该中空管具有长度λ/2,其中λ是组织介质中的电磁场波长。在一些实施方案中,将可膨胀材料安置于针芯附近,以便随着装置温度升高,可膨胀材料膨胀,并施压在针芯上,从而移动针芯并改变装置的能量递送特性。在一些实施方案中,可膨胀材料安置于为中心馈电双极装置的谐振元件的金属盘后方(与之接近)。随着材料膨胀,将该盘向远端推压,从而调节装置的调谐。该可膨胀材料优选地选择成使膨胀率与期望的能量递送变化一致以达到最优结果。但是,应该理解,期望方向的任何改变体可具有与本发明结合的应用。在一些实施方案中,该可膨胀材料是蜡。
在一些实施方案中,该装置具有与装置附接的手柄,其中该手柄配置成例如控制冷却剂传递进入和离开冷却剂通道。在一些实施方案中,仅将手柄降温。在一些实施方案中,该手柄配置成递送在其临界点处或附近压缩的气体冷却剂。在其他实施方案中,将该手柄和附接的天线降温。在一些实施方案中,该手柄在某个时间量之后和/或随着装置达到某个阈值温度时自动地将冷却剂传入并传出冷却剂通道。在一些实施方案中,该手柄在某个时间量之后和/或随着装置下降到某个阈值温度以下时自动地停止将冷却剂传入并传出冷却剂通道。在一些实施方案中,手动控制流经手柄的冷却剂。在一些实施方案中,手柄其中具有一个或多个(例如,1、2、3、4、5、6、7、8、9、10等)灯(例如显示灯(例如LED灯))。在一些实施方案中,这些灯配置成用于标识目的。例如,在一些实施方案中,使用这些灯在不同探针之间形成区分(例如,第一探针的激活显示一个灯;第二探针的激活显示两个灯,第三探针的激活显示三个灯,或每个探针具有其自己的指示灯等)。在一些实施方案中,使用这些灯标识事件的发生(例如,冷却剂传送通过装置、能量传送通过装置、相应的探针移动,装置内的设置改变(例如,温度、定位)等)。这些手柄不限于显示的特定方式(例如,闪烁、交替颜色、单色等)。
在一些实施方案中,这些能量递送装置其中具有中心馈电双极组件(参见例如美国专利申请序列号11/728,457,其通过引用全部并入本文)。在一些实施方案中,这些能量递送装置包括具有用于传送和发射能量的多个分段的导管(参见例如美国专利申请序列号11/237,430、11/237,136和11/236,985;其通过引用全部并入本文)。在一些实施方案中,这些能量递送装置包括具有优化调谐能力以减少反射型热耗散的三轴微波探针(参见例如美国专利号7,101,369;还参见美国专利申请号10/834,802、11/236,985、11/237,136、11,237,430、11/440,331、11/452,637、11/502,783、11/514,628;以及国际专利申请号PCT/US05/14534;其通过引用并入本文)。在一些实施方案中,这些能量递送装置通过具有空气或其他气体作为电介质芯的同轴传输线(例如,同轴电缆)发射能量(参见例如美国专利申请号11/236,985;其通过引用全部并入本文)。在一些此类实施方案中,可以在使用之前移除支承内层和外层导体之间的装置结构的材料。例如,在一些实施方案中,这些材料由在使用之前或使用期间被移除的可溶解或可熔化材料制成。在一些实施方案中,这些材料是可熔化的,并且在使用期间(暴露在热下时)被移除以便优化装置随时间推移的能量递送特性(例如,响应组织中的温度改变等)。
本发明不限于特定的同轴传输线形状。实际上,在一些实施方案中,同轴传输线和/或电介质元件的形状是可调节的以便适应特定需求。在一些实施方案中,同轴传输线和/或电介质元件的横截面形状是圆形的。在一些实施方案中,横截面形状是非圆形的(例如,卵形等)。此类形状可以应用于整个同轴电缆或可以应用于仅一个或多个子组件。例如,可以将卵形电介质材料置于圆形外层导体中。这具有例如形成可采用来例如使冷却剂循环的两个通道的优点。又如,可以将正方形/矩形电介质材料置于圆形导体中。这具有例如形成四个通道的优点。可以采用横截面上的不同多边形形状(例如,五边形、六边形等)以产生不同数量和形状的通道。横截面形状不一定在整个电缆长度上均相同。在一些实施方案中,对于电缆的第一区域(例如,近端区域)使用第一形状,以及对电缆的第二区域(例如,远端区域)使用第二形状。还可以采用不规则形状。例如,可以在圆形外层导体中采用具有延续其他长度的齿纹沟槽的电介质材料,以产生任何期望尺寸和形状的单个通道。在一些实施方案中,该通道提供用于将冷却剂、针头或其他期望的组件给送到装置而不会增加装置的最终外径的空间。
同样地,在一些实施方案中,本发明的天线延续其长度或其长度的一个或多个分段具有非圆形横截面形状。在一些实施方案中,该天线是非圆柱形的,但是包含圆柱形的同轴电缆。在其他实施方案中,该天线是非圆柱形的且包含非圆柱形的同轴电缆(例如,与天线形状相配或具有不同的非圆柱形形状)。在一些实施方案中,具有非圆柱形形状的任何一个或多个组件(例如,插管、天线外壳、同轴电缆的外层导体、同轴电缆的电介质材料、同轴电缆的内层导体)允许在装置中形成其中原因是可使用来循环冷却剂的一个或多个通道。非圆形形状(特定在天线的外部直径中)还可用于某些医疗或其他应用。例如,可以将形状选为将灵活性或特定内部身体位点的介入最大化。还可以将形状选为优化能量递送。还可以将形状(例如,非圆柱形形状)选为将装置的硬度和/或强度最大化,尤其对于小直径装置而言。
在某些实施方案中,本发明提供一种包括天线的装置,其中该天线包括绕着内层导体封包的外层导体,其中内层导体设计成接收和传送能量,其中外层导体其中具有沿着外层导体环向安置的至少一个间隙,其中沿着天线的长度生成多个能量峰值,能量峰值的位置由间隙的位点控制。在一些实施方案中,能量是微波能量和/或射频能量。在一些实施方案中,外层导体其中具有两个间隙。在一些实施方案中,该天线包括设在内层导体与外层导体之间的电介质层。在一些实施方案中,该电介质层具有接近0的电导率。在一些实施方案中,该装置还包括针芯。在一些实施方案中,该内层导体具有约0.013英寸或更小的直径。
在一些实施方案中,以一种材料填充外层导体或装置外表面的任何间隙或不连贯处或不规则处以提供平滑均匀或基本平滑均匀的外表面。在一些实施方案中,使用耐热树脂来填充间隙、不连贯处和/或不规则处。在一些实施方案中,该树脂是生物相容的。在其他实施方案中,它不是生物相容的,但是例如可以涂覆以生物相容材料。在一些实施方案中,该树脂可配置成任何期望的尺寸或形状。由此,该树脂在硬化时可以用于为装置提供尖锐的针芯端头或任何其他期望的物理形状。
在一些实施方案中,该装置包括尖锐针芯端头。该端头可以由任何材料制成。在一些实施方案中,该端头由硬化树脂制成。在一些实施方案中,该端头是金属的。在一些此类实施方案中,该金属端头是天线的金属部分的延伸部且是电活性的。在一些实施方案中,装置的远端头包括切割套管针。
在一些实施方案中,这些能量递送装置配置成将能量递送到系统内的组织区域,该系统包括处理器、功率源、指向、控制和递送功率的装置(例如,能够个别地控制对每个天线的功率递送的功率分配器)、成像系统、调谐系统、温度测量调节系统和/或装置安置系统。
本发明不限于特定类型的处理器。在一些实施方案中,该处理器设计成例如从系统的组件(例如,温度监视系统、能量递送装置、组织阻抗监视组件等)接收信息,将此类信息显示给使用者以及操控(例如控制)系统的其他组件。在一些实施方案中,该处理器配置成在系统内工作,该系统包括能量递送装置、功率源、指向、控制和递送功率的装置(例如,功率分配器)、成像系统、调谐系统和/或温度调节系统。
本发明不限于特定类型的功率源。在一些实施方案中,该功率源配置成提供任何期望类型的能量(例如,微波能量、射频能量、辐射、低温能量、电穿孔、高密度聚焦的超声波和/或其混合)。在一些实施方案中,该功率源利用功率分配器以允许将功率递送到两个或更多个能量递送装置。在一些实施方案中,该功率源配置成在系统内工作,该系统包括功率分配器、处理器、能量递送装置、成像系统、调谐系统和/或温度调节系统。
本发明不限于特定类型的成像系统。在一些实施方案中,该成像系统利用成像装置(例如,内窥镜装置、立体定位计算机辅助的神经外科导航装置、热传感器定位系统、运动速率传感器、线控转向系统、手术内超声波、荧光检查、计算机断层扫描磁共振成像、核医学成像装置三角测量成像、间质超声波、微波成像、声波层析、双能量成像、热声成像、红外线和/或激光成像、电磁成像)(参见例如美国专利号6,817,976、6,577,903和5,697,949、5,603,697和国际专利申请号WO06/005,579;各通过引用全部并入本文)。在一些实施方案中,这些系统利用内窥镜摄像头、成像组件和/或导航系统,它们允许或协助与本发明的能量系统结合使用的任何器械的安置、定位和/或监视。在一些实施方案中,该成像系统配置成提供能量递送系统的特定组件的位置信息(例如能量递送装置的位置)。在一些实施方案中,该成像系统配置成在系统内工作,该系统包括处理器、能量递送装置、功率源、调谐系统和/或温度调节系统。在一些实施方案中,该成像系统位于能量递送装置内。在一些实施方案中,该成像系统提供有关消融区特性(例如,直径、长度、横截面面积、体积)的定性信息。该成像系统不限于用于提供定性信息的特定技术。在一些实施方案中,用于提供定性信息的技术包括但不限于,时域反射计、飞行时间脉冲检测、调频距离检测、在任何频率上的本征或共振频率检测或反射和传送、单独基于一个间质装置或与其他间质装置或外部装置协同工作。在一些实施方案中,该间质装置提供用于成像的信号和/或检测(例如,电声成像、电磁成像、电阻抗断层成像)。
本发明不限于特定的调谐系统。在一些实施方案中,该调谐系统配置成允许调节能量递送系统内的变量(例如,递送的能量的量、递送的能量的频率、递送到系统中提供的多个能量装置的其中一个或多个的能量、提供的冷却剂的量或类型等)。在一些实施方案中,该调谐系统包括传感器,传感器向使用者提供或向处理器提供持续地或在时间点上监视能量递送装置的功能的反馈。该传感器可以记录和/或回报任何数量的特性,包括但不限于,系统的组件的一个或多个位点处的热(例如温度)、组织处的热、组织的特性、区域的定性信息等。该传感器可以采用成像装置的形式,如CT、超声波、磁共振成像、荧光检查、核医学成像或任何其他成像装置。在一些实施方案中,特定对于研究应用而言,该系统记录并存储在总体地将来优化系统中使用和/或用于特定条件下(例如,患者类型、组织类型、靶点区域的尺寸和形状、靶区域的位置等)优化能量递送的信息。在一些实施方案中,该调谐系统配置成在系统内工作,该系统包括处理器、能量递送装置、功率源、成像和/或温度调节系统。在一些实施方案中,这些成像或其他控制组件向消融装置提供反馈,以便能够调节功率输出(或其他控制参数)以提供最优组织响应。
本发明不限于特定的温度调节系统。在一些实施方案中,这些温度调节系统设计成在医疗操作(例如组织消融)期间减少系统的多种组件(例如,能量递送装置)的非期望发热或将靶组织保持在某个温度范围内。在一些实施方案中,这些温度调节系统配置成在系统内工作,该系统包括处理器、能量递送装置、功率源、指向、控制和递送功率的装置(例如,功率分配器)、调谐系统和/或成像系统。在一些实施方案中,该温度调节系统设计成将能量递送装置降温到足以使得装置临时性地附着于患者内组织以便防止能量装置在操作(例如消融操作)期间移动的温度。
在一些实施方案中,这些系统还包括温度监视或反射功率监视系统,用于监视系统的多种组件(例如,能量递送装置)和/或组织区域的温度或反射功率。在一些实施方案中,这些监视系统设计成在例如温度或反射能量的量超过预定值的情况下改变(例如,阻止、减少)能量向特定组织区域的递送。在一些实施方案中,这些温度监视系统设计成改变(例如,增加、减少、保持)能量向特定组织区域的递送,以便将组织或能量递送装置保持在优选温度处或优选温度范围内。
在一些实施方案中,这些系统还包括标识或跟踪系统,标识或跟踪系统配置成例如阻止使用先前使用过的组件(例如,未经灭菌的能量递送装置)标识系统组件的属性以便可以适当地调节系统的其他组件来达到兼容性或优化的功能。在一些实施方案中,该系统读取与本发明的系统组件关联的条形码或其他信息承载元件。在一些实施方案中,使用之后改变(例如断开)系统的组件之间的连接,以便防止再次使用。本发明不受限于系统中使用的组件的类型或所采用的用途。实际上,这些装置可以采用任何期望的方式来配置。同样地,这些系统和装置可以用在要递送能量的任何应用中。此类用途包括任何和所有医疗、兽医和研究应用。但是,本发明的这些系统和装置可以用在农业环境、制造环境、机械环境或要递送能量的任何其他应用中。
在一些实施方案中,这些系统配置成用于经皮能量递送、血管内能量递送、心脏内能量递送、腹腔镜能量递送或手术能量递送。同样地,在一些实施方案中,这些系统配置成用于经导管、经手术形成的开口和/或经身体孔口(例如,嘴、耳、鼻、眼睛、阴道、阴茎、肛门)递送能量(例如,N.O.T.E.S.操作)。在一些实施方案中,这些系统配置成用于向靶组织或区域递送能量。本发明不受限于靶组织或区域的属性。用途包括但不限于,心律失常的治疗、肿瘤消融(良性和恶性)、手术期间、创伤之后、针对任何其他出血控制的出血控制、软组织的移除、组织切除和采集、静脉曲张的治疗、腔内组织消融(例如,为了治疗食道疾病(如巴瑞特氏食道症)和食管腺癌)、骨癌、正常骨骼和良性骨骼症状的治疗、眼内用途、整容手术中的用途、中央神经系统的病理治疗(包括脑肿瘤和电干扰)、绝育操作(例如,输卵管的消融)和出于任何目的的血管或组织的烧灼。在一些实施方案中,手术应用包括消融治疗(例如,以实现凝固性坏死)。在一些实施方案中,手术应用包括对靶点的肿瘤消融,例如转移性肿瘤。在一些实施方案中,该装置配置成用于以对组织或生物体的最小损伤来移动和定位在任何期望的位置,包括但不限于脑部、颈部、胸部、肺部(例如,周围肺部)、腹部和骨盆。在一些实施方案中,这些系统配置成用于例如通过计算机断层扫描、超声波、磁共振成像、荧光检查等的引导的递送。
在某些实施方案中,本发明提供用于治疗组织区域的方法,其包括:提供组织区域和本文描述的系统(例如,能量递送装置和如下组件的至少其中之一:处理器、功率源、指向、控制和递送功率的装置(例如,功率分配器)、温度监视器、成像装置、调谐系统、降温系统和/或装置安置系统);将能量递送装置的一部分定位在组织区域的附近,以及利用装置将一定量的能量递送到该组织区域。在一些实施方案中,该组织区域是肿瘤。在一些实施方案中,递送能量促使例如组织区域的消融和/或血管的血栓形成和/或组织区域的电穿孔。在一些实施方案中,该组织区域是肿瘤。在一些实施方案中,该组织区域包括心脏、肝脏、生殖器、胃部、肺部(例如,肺的周围)、大肠、小肠、脑部、颈部、骨骼、肾脏、肌肉、肌腱、血管、前列腺、膀胱、脊髓、皮肤、静脉、手指甲和脚趾甲的其中一个或多个组织区域。在一些实施方案中,该处理器从传感器接收信息并监视和控制系统的其他组件。在一些实施方案中,按期望的,更改该功率源的能量输出以达到优化的治疗。在一些实施方案中,其中提供多于一个能量递送组件,将递送到每个递送组件的能量的量优化以达到期望的结果。在一些实施方案中,通过温度传感器监视系统的温度,并在达到或逼近阈值水平时,通过激活降温系统来降低系统的温度。在一些实施方案中,该成像系统向处理器提供信息,处理器将其显示给系统的使用者并且可以在反馈回路中使用来控制系统的输出。
在一些实施方案中,以不同的强度和从装置内的不同位置将能量递送到组织区域。例如,可以通过装置的一个部分治疗组织区域的某些区域,同时通过装置的不同部分治疗组织的其他区域。此外,装置的两个或更多个区域可以同时向特定组织区域递送能量,以便实现相长相位干涉(例如,其中发射的能量达到协同的效应)。在其他实施方案中,装置的两个或更多个区域可以递送能量以便达到相消干涉效应。在一些实施方案中,该方法还包括提供附加装置以用于实现相长相位干涉和/或相消相位干涉的目的。在一些实施方案中,一个或多个装置之间的相位干涉(例如,相长相位干涉、相消相位干涉)由处理器、调谐元件、使用者和/或功率分配器来控制。
本发明的系统、装置和方法可以与其他系统、装置和方法结合来使用。例如,本发明的系统、装置和方法可以与其他消融装置、其他医疗装置、诊断方法和试剂、成像方法和试剂、装置安置系统和治疗方法和试剂一起使用。使用可以与另一个介入同时进行或可以在另一个介入之前或之后进行。本发明可设想将本发明的系统、装置和方法与任何其他医疗介入结合来使用。
此外,需要集成的消融和成像系统,其向使用者提供反馈并允许各系统组件之间的通信。可以在消融过程中调节系统参数以便优化能量递送。此外,使用者能够更精确地确定何时成功地完成手术,从而降低不成功的治疗和/或治疗相关的并发症的概率。
在某些实施方案中,本发明提供包括配置成用于向组织递送能量的天线的装置,该天线包括同轴电缆内的一个或多个冷却管或通道,这些管配置成将冷却剂递送到天线,其中冷却剂是在其临界点处或附近压缩的气体。在一些实施方案中,该冷却剂包括同轴电缆的电介质材料。在一些实施方案中,冷却剂通道包括电介质空间的全部或一部分。这些装置不限于特定的气体。在一些实施方案中,该气体是CO2。在一些实施方案中,一个或多个冷却剂管或通道位于外层导体与同轴电缆的电介质材料之间。在一些实施方案中,一个或多个冷却剂管或通道位于内层导体与同轴电缆的电介质材料之间。在一些实施方案中,多孔性电介质材料使得冷却剂能够直接流经电介质材料。在一些实施方案中,一个或多个冷却剂管或通道位于内层导体或外层导体内。在一些实施方案中,该装置其中具有近端区域、中央区域和远端区域。在一些实施方案中,远端区域配置成向组织递送能量。在一些实施方案中,近端和/或中央区域其中具有冷却剂管或通道。在一些实施方案中,远端部分没有冷却剂管或通道。
在一些实施方案中,该装置其中具有一个或多个“粘着”区域,一个或多个“粘着”区域配置成有助于将组织附着于粘着区域,例如以便在能量递送期间将装置稳固在期望的位点中。在一些实施方案中,粘着区域配置成达到并保持促使组织冻结到粘着区域的温度。在一些实施方案中,该粘着区域定位于中央区域和/或近端区域。粘着区域不限于用于帮助组织区域附着的任何特定温度。在一些实施方案中,粘着区域通过接触能量递送装置中具有循环冷却剂的区域达到和保持用于帮助组织区域附着的温度。在一些实施方案中,粘着区域的温度保持在足够低以使组织区域在与粘着区域接触时出现附着(例如以使组织区域冻结在粘着区域上)。粘着区域不限于特定材料组成。在一些实施方案中,粘着区域是例如金属材料、陶瓷材料、塑料材料和/或此类物质的任何组合。
在一些实施方案中,远端区域和中央区域由插头区域分开,插头区域设计成防止远端区域的冷却。插头区域不限于防止远端区域冷却的特定方式。在一些实施方案中,插头区域设计成与具有降低的温度的区域(例如,能量递送装置中具有循环冷却剂的中央区域)接触而不会使其温度降低。在一些实施方案中,插头区域的材料使得它能够与具有低温的材料接触而不会使其温度实质性地降低(例如,绝缘材料)。插头区域不限于特定类型的绝缘材料(例如,合成聚合物(例如,聚苯乙烯、polyicynene、聚氨酯、聚异氰脲酸酯)、气凝胶、纤维玻璃、软木)。在一些实施方案中,具有插头区域的装置能够使组织同时暴露于冷却的区域(例如,装置中接近插头的区域)和非冷却的区域(例如,装置中远离插头区域的区域)。
在某些实施方案中,本发明提供包括配置成用于向组织递送能量的天线的装置,该天线包括同轴电缆内的一个或多个冷却管或通道,同轴电缆具有电介质区域,该电介质区域具有柔性和非柔性区域。在一些实施方案中,该柔性区域是塑料,以及该非柔性区域是陶瓷。在一些实施方案中,将该非柔性区域定位于最高功率发射的位置处。
在某些实施方案中,本发明提供包括配置成用于向组织递送能量的天线的装置,该天线包括同轴电缆内的一个或多个冷却管或通道,该装置其中具有连接到拉线锚点的一个或多个拉线。在一些实施方案中,连接到拉线锚点的一个或多个拉线的收缩来减少装置的柔性。在一些实施方案中,一个或多个拉线设计成在特定温度下弯曲(例如,超弹性镍钛合金丝)。
在一些实施方案中,本发明提供用于将能量(例如微波能量)递送到接受试者的治疗点的系统、装置和方法。在一些实施方案中,本发明提供将能量递送到接受试者的难以介入的区域的方法。在一些实施方案中,本发明提供通过支气管树介入周围肺部。在一些实施方案中,本发明提供对周围肺部组织上的肺结节、肿瘤和/或病变介入(例如无需切入肺部)或无需从肺外部进入。在一些实施方案中,本发明提供通过气管和/或支气管树(例如,一级、二级和三级支气管和细支气管)对周围肺部组织上的肺结节、肿瘤和/或病变介入。在一些实施方案中,本发明无损地(例如,不显著地损伤沿途的组织)通过支气管树将能量(例如微波能量)递送到周围肺部。
附图说明
图1示出根据本发明的实施方案的能量递送系统的示意图。
图2示出本发明一些实施方案中的多种形状的同轴传输线和/或电介质元件。
图3A和图3B显示具有划分的分段的同轴传输线实施方案,这些分段含有以可熔化壁阻塞且用于实现防止非期望的装置发热(例如,沿着外层导体发热)的目的的第一和第二材料。
图4A和图4B显示具有划分的分段的同轴传输线实施方案,这些分段被可熔化壁分隔且包含防止非期望的装置发热(例如,沿着外层导体发热)的第一和第二材料(例如,配置成混合时生成降温化学反应的材料)。
图5示出配置成控制冷却剂传递进入和离开冷却剂通道的手柄的示意图。
图6示出具有冷却剂通路的同轴电缆实施方案的横向剖面图。
图7示出定位于具有外层导体和电介质材料的能量发射装置内的冷却剂循环管(例如,冷却剂针头、导管)。
图8示意图示出本发明的装置的远端(例如,消融装置的天线),该装置的远端包括本发明的中心馈电双极组件。
图9示出温度测量站的测试装置和位置。如图所示,所有试验的消融针轴是20.5cm。探针1、2和3位于接近不锈钢针头的尖端4、8和12cm处。
图10示出在具有不规则地高(6.5%)的反射功率的35%(从13:40至13:50的微波“启用”)下的治疗。最初将探针3置于空气中刚好肝组织外侧。
图11示出在具有不规则地高(6.5%)的反射功率的45%(从14:58至15:08的微波启用)下的10分钟治疗。站4处的峰值温度是40.25℃。
图12示出本发明一个实施方案中的一个同轴电缆,其具有其外层导体中被移除以形成用于冷却剂流的空间的区域。
图13示出导入/导出框、输送护套和操作装置连接器。
图14示出具有与拉线锚点连接的两个拉线的能量递送装置。
图15示出具有非柔性区域和柔性区域的能量递送装置的外部透视图。
图16示出能量递送装置,其具有与位于天线内的较大同轴传输线连接的窄同轴传输线,较大同轴传输线与内层导体连接。
图17示出具有非柔性区域和柔性区域的能量递送装置的横截面。
图18示出连接到操作台托架的操作装置衬套。
图19示出定制消毒盖布,其具有开窗和经由开窗插入的电缆。
图20示出本发明的能量递送系统,其经由电缆将发生器连接到操作装置衬套,其中操作装置衬套固定于操作台。
图21演示能量递送装置的冷却。消融期间接近天线的端头7cm处测量的温度分布显示,利用冷冻水冷却能够移除超过120W输入功率(上图)导致的热。利用冷却的天线(125W,5分钟)形成的~3cm消融显示没有沿着天线的“尾状物(tail)”。陶瓷管和面状端头使得经皮介入成为可能(下图)。
图22示出利用多种被动冷却技术的情况下沿着天线杆的模拟温度分布。热敏电阻器和绝缘护套最显著地降低近端温度。
图23示出以相等刻度显示的正常猪肺中10分钟形成的微波(左)和RF(右)消融。微波消融比RF消融更大且更具球面形。
图24示出试验装置(上图)和在天线杆(下图)内侧产生35W的热时沿着天线杆测量的温度结果。仅需1.0stpL/分钟CO2流即可阻止沿杆的任何点处温度上升超过8℃。10stp L/分钟能够抵销50W的发热功率。
图25示出试验装置(上图)和对应于0、13和23.8stp L/分钟NC-CO2流,在天线端头保持在150℃时沿着天线杆测量的温度结果。注意在本测试中,发热仅考虑从天线端头的热传导-未考虑内部发热。
图26示出小如1stpL/分钟持续10秒的CO2的脉冲抵销来自天线端头的热传导的发热。
图27示出与时间成函数的常规和高度抑制反投影(HYPR)图像分辨率。
图28示出一段时间上的标准和高度抑制反投影(HYPR)肿瘤图像。
图29示出能量递送装置实施方案。
图30示出能量递送装置实施方案。
图31示出操作环境内的能量递送装置实施方案。
图32示出使用同轴传输线的电介质材料作为冷却剂的多种示范配置:a)常规同轴配置;b)将电介质空间分成一个冷却剂通道和一个返回通道;c)将电介质空间对应于腔室分成一个冷却剂通道、一个返回通道和两个无流通道;d)将电介质空间对应于腔室分成两个冷却剂通道和两个返回通道;e)电介质空间内一个冷却剂通道和一个返回通道;f)电介质空间内两个冷却剂通道和两个返回通道;g)电介质空间内四个冷却剂通道和四个返回通道;h)多孔性电介质材料能使冷却剂流经电介质材料;i)将电介质空间分成四个腔室,流入腔室的冷却剂使得可收缩通道膨胀,从而增加通道的横截剖面;以及j)可收缩通道采用收缩的构造,从而在没有冷却剂流时减小其横截剖面,冷却剂流使得冷却剂通道膨胀,从而增加通道的横截剖面(“C”和“R”表示潜在的冷却剂(C)和返回(R)通道)。
图33示出同轴传输线的示范“车轮”横截剖面,其中电介质材料将内层导体和外层导体之间的空间分成通道。
图34示出安装有外层护套和切割套管针的示范“车轮”传输线;指示经由冷却剂管和通道的冷却剂流。
具体实施方式
本发明涉及用于为范围广泛的应用将能量(例如,微波能量、射频能量)递送到组织的综合系统、装置和方法,这些应用包括医疗操作(例如,组织消融(例如,肿瘤消融)、切除、烧灼、血管血栓形成、空腔脏器的管腔内消融、治疗心律失常的心脏内消融、组织采集、整容手术、眼内用途等)。在一些实施方案中,本发明提供用于递送微波能量的系统,该系统包括功率源、指向、控制和递送功率的装置(例如,功率分配器)、处理器、能量发射装置、冷却系统、成像系统、温度监视系统、装置安置系统和跟踪系统。特定来说,提供用于使用本发明的能量递送系统治疗难以介入的组织区域(例如,周围肺部肿瘤)的系统、装置和方法。
可以将本发明的系统组合在多种系统/成套设备实施方案内。例如,本发明提供多个系统,这些系统包括发生器、功率分配系统、指向、控制和递送功率的装置(例如,功率分配器)、能量应用器、装置安置系统(例如多导管系统)的其中一个或多个,连同任何一个或多个附属组件(例如,手术器械、用于辅助操作的软件、处理器、温度监视装置等)。本发明不限于任何特定的附属组件。
本发明的系统可以在医疗操作(例如,经皮或手术)中使用,包括将能量(例如,射频能量、微波能量、激光、聚焦的超声波等)递送到组织区域。这些系统不限于特定类型或种类的组织区域(例如,脑部、肝脏、心脏、血管、足部、肺部、骨骼等)。例如,本发明的系统可应用于消融肿瘤区域(例如,肺部肿瘤(例如,周围肺部肿瘤))。附加的治疗包括但不限于,心律失常的治疗、肿瘤消融(良性和恶性)、手术期间、创伤之后、针对任何其他出血控制的出血控制、软组织的移除、组织切除和采集、静脉曲张的治疗、腔内组织消融(例如,为了治疗食道疾病(如巴瑞特氏食道症)和食管腺癌)、骨癌、正常骨骼和良性骨骼症状的治疗、眼内用途、整容手术中的用途、中央神经系统的病理治疗(包括脑肿瘤和电干扰)、绝育手术(例如,输卵管的消融)和出于任何目的的血管或组织的烧灼。在一些实施方案中,手术应用包括消融治疗(例如,以实现凝固性坏死)。在一些实施方案中,手术应用包括对靶点的肿瘤消融,例如原发性或转移性肿瘤或周围肺结节。在一些实施方案中,该手术应用包括出血控制(例如,电烙术)。在一些实施方案中,该手术应用包括组织切开或移除。在一些实施方案中,该装置配置成用于以对组织或生物体的最小损伤来移动和安置在任何期望的位置,包括但不限于脑部、颈部、胸部、腹部、骨盆和四肢。在一些实施方案中,该装置配置成用于例如通过计算机断层扫描、超声波、磁共振成像、荧光检查等的引导的递送。
在一些实施方案中,本发明提供用于将能量递送装置定位于难以达到的结构、组织区域和/或器官(例如,分支性结构(例如,人类肺部))的装置、系统和方法。本文描述的发电和功率分配系统;引导、控制和递送功率的装置(例如,功率分配器);能量应用器;以及附属组件(例如,手术器械、用于帮助操作的软件、处理器、温度监视装置等)可与用于精确地将能量递送装置安置在难以介入的组织区域中的系统(例如,多导管系统(例如,主导管、通道导管和可转向导航导管))结合来应用。
在一些实施方案中,本发明提供用于减少来自向接受试者的组织区域递送能量(例如微波能量)的装置的热耗散,和/或减少能量递送装置内以及沿着能量递送装置的非期望发热的装置、系统和方法。在一些实施方案中,来自能量递送装置的非期望热耗散和/或能量递送装置内和沿着能量递送装置的非期望发热包括能量递送过程的效率,其导致靶位点周围和/或沿着递送路径的组织受损,并且在靶位点处需要增加的能量以达到有功效的能量递送。在一些实施方案中,通过如下方式减少发热和/或热耗散:绝缘体材料(例如,多孔性绝缘体)、沿着能量递送装置的冷却剂递送、专用电缆配置(例如,一个或多个冷却剂通道、不可膨胀冷却剂通道等)、低热能量递送程序(例如,低能量、脉冲程序等)和其他适合的热耗散减少和/或降温装置、系统和方法可与本发明结合应用。
下文提供的图示实施方案依据医疗应用(例如,通过微波能量递送消融组织)来描述本发明的系统。但是,应该认识到本发明的系统不限于医疗应用。这些系统可以应用于任何需要将能量递送到负载的环境(例如,农业环境、制造业环境、研究环境等)。图示的实施方案依据微波能量来描述本发明的系统。应该认识到本发明的系统不限于特定类型的能量(例如,射频能量、微波能量、聚焦的超声波能量、激光、等离子)。
本发明的系统不限于任何特定的组件或任何特定数量的组件。在一些实施方案中,本发明的系统包括但不限于包括功率源、指向、控制和递送功率的装置(例如,功率分配器)、处理器、具有天线的能量递送装置、冷却系统、成像系统、装置安置系统和/或跟踪系统。当多个天线在使用中时,系统可以用于单独地分别控制每个天线。
图1示出本发明的示范系统。如图所示,该能量递送系统包括功率源、传输线、功率分配组件(例如,功率分配器)、处理器、成像系统、温度监视系统和能量递送装置。在一些实施方案中,如图所示,经由传输线、电缆等来连接能量递送系统的组件。在一些实施方案中,在无菌区阻隔装置两端将该能量递送装置与功率源、指向、控制和递送功率的装置(例如,功率分配器)、处理器、成像系统、温度监视系统分隔开。
下文部分更详细地描述了能量递送系统的示范组件:I.功率源;II.能量递送装置;III.处理器;IV.成像系统;V.调谐系统;VI.温度调节系统;VII.标识系统;VIII.温度监视装置;IX.操作装置衬套;X.使用,以及XI.装置安置系统。
I.功率源
本发明的能量递送系统内利用的能量通过功率源提供。本发明不限于特定类型或种类的功率源。在一些实施方案中,该功率源配置成向本发明的能量递送系统(例如消融装置)的一个或多个组件提供能量。该功率源不限于提供特定类型的能量(例如,射频能量、微波能量、辐射能量、激光、聚焦的超声波等)。该功率源不限于提供特定量的能量或以特定递送速率提供能量。在一些实施方案中,该功率源配置成出于组织消融目的向能量递送装置提供能量。
本发明不限于特定类型的功率源。在一些实施方案中,该功率源配置成提供任何期望类型的能量(例如,微波能量、射频能量、辐射、低温能量、电穿孔、高密度聚焦的超声波和/或其混合)。在一些实施方案中,利用功率源提供的能量的类型是微波能量。在一些实施方案中,该功率源向消融装置提供微波能量以实现组织消融目的。在组织消融中使用微波能量具有多种优点。例如,微波具有宽功率密度场(例如,根据所施能量的波长在天线周围约2cm),其具有相应大的活动发热区域,从而使得在靶向区域内和血管周围区域中均实现均匀的组织消融(参见例如,国际公开号WO 2006/004585;其通过引用全部并入本文)。此外,微波能量能够使用多个探针以更快速的组织发热来消融大或多个区域的组织。微波能量能够穿透组织形成深度切口而表面发热较少。能量递送时间比射频能量的情况短,并且探针能够将组织足够加热到形成可预期和可控深度的均匀且对称的切口。当使用者接近血管使用时,微波能量一般是安全的。而且,微波不依赖于电传导,因为它穿过组织、体液/血液以及空气辐射。因此,可以在组织、内腔、肺部和血管内使用微波能量。
在一些实施方案中,该功率源是能量发生器。在一些实施方案中,该发生器配置成提供频率从915MHz至5.8GHz的100瓦特微波功率,当然本发明不限于此。在一些实施方案中,选择微波炉中常用类型的常规磁控管作为该发生器。在一些实施方案中,利用基于单个磁控管的发生器(例如,能够通过单个通道输出300W或分成多个通道)。但是,应该认识到,可以替换为任何其他适合的微波功率源。在一些实施方案中,发生器的类型包括但不限于,可从Cober-Muegge LLC公司(Norwalk,Connecticut,USA)购得的发生器、Sairem发生器以及Gerling Applied Engineering的发生器。在一些实施方案中,发生器具有至少约60瓦特可用(例如,50、55、56、57、58、59、60、61、62、65、70、100、500、1000瓦特)。对于较高功率的工作,发生器能够提供约300瓦特(例如,200瓦特、280、290、300、310、320、350、400、750瓦特)。在其中使用多个天线的一些实施方案中,发生器能够按需求量提供能量(例如,400瓦特、500、750、1000、2000、10,000瓦特)。在一些实施方案中,该发生器包括能够单独工作且相控的固态放大器模块。在一些实施方案中,将多个发生器输出相长地组合以增加总输出功率。在一些实施方案中,功率源利用功率分配系统分配(例如,从发生器收集的)能量。本发明不限于特定的功率分配系统。在一些实施方案中,该功率分配系统配置成出于组织消融目的向能量递送装置(例如,组织消融导管)提供能量。该功率分配系统不限于从例如发生器收集能量的特定方式。该功率分配系统不限于将能量提供到消融装置的特定方式。在一些实施方案中,该功率分配系统配置成变换发生器的特性阻抗,以使它与能量递送装置(例如,组织消融导管)的特性阻抗匹配。
在一些实施方案中,该功率分配系统配置具有可变功率分配器,以便向能量递送装置的不同区域或不同能量递送装置(例如组织消融导管)提供变化的能量级。在一些实施方案中,该功率分配器作为系统的单独组件来提供。在一些实施方案中,该功率分配器用于向多个能量递送装置馈给单独的能量信号。在一些实施方案中,功率分配器将递送至每个能量递送装置的能量电隔离,以便例如,如果装置之一遇到由于温度挠曲导致的负荷增加,则改变递送到该元件的能量(例如,降低、停止)而递送到备选装置的能量不改变。本发明不限于特定类型或种类的功率分配器。在一些实施方案中,该功率分配器由SM Electronics公司设计。在一些实施方案中,该功率分配器配置成从功率发生器接收能量并将能量提供到其他系统组件(例如,能量递送装置)。在一些实施方案中,功率分配器能够与一个或多个其他系统组件连接(例如,1、2、3、4、5、7、10、15、20、25、50、100、500...)。在一些实施方案中,该功率分配器配置成将可变量的能量递送到能量递送装置内的不同区域,以实现从装置的不同区域递送可变量的能量的目的。在一些实施方案中,该功率分配器用于向多个能量递送装置提供可变量的能量以实现治疗组织区域的目的。在一些实施方案中,该功率分配器配置成在系统内工作,该系统包括处理器、能量递送装置、温度调节系统、功率分配器、调谐系统和/或成像系统。在一些实施方案中,该功率分配器能够处理最大发生器输出加例如25%(例如,20%、30%、50%)。在一些实施方案中,该功率分配器是1000瓦特额定2-4通道功率分配器。
在其中采用多个天线的一些实施方案中,本发明的系统可以配置成同时或依次地运行它们(例如利用切换)。在一些实施方案中,该系统配置成对这些场定相以实现相长或相消干涉。还可以对单个天线内的不同元件应用定相。在一些实施方案中,将切换与定相组合,以使多个天线同时激活,进行相控然后切换到一组新天线(例如,切换无需是完全依次进行的)。在一些实施方案中,精确地实现相控。在一些实施方案中,持续地调节相位,以便移动在空间和时间上相长或相消干涉的区域。在一些实施方案中,随机地调节相位。在一些实施方案中,随机相位调节通过机械和/或磁干涉来执行。
II.能量递送装置
本发明的能量递送系统可设想使用配置成递送(例如发射)能量的任何类型的装置(例如,消融装置、操作装置等)(例如,参见美国专利号7,101,369、7,033,352、6,893,436、6,878,147、6,823,218、6,817,999、6,635,055、6,471,696、6,383,182、6,312,427、6,287,302、6,277,113、6,251,128、6,245,062、6,026,331、6,016,811、5,810,803、5,800,494、5,788,692、5,405,346、4,494,539,美国专利申请序列号11/728,460、11/728,457、11/728,428、11/237,136、11/236,985、10/980,699、10/961,994、10/961,761、10/834,802、10/370,179、09/847,181;英国专利申请号2,406,521、2,388,039;欧洲专利号1395190;以及国际专利申请号WO 06/008481、WO 06/002943、WO 05/034783、WO04/112628、WO 04/033039、WO 04/026122、WO 03/088858、WO03/039385WO 95/04385;各通过引用全部并入本文)。此类装置包括配置成用于能量发射的任何和所有医疗、兽医和研究应用装置,以及农业环境、制造环境、机械环境或要递送能量的任何其他应用中使用的装置。
在一些实施方案中,该系统利用其中具有配置成发射能量(例如微波能量、射频能量、辐射能量)的天线的能量递送装置。这些系统不限于特定类型或设计的天线(例如,消融装置、操作装置等)。在一些实施方案中,这些系统利用具有直线形天线的能量递送装置(参见例如美国专利号6,878,147、4,494,539、美国专利申请序列号11/728,460、11/728,457、11/728,428、10/961,994、10/961,761;以及国际专利申请号WO 03/039385;各通过引用全部并入本文)。在一些实施方案中,这些系统利用具有非直线形天线的能量递送装置(参见例如美国专利号6,251,128、6,016,811和5,800,494,美国专利申请序列号09/847,181,以及国际专利申请号WO 03/088858;各通过引用全部并入本文)。在一些实施方案中,这些天线具有喇叭反射组件(参见例如美国专利号6,527,768、6,287,302;各通过引用全部并入本文)。在一些实施方案中,该天线具有定向反射屏蔽(参见例如美国专利号6,312,427;其通过引用全部并入本文)。在一些实施方案中,该天线其中具有固定组件以便将能量递送装置固定在特定组织区域内。(参见例如美国专利号6,364,876和5,741,249;各通过引用全部并入本文)。
在一些实施方案中,配置成发射能量的天线包括同轴传输线。这些装置不限于特定配置的同轴传输线。同轴传输线的示例包括但不限于,Pasternack公司、Micro-coax公司和SRC Cables公司开发的同轴传输线。在一些实施方案中,该同轴传输线具有中心导体、电介质元件和外层导体(例如,外层屏蔽)。在一些实施方案中,这些系统利用具有柔性同轴传输线的天线(例如,为了定位在例如肺静脉附近或穿过管状结构)(参见例如美国专利号7,033,352、6,893,436、6,817,999、6,251,128、5,810,803、5,800,494;各通过引用全部并入本文)。在一些实施方案中,这些系统利用具有硬质同轴传输线的天线(参见例如美国专利号6,878,147,美国专利申请序列号10/961,994、10/961,761,以及国际专利申请号WO 03/039385;各通过引用全部并入本文)。
在一些实施方案中,该能量递送装置具有定位于天线内的同轴传输线和与天线连接的同轴传输线。在一些实施方案中,天线内的同轴传输线的尺寸大于与天线连接的同轴传输线。天线内的同轴传输线和与天线连接的同轴传输线不限于特定尺寸。例如,在一些实施方案中,与天线连接的同轴传输线约0.032英寸,而天线内的同轴传输线的尺寸大于0.032英寸(例如,0.05英寸、0.075英寸、0.1英寸、0.5英寸)。在一些实施方案中,天线内的同轴传输线具有刚性和粗的内层导体。在一些实施方案中,天线内的同轴传输线的端部尖锐化以实现经皮用途。在一些实施方案中,天线内的同轴传输线的电介质涂层是PTFE(例如,为了使从插管至内层导体(例如细且尖利的导体)的过渡平滑)。图16示出能量递送装置1600,其具有与位于天线1630内的较大同轴传输线1620连接的窄同轴传输线1610,同轴传输线与内层导体1640连接。
本发明不限于具体的同轴传输线形状。实际上,在一些实施方案中,同轴传输线和/或电介质元件的形状选为和/或可调节为适应特定需求。图2示出同轴传输线和/或电介质元件可以采用的多种非限制性形状。
在一些实施方案中,外层导体是20标准针头或与20标准针头相似直径的组件。优选地,对于经皮使用,外层导体不大于17标准针头(例如,不大于16标准针头)。在一些实施方案中,外层导体是17标准针头。但是,在一些实施方案中,根据期望使用更大装置。例如,在一些实施方案中,使用12标准直径。本发明并不局限于外层导体的尺寸。在一些实施方案中,外层导体配置成安装在多个系列的较大针头内以实现帮助医疗操作(例如,帮助组织活检)的目的(参见例如美国专利号6,652,520、6,582,486、6,355,033、6,306,132;各通过引用全部并入本文)。在一些实施方案中,中心导体配置成延伸超出外层导体,以实现向期望的位置递送能量的目的。在一些实施方案中,对一些或全部馈线特性阻抗进行优化以实现最小功率耗散,而无论端接在其远端处的天线的类型。
在一些实施方案中,能量递送装置具有三轴传输线。在一些实施方案中,本发明提供三轴微波探针设计,其中外层导体允许改进的天线调谐以减少通过传输线反射的能量。此改进的调谐降低传输线的发热,使得更多功率被应用于组织和/或能够使用更小的传输线(例如更窄)。再者,外层导体可以相对于内层导体滑动以便能够调节调谐来校正组织对调谐的影响。在一些实施方案中,将外层导体相对于内层导体固定。在一些实施方案中,本发明提供探针,该探针具有第一导体和管状第二导体,管状第二导体同轴地环绕第一导体但与之绝缘(例如,通过电介质材料和/或冷却剂绝缘)。管状第三导体同轴地环绕第一和第二导体安装。当探针近端插入到身体中时,第一导体可以延伸超出第二导体而进入组织。第二导体可以延伸超出第三导体而进入组织以提供对第一和第二导体的外露部分外侧的探针中耗散的探针极限功率的改进调谐。第三管状导体可以是用于插入到身体中的通道导管,或可以与通道导管分开。在一些实施方案中,包括第一、第二和第三导体的装置可充分地柔性以导航卷绕路径(例如,穿过接受试者体内的分支结构(例如,穿过前肢树))。在一些实施方案中,第一和第二导体可以能滑动地安装在第三导体内。在一些实施方案中,本发明提供有助于通过在第三导体内滑动第一和第二导体进行探针在组织中的调谐的探针。在一些实施方案中,该探针包括附接到第三导体以可调节地相对于第三导体锁定第一和第二导体的滑动位置的锁扣。在一些实施方案中,本发明提供三轴传输线,如美国专利号7,101,369、美国专利申请号2007/0016180、美国专利申请号2008/0033424、美国专利申请号No.20100045558、每个专利申请号20100045559,通过引用它们全部并入本文。
在一些实施方案中,同轴传输线或三轴传输线的一个或多个组件包括柔性和/或可收缩材料(例如,双向拉伸的聚对苯二甲酸乙二醇酯(boPET)(例如,MYLAR、MELINEX、HOSTAPHAN等)等)。在一些实施方案中,同轴传输线的外层导体(或三轴传输线的第二(中间)导体)包括柔性和/或可收缩材料(例如,boPET)。在一些实施方案中,同轴传输线的组件(例如外层导体)包括一个或多个膜中涂覆的boPET以提供期望的特征(例如,导电性、绝热等)。在一些实施方案中,可收缩外层导体允许传输线采用可变横截剖面(例如,可变直径、可变形状等)(参见例如图32I和图32J)。在一些实施方案中,可收缩外层导体围绕内层导体。在一些实施方案中,可收缩外层导体形成绕着内层导体的闭合囊。在一些实施方案中,可以使液体(例如,电介质材料和/或冷却剂)流经可收缩外层导体以调节其可变横截剖面。在一些实施方案中,当从外层导体内的区域抽回液体时,可收缩外层导体采用已收缩构形,从而减少外层导体内的压力。在一些实施方案中,在已收缩构形下,外层导体显示最小化横截剖面(参见例如图32I和图32J)。在一些实施方案中,在已收缩构形下,外层导体紧贴地抱着内层导体的周围(参见图32J)。在一些实施方案中,已收缩构形提供减小的横截剖面和/或增大的柔性以帮助插入、安置和/或抽回同轴传输线。在一些实施方案中,当液体流入外层导体内的区域时,可收缩外层导体采用已膨胀构形,从而增加外层导体内的压力。在一些实施方案中,在已膨胀构形下,外层导体显示最大化横截剖面。在一些实施方案中,在已膨胀构形下,使内层导体与外层导体之间的距离最大。在一些实施方案中,已膨胀构形提供增大的横截剖面和/或优化的传导以帮助沿着同轴传输线的能量递送。在一些实施方案中,已膨胀构形提供沿着同轴传输线的增大的冷却剂体积。在一些实施方案中,可收缩外层导体在已膨胀构形下采用任何适合的形状。在一些实施方案中,同轴传输线穿过管腔行进,该管腔的形状决定可收缩外层导体的已膨胀形状。在一些实施方案中,可收缩外层导体在已收缩构形下采用任何适合的形状。在一些实施方案中,电介质材料的形状或构形表示可收缩外层导体的已收缩形状。在一些实施方案中,可收缩外层导体还包括冷却剂护套,正如本文所述。
在一些实施方案中,电介质材料构形为在电介质空间内提供通道(例如,空气通道、冷却剂通道、空通道等)(参见图33)。在一些实施方案中,由电介质材料完全或部分地包含通道。在一些实施方案中,该电介质材料将电介质空间分成多个通道以形成“车轮”构形(参见图33和图34)。在一些实施方案中,该电介质材料将电介质空间(例如,内层和外层导体之间的空间)分成一个或多个通道(例如,1、2、3、4、5、6、7、8、9、10个或更多个通道)。在一些实施方案中,电介质空间内的通道用作冷却剂通道。在一些实施方案中,电介质空间内的通道容纳冷却剂管。在一些实施方案中,通道内的冷却剂管沿着传输线递送冷却剂,并且冷却剂通道提供至传输线近端的返回路径(参见例如图34)。在一些实施方案中,通道包括多个冷却剂管(例如,冷却剂和返回)。在一些实施方案中,电介质材料形成的通道包括非金属填充物。在一些实施方案中,非金属填充物置留在传输线的远端区域中的通道中(例如,超出外层导体的端部)。
在一些实施方案中,能量递送装置配备有近端部分和远端部分,其中远端部分可拆除,并以能够附着于核心近端部分的多种不同配置提供。例如,在一些实施方案中,该近端部分包括手柄和至系统的其他组件(例如功率源)的接口,以及远端部分包括具有期望的特性的可拆除天线。可以提供为不同用途配置的多个不同天线并将其附接到用于实现适合指示的手柄单元。
在一些实施方案中,将多个(例如多于1个)(例如,2、3、4、5、10、20个等)同轴传输线和/或三轴传输线定位于每个能量递送装置内,以实现在很长时间段上递送高数量的能量的目的。在本发明的开发实施方案的过程期间进行的试验中,已确证具有三个低功率同轴传输线的(例如定位于相同探针内的)(例如在13标准针头内)能量递送装置能够比具有更高功率同轴传输线的能量递送装置持续更长时间地递送更高数量的能量。
在一些实施方案中,该装置配置成与可拆除手柄附接。本发明不限于特定类型的可拆除手柄。在一些实施方案中,该可拆除手柄配置成与多个装置(例如,1、2、3、4、5、10、20、50...)连接,以实现通过这些装置控制能量递送的目的。在一些实施方案中,该手柄设计有功率放大器以用于向能量递送装置提供功率。
在一些实施方案中,该装置设计成物理上围绕特定组织区域,以实现能量递送的目的(例如,该装置可以柔性地构形为围绕特定组织区域)。例如,在一些实施方案中,该装置设计成柔性地构形为围绕血管(例如,肺静脉),以实现向组织内的精确区域递送能量的目的。
在一些实施方案中,该能量递送装置配置成用于在暴露于压缩力时保持形状。该能量递送装置不限于用于在暴露于压缩力时保持形状的特定配置。在一些实施方案中,该能量递送装置其中具有实现压力下保持形状的目的的拉线系统。本发明不限于特定类型的拉线系统。在一些实施方案中,该拉线系统包括与拉线锚点连接的一个或多个拉线(例如,1个拉线、2个拉线、5个拉线、10个拉线、50个拉线)。在一些实施方案中,连接到拉线锚点的一个或多个拉线收缩(例如,推送、拉扯)(例如使用者收缩)导致能量递送装置呈现非柔性状态,使得暴露于压缩力下时,能量递送装置保持其形状。在一些实施方案中,拉线可以锁定在已收缩位置中。在一些实施方案中,具有与拉线锚点连接的一个或多个拉线的能量递送装置在无拉线收缩时保持柔性。图14示出能量递送装置1400,其具有与拉线锚点1430连接的两个拉线1410、1420。在一些实施方案中,能量递送装置具有以对称模式布置的三个或更多个拉线,这些拉线被预先拉紧以便提供常态非柔性形状。在一些实施方案中,这些拉线配置成响应刺激(例如,电刺激、压力刺激)而自动地收缩(例如,肌肉线)。在一些实施方案中,这些拉线配置成响应压缩力而提供平衡力(例如,反作用力)。在一些实施方案中,这些拉线设计成在特定温度下弯曲(例如,超弹性镍钛合金丝)。在一些实施方案中,拉线在特定温度下的弯曲是可检测事件,能够用于监视操作的状态。
在一些实施方案中,能量递送装置配置成兼有柔性和非柔性区域。这些能量递送装置不限于兼有柔性和非柔性区域的特定配置。在一些实施方案中,这些柔性区域包括塑料(例如,PEEK)。在一些实施方案中,这些非柔性区域包括陶瓷。这些柔性和非柔性区域不限于能量递送装置内的特定部位。在一些实施方案中,柔性区域定位于经受较低量微波场发射的区域中。在一些实施方案中,非柔性区域定位于经受高数量微波场发射的区域中(例如,位于天线的近端部分上方以提供电介质强度和机械硬度)。图15示出能量递送装置1500的外部透视图,其具有非柔性区域1510和1520(例如陶瓷)和柔性区域1530(例如,PEEK)。图17示出具有非柔性区域1710和1720和柔性区域1730的能量递送装置1700的横截面。如图所示,非柔性区域1710和1720呈缓变锥形,以便例如提供与插管的更大接合的表面面积,并且以便例如将来自弯曲力的应力分布到更大表面面积上。如图所示,柔性区域1730定位于接合部外侧,以由于其大直径尺寸而达到改善强度的目的。在一些实施方案中,对非柔性区域的缓变锥形填充以接合材料以提供额外的强度。在一些实施方案中,这些能量递送装置在远端部分(例如,天线)上具有热缩以用于提供额外的耐用性。
在一些实施方案中,天线的材料是耐用的,并且提供高电介质常数。在一些实施方案中,天线的材料是锆和/或锆的功能等效物。在一些实施方案中,该能量递送装置提供为附接到同一个或不同功率源的两个或更多个单独天线。在一些实施方案中,不同天线附接到相同手柄,而在其他实施方案中,对每个天线提供不同的手柄。在一些实施方案中,在患者体内同时或顺序地(例如,切换)使用多个天线在患者体内递送期望强度和几何形状的能量。在一些实施方案中,这些天线可单独地控制。在一些实施方案中,可以由单个使用者、计算机或多个使用者操作多个天线。
在一些实施方案中,这些能量递送装置设计成在无菌区内工作。本发明不限于特定的无菌区环境。在一些实施方案中,无菌区包括围绕接受试者的区域(例如,操作台)。在一些实施方案中,该无菌区包括仅允许对消除的物件(例如,消毒的装置、消毒的附试剂、消毒的身体部分)介入的任何区域。在一些实施方案中,无菌区包括易受病菌感染的任何区域。在一些实施方案中,无菌区其中具有无菌区阻隔装置,其构建无菌区与非无菌区之间的阻隔。本发明不限于特定无菌区阻隔装置。在一些实施方案中,该无菌区阻隔装置是围绕接受涉及本发明系统的操作(例如组织消融)的接受试者的遮帘。在一些实施方案中,手术室是无菌的,并提供无菌区。在一些实施方案中,该无菌区阻隔装置由本发明的系统的使用者构建。在一些实施方案中,无菌区阻隔装置阻止非无菌物件进入无菌区。在一些实施方案中,在无菌区中提供能量递送装置,而无菌区中不包含该系统的一个或多个其他组件(例如,功率源)。
在一些实施方案中,这些能量递送装置其中具有保护传感器,这些保护传感器设计成防止非期望地使用能量递送装置。这些能量递送装置不限于特定类型或种类的保护传感器。在一些实施方案中,这些能量递送装置其中具有温度传感器,该温度传感器设计成测量例如能量递送装置和/或接触该能量递送装置的组织的温度。在一些实施方案中,当温度达到某个水平时,传感器通过例如处理器向使用者传送警报。在一些实施方案中,这些能量递送装置其中具有皮肤接触传感器,该皮肤接触传感器设计成检测能量递送装置与皮肤(例如,皮肤外表面)接触。在一些实施方案中,当与非期望的皮肤接触时,该皮肤接触传感器通过例如处理器向使用者传送警报。在一些实施方案中,这些能量递送装置其中具有空气接触传感器,该空气接触传感器设计成检测能量递送装置与环境空气接触(例如,通过测量通过装置的电的反射功率来检测)。在一些实施方案中,当与非期望的空气接触时,该空气接触传感器通过例如处理器向使用者传送警报。在一些实施方案中,这些传感器设计成在检测到非期望的情况出现(例如,与皮肤接触、与空气接触、非期望的温度升高/下降)时防止能量递送装置的使用(例如自动地减少或阻止功率递送)。在一些实施方案中,这些传感器与处理器通信以使处理器在无非期望情况发生时显示通知(例如,绿灯)。在一些实施方案中,这些传感器与处理器通信以使处理器在存在非期望情况发生时显示通知(例如,绿灯)并标识非期望情况发生。
在一些实施方案中,高于制造商建议的额定功率使用能量递送装置。在一些实施方案中,应用本文描述的冷却技术以便能够进行更高的功率递送。本发明不限于特定量的功率增加。在一些实施方案中,额定功率超过制造商建议5x或更多(例如,5x、6x、10x、15x、20x等)。
此外,本发明的装置配置成在(例如由使用者控制的)不同时间和按(例如使用者控制的)不同能量强度从装置的不同区域(例如,外层导体分段间隙,下文更详细地予以描述)递送能量。对装置的此类控制能够进行能量递送场的定相,以在特定组织区域实现相长相位干涉或在特定组织区域实现相消相位干涉的目的。例如,使用者可以采用通过两个(或更多个)位置紧靠的外层导体分段的能量递送,以便实现组合的能量强度(例如,相长相位干涉)。此类组合的能量强度在特别深或密集的组织区域中可以是有用的。此外,此类组合的能量强度可以利用两个(或更多个)装置来实现。在一些实施方案中,一个或多个装置之间的相位干涉(例如,相长相位干涉、相消相位干涉)由处理器、调谐元件、用户和/或功率分配器来控制。因此,使用者能够控制经由装置的不同区域的能量释放,并控制经由装置的每个区域递送的能量的量,以实现精确地雕刻(sculpting)消融区的目的。
在一些实施方案中,本发明的能量递送系统利用能量递送装置,其具有优化的特性阻抗、三轴设计、具有冷却传递通道的能量递送装置、“车轮”横截面、用作电介质材料的冷却剂液体、多孔性电介质材料、具有中心馈电双极的能量递送装置和/或具有线性阵列天线组件的能量递送装置(上文和下文各予以详细描述)。
本发明提供用于冷却装置的范围广泛的多种方法。一些实施方案采用可熔化阻隔装置,当熔化时,允许实现吸热反应的多种化学物质接触。图3中示出此类实施方案的一个示例。图3A和图3B显示具有划分的分段的同轴传输线区域(例如通道),这些分段含有以可熔化壁阻塞且用于实现防止非期望的装置发热(例如,沿着外层导体发热)的目的的第一和第二材料。图3A和图3B说明标准同轴传输线300,其配置成在本发明的任何能量递送装置内使用。如图3A所示,同轴传输线300具有中心导体310、电介质材料320和外层导体330。此外,同轴传输线300其中具有四个划分的分段340,由壁350(例如可熔化蜡壁)分隔。划分的分段340分成第一划分的分段360和第二划分的分段370。在一些实施方案中,如图3A所示,第一划分的分段360和第二划分的分段370是连续地交错布置的。如图3A所示,第一划分的分段360包含第一种材料(阴影类型1)以及第二划分的分段370包含第二种材料(阴影类型2)。壁350阻止第一种材料和第二种材料混合。图3B示出在某个事件(例如划分的分段340之一处温度升高)之后图3A所述的同轴传输线300。如图所示,壁350之一已熔化,从而允许区域360中包含的第一种材料与区域370中包含的第二种材料混合。图3B还示出未熔化的壁350,其中温度上升未超过某个温度阈值。
图4示出备选实施方案。图4A和图4B显示具有分区的线段的同轴传输线实施方案,这些线段被可熔化壁分隔且包含防止非期望的装置发热(例如,沿着外层导体发热)的第一和第二材料(例如,配置成混合时生成降温化学反应的材料)。图4A和图4B示出同轴传输线400,其配置成在本发明的任何能量递送装置内使用。如图4A所示,同轴传输线400具有中心导体410、电介质材料420和外层导体430。此外,同轴传输线400其中具有四个划分的分段440,由壁450分隔。壁450各包含与第二种材料470分开的第一材料460。图4B示出在某个事件(例如划分的分段440之一处温度升高)之后图4A所述的同轴传输线400。如图所示,壁450之一已熔化,从而允许划分的相邻分段440内的区域460中包含的第一种材料与区域470中包含的第二种材料混合。图4B还演示未熔化的壁450,其中温度上升未超过某个温度阈值。
在一些实施方案中,该装置还包括用于将天线固定在特定组织区域处的天线的锚定元件。该装置不限于特定类型的锚定元件。在一些实施方案中,该锚定元件是可膨胀气囊(例如,其中气囊膨胀将天线固定在特定组织区域处)。利用可膨胀气囊作为锚定元件的另一个优点是气囊膨胀时抑制血流或气流到特定区域。这种气流或血流抑制在例如心脏消融手术和涉及肺部组织、血管组织和胃肠组织的消融手术中尤其有用。在一些实施方案中,锚定元件是天线的延伸部,其设计成接合(例如锁扣到)特定组织区域。又一些示例包括但不限于,美国专利号6,364,876和5,741,249中所描述的锚定元件,各通过引用全部并入本文。在一些实施方案中,锚定元件具有循环试剂(例如,在其临界点处或附近的气体;CO2),其冻结天线与组织之间的介面,从而将天线粘黏到位。在此类实施方案中,随着组织熔化,天线由于组织脱水而保持固定于组织区域。
在一些实施方案中,将本发明的装置用于具有高气流量和/或血流量的组织区域(例如,肺部组织、心脏组织、胃肠组织、血管组织)的消融。在涉及具有高气流量和/或高血流量的组织区域消融的一些实施方案中,还利用用于抑制气流和/或血流至该组织区域的元件。本发明不限于特定的气流和/或血流抑制元件。在一些实施方案中,将该装置与气管内/支气管内管组合。在一些实施方案中,可以在组织区域处将与装置附接的气囊膨胀,以实现将装置固定在期望的组织区域内,并抑制血流和/或气流至期望的组织区域的目的。
因此,在一些实施方案中,本发明的系统、装置和方法提供与提供通路阻塞(例如支气管阻塞)的组件配接的消融装置。可以直接将该阻塞组件(例如,可膨胀气囊)安装在消融系统上,或可以将其与该系统关联的另一个组件(例如,气管内管或支气管内管)组合使用。
在一些实施方案中,可以将本发明的装置安装到附加的医疗操作装置上。例如,可以将这些装置安装到内窥镜、血管内导管、支气管镜或腹腔镜上。在一些实施方案中,将这些装置安装到可转向导管上。在一些实施方案中,将柔性导管安装在内窥镜、血管内导管或腹腔镜上。例如,在一些实施方案中,该柔性导管具有多个关节(例如,蜈蚣状),其能够按需弯曲且转向以导航到期望的治疗位置。在一些实施方案中,可以经内窥镜、血管内导管、支气管镜或腹腔镜部署本发明的装置。
在一些实施方案中,这些能量递送装置其中具有插头区域,该插头区域设计成将能量递送装置的内部分隔,以便例如防止允许对一些部分冷却或加热时将一个或多个其他部分冷却或加热。该插头区域可以配置成将能量递送装置的任何一个或多个期望的区域彼此隔离。在一些实施方案中,该插头区域设计成防止对能量递送装置的一个或多个区域冷却。在一些实施方案中,该插头区域设计成防止对能量递送装置中配置成递送消融能量的区域冷却。插头区域不限于防止将该装置的一部分冷却的特定方式。在一些实施方案中,该插头区域设计成与具有降低的温度的区域(例如,能量递送装置中具有循环冷却剂的区域)接触。在一些实施方案中,插头区域的材料使得它能够与具有低温的材料或区域接触而不会使其温度实质性地降低(例如,绝缘材料)。插头区域不限于特定类型的绝缘材料(例如,合成聚合物(例如,聚苯乙烯、polyicynene、聚氨酯、聚异氰脲酸酯)、气凝胶、纤维玻璃、软木)。插头区域不限于特定大小尺寸。在一些实施方案中,插头区域的大小使得它能够防止循环冷却剂的冷却效果降低能量递送装置的其他区域的温度。在一些实施方案中,该插头区域沿着能量递送装置的整个插管部分定位。在一些实施方案中,该插头区域定位于能量递送装置的插管部分的远端部分。在一些实施方案中,该插头区域包绕这能量递送装置的插管部分的外部部分。
在一些实施方案中,这些能量递送装置其中具有“粘着”区域,该粘着区域设计成用于将能量递送装置固定于组织区域。粘着区域不限于用于帮助将能量递送装置关联到组织区域的特定方式。在一些实施方案中,该粘着区域配置成达到并保持降低的温度,以便在与组织区域接触时,组织区域粘附到粘着区域,从而使得能量递送装置与组织区域附着。粘着区域不限于特定材料组成。在一些实施方案中,粘着区域是例如金属材料、陶瓷材料、塑料材料和/或此类物质的任何组合。在一些实施方案中,该粘着区域包含能够达到并保持使得与组织区域接触时引起组织区域附着于粘着区域上的温度。粘着区域不限于特定大小尺寸。在一些实施方案中,粘着区域的大小使得它能够在能量递送装置的同时组织消融和/或同时移动(例如定位)期间保持组织区域的附着。在一些实施方案中,提供两个或更多个粘着区域。
图29示出本发明的能量递送装置实施方案。如图所示,将能量递送装置100定位于消融区105的附近。如图所示,能量递送装置100具有与手柄130连接的冷却管110和电缆组装件120,手柄130与冷却的探针插管140连接,冷却的探针插管140与天线区域150连接。如图所示,冷却的探针插管140和天线区域150之间的区域其中具有粘着区域160和插管区域170。粘着区域160设计成达到并保持适于组织附着于其表面上的温度。插头区域170设计成防止因冷却的探针插管140和粘着区域160所产生的温度下降影响(例如,降低)天线区域150内的温度。如图所示,在这些实施方案中,消融区105包含能量递送装置100的冷却的区域(例如,冷却的探针插管140和粘着区域160)和能量递送装置100的未冷却的区域(例如,插头区域170和天线区域150)。
在一些实施方案中,本发明的能量递送系统利用配置成用于以优化的特性阻抗递送微波能量的装置(参见例如美国专利申请序列号11/728,428;其通过引用全部并入本文)。此类装置配置成以高于50Ω的特性阻抗工作(例如,介于50与90Ω之间;例如高于50、...、55、56、57、58、59、60、61、62、...90Ω,优选为77Ω)。在一些实施方案中,通过选择(或剔除)适合的电介质材料来实现优化的特性阻抗。配置成以优化的特性阻抗工作的能量递送装置在组织消融操作方面尤其有用,并提供优于非优化的装置的许多优点。例如,目前可用的利用微波能量的医疗装置的主要缺点在于,能量经由传输线非期望地耗散到受试者的组织上,从而导致非期望的灼伤。此类微波能量损耗源于目前可用的医疗装置设计内的局限性。医疗装置内的同轴传输线的标准阻抗是50Ω或更低。一般,阻抗低于50Ω的同轴传输线存在因有限电导率值的电介质材料的存在所致的高热损耗量。因此,具有阻抗在50Ω或更低的同轴传输线的医疗装置存在沿着传输线的高热损耗量。具体来说,利用微波能量的医疗装置经其中电介质材料(例如,聚四氟乙烯或PTFE)包围内层导体的同轴电缆来传输能量。如PTFE的电介质材料具有有限的导电性,这导致传输线非期望的发热。当持续足够长的时间段提供能量的必需量来实现组织消融时,情况尤其如此。配置成以优化的特性阻抗工作的能量递送装置通过剔除或基本剔除固态电介质绝缘体来克服此局限性。例如,使用空气替代传统电介质绝缘体促使77Ω下工作的高效装置。在一些实施方案中,这些装置采用电导率接近0的电介质材料(例如,空气、水、惰性气体、真空、部分真空或其组合)。使用同轴的三轴传输线或电导率接近0的电介质材料,大大地降低了此类装置内的传输线的总体温度,并因此大大地降低非期望的组织发热。
此外,通过提供具有电导率接近0的电介质材料的同轴或三轴传输线,并避免使用典型的电介质聚合物,可以将同轴传输线设计成使之能够安装在小针头(例如,18-20标准针头)或类似地小或更小的导管内。常规技术下,配置成递送微波能量的医疗装置设计成由于大量电介质材料而安装在大针头内。由于唯一商用装置(Microtaze公司(Nippon Shoji,Osaka,Japan)的2.450MHz、1.6mm直径探针70W持续60秒)所形成的的大探针尺寸(14标准)与以及相对较小的组织坏死区(1.6cm直径)(Seki T等,Cancer 74:817(1994)),微波消融尚未广泛在临床上应用。其他装置使用外部水冷套,外部水冷套也增加了探针尺寸并且可能增加组织的损伤。当用于胸部和腹部时,这些大探针尺寸增加了并发症的风险。
在一些实施方案中,本发明的这些能量递送系统利用具有冷却剂传递通道的能量递送装置(参见例如美国专利号6,461,351,以及美国专利申请序列号11/728,460;其通过引用全部并入本文)。具体来说,本发明的能量递送系统利用具有同轴或三轴传输线的装置,其能够通过使冷却剂材料流经同轴组件的电介质和/或内部或外部导体来实现冷却。在一些实施方案中,冷却剂通道包括电介质空间的一部分或全部。在一些实施方案中,这些装置配置成将装置的直径减到最小,同时允许冷却剂通过。在一些实施方案中,冷却剂液体包含电介质材料。在一些实施方案中,使用电介质材料作为冷却剂(例如,可流动冷却剂)将冷却传输线所需的空间减到最小。在一些实施方案中,这是通过以传送冷却剂所经由的通道替换内部或外部导体条和/或固体电介质材料来实现。在一些实施方案中,这些通道是通过沿着同轴电缆的长度从一个或多个(例如,两个、三个、四个)区剥离外层导体或内层导体和/或固体电介质材料生成的。利用外层或内层导体和/或固体电介质材料中被移除的部分构建用于传送冷却剂的通道,剥离的组件安装在比移除外层或内层导体和/或固体电介质材料之前的情况下更小的外层导体内。在其他实施方案中,使用电介质空间的一部分作为冷却剂通道。这些实施方案提供更小的装置,以及由此产生的所有优点。在其中采用多个通道的一些实施方案中,冷却剂传送可以朝交替变化的方向流经一个或多个通道。此类装置的优点在于,无需增加同轴或三轴电缆的直径来容纳冷却剂。其他实施方案利用多孔性电介质材料,冷却剂能够流经多孔性电介质材料中以实现降温而无需增加直径。相似地,使电介质材料本身作为冷却剂流动,这能够对同轴或三轴传输线冷却而不会增大横截剖面。这样能够使用的冷却的装置为最小创伤的且能够介入以其他方式无法介入或仅在有非期望风险的情况下可介入的身体区域。使用冷却剂也允许进行更大的能量递送和/或持续延长的时间段的能量递送。上文在发明内容中描述了其他冷却实施方案。
在一些实施方案中,该装置具有附接到装置的手柄,其中该手柄配置成例如控制冷却剂传递进入和离开冷却剂通道。在一些实施方案中,该手柄在某个时间量之后和/或随着装置达到某个阈值温度时自动地将冷却剂传入并传出冷却剂通道。在一些实施方案中,该手柄在某个时间量之后和/或随着装置下降到某个阈值温度以下时自动地停止将冷却剂传入并传出冷却剂通道。在一些实施方案中,以手动方式控制手柄来调节冷却剂流。
在一些实施方案中,手柄其中具有一个或多个(例如,1、2、3、4、5、6、7、8、9、10等)灯(例如显示灯(例如LED灯))。在一些实施方案中,这些灯配置成用于标识目的。例如,在一些实施方案中,使用灯来指示装置的特定功能处于活动或不活动状态。例如,在装置具有多个探针的情况中,使用一个或多个灯来指示任何个体探针是否加电或未加电。在一些实施方案中,使用这些灯标识事件的发生(例如,冷却剂传送通过装置、能量传送通过装置、相应的探测器移动,装置内的设置改变(例如,温度、定位)等)。这些手柄不限于显示的特定方式(例如,闪烁、交替颜色、单色等)。图30示出装置30000,其具有三个LED灯31000、32000和33000。图31示出使用中的这种装置30000,其中该装置具有三个LED灯31000、32000和33000。
图5示出配置成控制冷却剂传递进入和离开冷却剂通道的手柄的示意图。如图5所示,手柄500与具有冷却剂通道520的同轴传输线510接合。手柄500其中具有冷却剂输入通道530、冷却剂输出通道540、配置成阻止流经阻塞组件后的通道520的第一阻塞组件550(例如,螺钉或销钉)和第二阻塞组件560。冷却剂输入通道530配置成向冷却剂通道520提供冷却剂。冷却剂输出通道540配置成从冷却剂通道520移除冷却剂(例如,循环且从装置移除热的冷却剂)。冷却剂输入通道530和冷却剂输出通道540不限于用于提供和移除冷却剂的特定尺寸或方式。第一阻塞组件550和第二阻塞组件560不限于特定尺寸或形状。在一些实施方案中,第一阻塞组件550和第二阻塞组件560各具有与冷却剂输入通道530和冷却剂输出通道540的直径匹配的圆形形状和尺寸。在一些实施方案中,第一阻塞组件550和第二阻塞组件560用于阻塞冷却剂回流到手柄500的某个区域。在一些实施方案中,这些阻塞组件配置成使得通道的仅一部分(例如,1%、5%、10%、20%、50%、75%、85%、95%、99%)被阻塞。仅阻塞一部分使得使用者能够例如改变冷却剂通道520内的压力梯度。
具有冷却剂传递通道的能量递送装置能够调节同轴传输线的特性阻抗。具体来说,可以调节冷却剂(或通过通道的非冷却剂材料)的电介质特性以更改分隔外层导体与内层导体的电介质的整体复介电常数。由此,在操作过程中实现特性阻抗的变化,以便例如优化系统、装置或应用的能量递送、组织影响、温度和其他期望的特性。在其他实施方案中,在操作之前基于期望的参数选择流材料,并在整个操作过程中不改变。因此,此类装置在变化的电介质环境中提供经调节在变化的环境中谐振的天线辐射,以便例如能够进行天线的自适应调谐以确保峰值工作效率。液体流还能够按期望实现往返于同轴电缆的热传递。在一些实施方案中,通道或掏空区域包含真空或部分真空。在一些实施方案中,通过以材料(例如,提供期望的效果的任何材料)填充真空来改变阻抗。可以在一个或多个时间点处或连续地进行调节。
具有冷却剂传递通道的能量递送装置不限于通道的特定方面。在一些实施方案中,通道仅穿过外层或内层导体和/或固体电介质材料的一部分,以使流过的材料与内层或外层导体以及余下的电介质材料接触。在一些实施方案中,这些通道是沿着同轴电缆的长度呈直线的。在一些实施方案中,这些通道是非直线的。在一些实施方案中,在使用多于一个通道的情况中,这些通道彼此平行。在其他实施方案中,这些通道是非平行的。在一些实施方案中,这些通道彼此交叉。在一些实施方案中,这些通道移除外层或内层导体和/或固体电介质材料的超过50%(例如,60%、70%、80%等)。在一些实施方案中,这些通道移除基本全部的外层或内层导体和/或固体电介质材料。在一些实施方案中,两个或更多个通道汇合以允许液体的混合(例如,以便诱发吸热反应)。在一些实施方案中,冷却剂通道包括电介质空间的1-100%(例如,1%...2%...5%...10%...20%...50%...90%...100%)。
具有冷却剂传递通道的能量递送装置不受限于流经外层或内层导体、可收缩通道、电介质空间、冷却剂通道、多孔性电介质材料和/或固体电介质材料的材料的属性。在一些实施方案中,将该材料选为使控制装置的特性阻抗的能力最大,使得往返于同轴电缆的热传递最大或优化特性阻抗和热传递的控制的组合。在一些实施方案中,流经外层或内层导体和/或固体电介质材料的材料是液体。在一些实施方案中,该材料是气体。在一些实施方案中,该材料是液体或气体的组合。本发明不限于液体或气体的使用。在一些实施方案中,该材料是浆料、凝胶体等。在一些实施方案中,使用冷却剂液体。可以使用现在已知或后来开发的任何冷却剂液体。示范冷却剂液体包括但不限于,水、二醇、空气、惰性气体、二氧化碳、氮气、氦气、六氟化硫、离子溶液(例如,含有或不含钾离子和其他离子的氯化钠)、葡萄糖液、林格乳酸盐液、有机化学溶液(例如,乙二醇、二乙二醇或丙二醇)、油(例如,矿物油、硅油、氟碳油)、液体金属、氟利昂、卤代甲烷、液化丙烷、其他卤代烷、无水氨、二氧化硫。在一些实施方案中,在递送到能量递送装置中之前将冷却剂液体预先冷却。在一些实施方案中,在进入能量递送装置中之后,利用冷却元件将冷却剂液体冷却。在一些实施方案中,通过电介质材料的材料设计成在与其他材料接触时生成吸热反应。
具有冷却剂传递通道的能量递送装置配置成允许通过装置对补液参数进行控制。在一些实施方案中,该装置由使用者(例如,治疗医师或医生)按需手动地调节。在一些实施方案中,这些调节是自动化的。在一些实施方案中,这些装置配置成具有传感器或与传感器一起使用,这些传感器向使用者或自动化系统(例如,包括配置成用于接收信息并相应地调节补液或其他装置参数的处理器和/或软件)提供信息。可调节的参数包括但不限于,补液的速度、影响液体的特性(例如,电介质特性、热传递特性、流速等)的离子或其他成分的浓度、液体的温度、液体的类型、混合比率(例如,精确调谐或冷却的气体/液体的混合物)。因此,具有冷却剂传递通道的能量递送装置配置成采用能够改变一个或多个期望的参数以更精确地对装置(例如天线)调谐的反馈回路,或如果装置、装置的多个部分或受试者的组织达到非期望的温度(或持续非期望的时间达到某个温度),则加速补液。
具有冷却剂传递通道的能量递送装置提供了优于目前可用的系统和装置的许多优点。例如,通过提供切出通道且能够基本移除固体电介质材料体积的同轴或三轴传输线,传输线可以设计成使得它能够安装在非常小的针头(例如18-20标准或更小的针头)内。同样地,使用电介质空间的一部分或全部同时作为电介质和冷却剂,可以减小传输线的直径。常规技术下,配置成递送微波能量的医疗装置设计成由于大量电介质材料而安装在大针头内。其他装置使用外部水冷套,外部水冷套也增加了探针尺寸并且可能增加组织的损伤。当用于胸部和腹部时,这些大探针尺寸增加了并发症的风险。再者,由于其宽尺寸和降低的柔性,这些探针无法介入受试者体内高迂回且分支的结构。在本发明的一些实施方案中,装置中进入受试者的部分的最大外径是16-18标准或更小(20标准或更小)。
图6示出标准同轴电缆实施方案和具有冷却剂通路的本发明实施方案的横向剖面图。如图6所示,提供常规同轴电缆600和本发明的两个示范同轴电缆610和620。同轴电缆一般由三个分隔的空间形成:金属内层导体630、金属外层导体650和它们之间的空间。它们之间的空间常常填充以低耗散电介质材料640(例如,聚四氟乙烯或PTFE)以机械上支承内层导体并将其与外层导体保持在一起。按内层导体与电介质材料的直径(例如外层导体的内径)与它们之间的空间介电常数之比固定同轴电缆的特性阻抗。常常,介电常数因为包括介电常数的固体聚合物而固定。但是,在本发明的实施方案中,可变介电常数(或电导率)的液体至少部分地占据此空间,从而能够调节电缆的特性阻抗。
仍参考图6,在本发明的一个实施方案中,同轴电缆610将电介质材料的外部移除以在电介质材料640与外层导体650之间形成通道。在所示的实施方案中,通过添加支承线660将形成的空间分隔成四个不同的通道670,这些支承线660配置成保持外层导体650与固体电介质材料640之间的空间。支承线660可以由任何期望的材料制成,并且可以是与固体电介质材料640相同或不同的材料。在一些实施方案中,为避免装置的非期望发热(例如外层导体的非期望发热),支承线660由生物相容且可熔化材料(例如,蜡)制成。多个通道的存在使得一个或多个通道能够实现朝一个方向的流动(朝向电缆的近端)以及一个或多个其他通道能够实现朝相反方向(朝向电缆的远端)的流动。
仍参考图6,在另一个实施方案中,同轴电缆620具有相当部分的固体电介质640被移除。这种实施方案可以通过例如在四面的每一面将固体电介质材料640向下剥离到内层导体630的表面来生成。在另一个实施方案中,对内层导体630应用电介质材料640的剥离以形成该结构。在本实施方案中,形成四个通道670。通过移除实质性量的电介质材料640,实质性地减小外层导体650的直径。其余电介质材料640提供的角部提供支承以相对于内层导体630保持外层导体650的位置。在本实施方案中,实质性地减小同轴电缆620和装置的整体直径。
在一些实施方案中,这些装置具有通过插入管形成的冷却剂通路,插入的管配置成穿过本发明的任何能量发射装置的电介质部分或内层或外层导体使冷却剂循环。图7示出定位于具有外层导体720、电介质材料730和内层导体740的能量发射装置710内的冷却剂循环管700(例如,冷却剂针头、导管)。如图7所示,管700沿着电介质材料730的外侧边缘和外层导体720的内侧边缘,其中内层导体740大致定位于在电介质材料730的中心。在一些实施方案中,管700定位于电介质材料730内,以使它不接触外层导体720。在一些实施方案中,管700具有多个通道(未示出),用于实现使得冷却剂在管700内循环而不使冷却剂传递到电介质材料730和/或外层导体720中,从而将电介质材料730和/或外层导体720随管700的外部一起冷却。
在一些实施方案中,本发明的这些能量递送系统利用采用中心馈电双极组件的能量递送装置(参见例如美国专利申请序列号11/728,457;其通过引用全部并入本文)。这些装置不限于特定配置。在一些实施方案中,这些装置其中具有中心馈电双极,用于通过施以能量(例如,微波能量)使组织区域发热。在一些实施方案中,此类装置具有连接到中空管(例如,其中内部直径是外部直径的至少50%;例如,其中内部直径实质上与外部直径相近)的同轴电缆或三轴电缆。同轴电缆或三轴电缆可以是标准同轴或三轴电缆,或它可以是其中具有电导率接近0的电介质组件(例如,空气)的同轴或三轴电缆。该同轴或三轴传输线可以包括电介质空间内或第二和第三导体之间的一个或多个冷却剂通道。该管不限于特定的设计配置。在一些实施方案中,该管采用例如20标准针头的形状(例如直径)。在一些实施方案中,传输线的标准是小于20标准针头。优选地,该管由固体导电性材料(例如,任何数量的金属、涂覆导电体的陶瓷或聚合物等)制成。在一些实施方案中,该管由编织材料(例如编织金属)构成以同时提供强度和柔性。在一些实施方案中,中空管在其远端上配置有削尖点或添加针芯,以便能够将装置直接插入到组织区域中而不使用例如插管。该管不限于特定组成(例如,金属、塑料、陶瓷)。在一些实施方案中,该管包含例如铜或含有其他硬化金属的铜合金、银或含有其他硬化金属的银合金、镀金铜、镀金属的玻璃陶瓷(可加工陶瓷)、镀金属的硬化聚合物和/或其组合。
在一些实施方案中,该中心馈电双极配置成响应发热调节能量递送特征,以便持续整个过程时间段地提供更优化的能量递送。在一些实施方案中,这通过使用响应温度变化而改变体积以使材料体积的变化改变装置的能量递送特征的材料来实现。在一些实施方案中,例如,将可膨胀材料置于装置中,以使中心馈电双极组件或针芯的谐振部分响应发热沿着装置从远端推压。这样改变装置的调谐以保持更优化的能量递送。如果需要的话,可以例如提供锁定机构来约束最大移动量,该锁定机构防止超出特定点的延伸。
采用中心馈电双极组件的这些能量递送装置不受限于将中空管连接到同轴或三轴管的方式。在一些实施方案中,移除位于同轴电缆馈线的远端处的外层导体部分,从而暴露固体电介质材料的区域。可以将中空管定位于暴露的电介质材料上并通过任何方式附接。在一些实施方案中,提供外层导体和中空管之间的物理间隙。在一些实施方案中,中空管在其中心点处以电容或电感形式连接到馈线以使中空管插入组织中时,其电长度包括频率谐振结构。
使用中,采用中心馈电双极组件的这些能量递送装置配置成使得在中空管的开口远端处生成电场最大值。在一些实施方案中,中空管的远端是尖点形状,以便帮助将装置穿过受试者插入并插进组织区域中。在一些实施方案中,整个装置是坚硬和硬质的,以便利于成直线且直接插入到靶点。在一些实施方案中,该结构在例如~2.45GHz下谐振,由此频率下(在馈线的近端处测量的)反射系数的最小值来表征。通过更改装置的尺寸(例如,长度、馈电点、直径、间隙等)和天线的材料(电介质材料、导体等),可以更改谐振频率。在期望的频率下低反射系数确保了能量从天线到其周围的介质的高效传输。
优选地,该中空管为长度λ/2的,其中λ是所关注的介质中介质内谐振的电磁场波长(例如肝脏中对应于2.45GHz为~18cm)。在一些实施方案中,中空管的长度为约λ/2,其中λ是关注的介质中介质内谐振的电磁场波长,以便测量近端处功率反射的最小值。但是,可以采用与此长度的偏离来生成谐振波长(例如,当周围材料改变时)。优选地,同轴电缆的内层导体以其远端在管中心处延伸(例如,位于距离管端部λ/4处)且配置成使得内层导体与管中心保持电接触,当然偏离此位置也是允许的(例如,以生成谐振波长)。
本发明的中空管部分可以具有多种形状。在一些实施方案中,该管是沿其整个长度呈圆柱形。在一些实施方案中,管从中心开始变细,使得它在端部比其中心处具有更小直径。在远端处具有较小点的一些实施方案有助于穿透受试者以达到靶点区域。在一些实施方案中,在中空管的形状不同于圆柱形形状的情况中,该管在其纵向中心两面上保持对称结构。但是,这些装置不受限于中空管的形状,只要实现功能特性即可(例如,能够将期望的能量递送到靶区域)。
在一些实施方案中,可以将中心馈电双极组件添加到多种消融装置的远端以提供本文描述的益处。同样地,可以将多种装置修改成接受本发明的中心馈电双极组件。
在一些实施方案中,这些装置具有小外径。在一些实施方案中,本发明的中心馈电双极组件直接用于将该装置的侵入组件插入到受试者体内。在一些此类实施方案中,该装置不包含插管,从而使得侵入组件具有更小的外径。例如,该侵入组件可以设计成使得其安装在非常小的针头内(例如,18-20标准或更小针头)或为非常小的针头(例如,18-20标准或更小针头)的尺寸。
图8示意图示出本发明的装置800的远端(例如,消融装置的天线),该装置的远端包括本发明的中心馈电双极组件810。本领域技术人员将认识到任何数量的备选配置可实现本发明的这些物理和/或功能方面。如图所示,中心馈电双极装置800其中具有中空管815、同轴传输线820(例如,同轴电缆)和针芯890。中心馈电双极装置800不限于具体尺寸。在一些实施方案中,中心馈电双极装置800的尺寸足够小定位于组织区域(例如,肝脏)处,以实现向该组织区域递送能量(例如微波能量)的目的。
仍参考图8,中空管815不限于特定材料(例如,塑料、陶瓷、金属等)。中空管815不限于特定的长度。在一些实施方案中,该中空管的长度为λ/2,其中λ是所关注的介质中的电磁场波长(例如肝脏中对应于2.45GHz为~18cm)。中空管815与同轴传输线820配接,以使中空管815附接到同轴传输线820(下文予以更详细的描述)。中空管815其中具有中空管材料860。中空管815不限于特定类型的中空管材料。在一些实施方案中,中空管材料860是空气、液体或气体。
仍参考图8,中空管815不限于特定形状(例如,圆柱形、三角形、正方形、矩形等)。在一些实施方案中,中空管815的形状是针头(例如,20标准针头、18标准针头)的形状。在一些实施方案中,将中空管815分成各为可变长度的两个部分。如图所示,将中空管815分成各为相等长度的两个部分(例如,每个部分具有λ/4的长度)。在此类实施方案中,每个部分的形状是对称的。在一些实施方案中,该中空管具有等于或小于20标准针头、17标准针头、12标准针头等的直径。
仍参考图8,中空管815的远端接合针芯890。装置800不限于特定的针芯890。在一些实施方案中,针芯890设计成有助于经皮插入装置800。在一些实施方案中,通过在中空管815内侧滑动以固定针芯890,针芯890接合中空管815。
仍参考图8,同轴传输线820不限于特定类型的材料。在一些实施方案中,近端同轴传输线820由商用标准0.047英寸半刚性同轴电缆构成。在一些实施方案中,同轴传输线820是镀金属(例如,镀银、镀铜)的,当然本发明不限于此。近端同轴传输线820不限于特定长度。
仍参考图8,在一些实施方案中,同轴传输线820具有同轴中心导体830、同轴电介质材料840和同轴外层导体850。在一些实施方案中,同轴中心导体830配置成沿着其长度引导冷却剂液体。在一些实施方案中,同轴中心导体830是中空的。在一些实施方案中,同轴中心导体830具有例如0.012英寸的直径。在一些实施方案中,同轴电介质材料840是聚四氟乙烯(PTFE)。在一些实施方案中,同轴电介质材料840具有接近0的电导率(例如,空气、液体、气体)。
仍参考图8,同轴传输线820的远端配置成接合中空管815的近端。在一些实施方案中,同轴中心导体830和同轴电介质材料840延伸到中空管815的中心。在一些实施方案中,同轴中心导体820比同轴电介质材料840进一步延伸到中空管815中。同轴中心导体820不限于至中空管815中的特定延伸量。在一些实施方案中,同轴中心导体820延伸到中空管815中λ/4的长度。同轴传输线820的远端不限于接合中空管815的近端的特定方式。在一些实施方案中,中空管的近端接合同轴电介质材料840,以便将中空管815与同轴传输线820固定。在一些实施方案中,在同轴电介质材料840具有接近0的电导率的情况中,不将中空管815与同轴传输线820固定。在一些实施方案中,同轴中心导体830的远端直接或通过与导电材料870的接触来接合中空管815的壁部,导电材料870可以由与同轴中心导体相同的材料制成或可以由不同的材料(例如,不同的导电材料)制成。
仍参考图8,在一些实施方案中,同轴传输线外层导体850的远端与中空管815之间存在间隙880,从而暴露同轴电介质材料840。间隙880不限于特定尺寸或长度。在一些实施方案中,间隙880确保同轴传输线880的近端和中空管815的开口远端处电场最大值。在一些实施方案中,中心馈电双极装置810在~2.45GHz下谐振,由此频率下反射系数的最小值来表征。通过更改装置的尺寸(例如,长度、馈电点、直径、间隙等)和材料(电介质材料、导体等),可以更改谐振频率。在此频率下低反射系数确保了能量从天线到其周围的介质的高效传输。
仍参考图8,在一些实施方案中,将间隙880填充以材料(例如,环氧树脂),以便将同轴传输线820与中空管815桥接。这些装置不限于特定类型或种类的实质性材料。在一些实施方案中,该实质性材料不干扰通过装置的能量场生成或发射。在一些实施方案中,该材料是生物相容和耐热的。在一些实施方案中,该材料不存在或基本不存在导电性。在一些实施方案中,该材料还将同轴传输线820和中空管815与同轴中心导体830桥接。在一些实施方案中,该实质性材料是可固化树脂。在一些实施方案中,该材料是牙科瓷(例如,XRVHerculite瓷;也参见美国专利号6,924,325、6,890,968、6,837,712、6,709,271、6,593,395和6,395,803,各通过引用全部并入本文)。在一些实施方案中,该实质性材料是固化的(例如,利用固化光固化,例如L.E.Demetron II固化光)。(参见例如美国专利号6,994,546、6,702,576、6,602,074和6,435,872)。因此,本发明提供包括固化瓷树脂的消融装置。此类树脂是生物相容的以及硬质且牢固。
III.处理器
在一些实施方案中,本发明的能量递送系统利用处理器,该处理器监视和/或控制和/或提供有关系统的一个或多个组件的反馈。在一些实施方案中,该处理器在计算机模块内提供。该计算机模块还可以包括供处理器用于执行其一个或多个功能的软件。例如,在一些实施方案中,本发明的系统提供用于通过监视组织区域的一个或多个特征(例如,通过反馈信息)来调节提供到组织区域的微波能量的量的软件,这些一个或多个特征包括但不限于靶组织的尺寸和形状、组织区域的温度等(参见例如美国专利申请序列号11/728,460、11/728,457和11/728,428;各通过引用全部并入本文)。在一些实施方案中,该软件配置成实时地提供信息(例如监视信息)。在一些实施方案中,该软件配置成与本发明的能量递送系统交互,以使它能够提高或降低(例如调谐)递送到组织区域的能量的量。在一些实施方案中,该软件设计成准备用于分配到例如能量递送装置中的冷却剂,使能量递送装置使用之前冷却剂处于期望的温度。在一些实施方案中,将正在治疗的组织的类型(例如,肝脏)输入到软件中,以实现使处理器能够基于该特定类型的组织区域的预校准方法调节(例如,调谐)微波能量向组织区域的递送的目的。在其他实施方案中,该处理器基于特定类型的组织区域生成图表或示意图,从而显示对系统的使用者有用的特征。在一些实施方案中,该处理器提供用于例如使功率缓慢斜升以避免由于高温形成的快速放气导致组织开裂的能量递送算法。在一些实施方案中,该处理器使使用者能够选择用于不同组织类型的功率、治疗持续时间、不同的治疗算法、同时以多种天线模式对天线施加功率、在天线之间的切换的功率递送、相干和不相干定相等。在一些实施方案中,该处理器配置成用于基于具有相似或相异患者特征的先前治疗,创建有关特定组织区域的消融治疗的信息数据库(例如,所需的能量级、基于特定患者特征的组织区域的治疗持续时间)。在一些实施方案中,该处理器由远程控制来操作。
在一些实施方案中,该处理器用于基于组织特征的项生成例如消融图表(例如,肿瘤类型、肿瘤尺寸、肿瘤位置、周围血管信息、血流信息等)。在此类实施方案中,该处理器可以基于消融图表指引能量递送装置的安置,以达到期望的消融。在一些实施方案中,处理器与位置感测器和/或转向机构通信以提供本发明的系统和装置的适合安置。
在一些实施方案中,提供软件包以与处理器交互,其使使用者能够输入要治疗的组织的参数(例如要消融的肿瘤或组织段的类型、其所处的位置、血管或易感染结构的位置以及血流信息),然后在CT或其他图像上绘制期望的消融区以提供期望的结果。可以将探针置于组织中,并且计算机基于提供的信息生成预期的消融区。此类应用可以并入反馈。例如,可以在消融过程中使用CT、MRI或超声波成像或温度测定。将此数据反馈到计算机中,并且重新调节参数以产生期望的结果。
正如所使用的,术语“计算机存储器”和“计算机存储器装置”是指计算机处理器可读的任何存储介质。计算机存储器的示例包括但不限于,随机存取存储器(RAM)、只读存储器(ROM)、计算机芯片、光盘(例如,压缩光盘(CD)、数字视频光盘(DVD)等)、磁盘(例如,硬盘(HDD)、软盘、ZIP.RTM盘等)、磁带、以及固态存储装置(例如,存储卡、“闪存”介质等)。
正如所使用的,术语“计算机可读介质”是指用于存储信息(例如,数据和指令)以及将其提供到计算机处理器的任何装置或系统。计算机可读介质的示例包括但不限于,光盘、磁盘、磁带、固态介质和用于通过网络流传输媒体的服务器。
正如本文所使用的,术语“处理器”和“中央处理单元”或“CPU”可互换地使用,并且是指能够从计算机存储器装置读取程序(例如ROM或其他计算机存储器)并根据程序执行一组步骤的装置。
IV.成像系统
在一些实施方案中,本发明的这些能量递送系统利用成像系统,这些成像系统包括成像装置。这些能量递送系统不限于特定类型的成像装置(例如,内窥镜装置、立体计算机辅助的神经外科导航装置、热传感器定位系统、运动速率传感器、线控转向系统、手术内超声波、间质超声波、微波成像、声波层析、双能量成像、荧光检查、计算机断层扫描磁共振成像、核医学成像装置三角测量成像、热声成像、红外线和/或激光成像、电磁成像)。(参见例如美国专利号6,817,976、6,577,903和5,697,949、5,603,697和国际专利申请号WO 06/005,579;各通过引用全部并入本文)。在一些实施方案中,这些系统利用内窥镜摄像头、成像组件和/或导航系统,它们允许或协助与本发明的能量系统结合使用的任何器械的安置、定位和/或监视。
在一些实施方案中,这些能量递送系统提供配置成使用成像设备(例如,CT、MRI、超声波)的软件。在一些实施方案中,该成像设备软件使使用者能够基于已知的组织热动力学和电特性、血管分布和天线的位置来作出预测。在一些实施方案中,该成像软件能够生成组织区域(例如,肿瘤、心率失常)的位置、天线的位置的三维地图,以及生成消融区的预测的地图。
在一些实施方案中,本发明的成像系统用于监视消融操作(例如,微波热消融操作、射频热消融操作)。本发明不限于特定类型的监视。在一些实施方案中,这些成像系统用于监视接受热消融操作的特定组织区域内正在进行的消融的量。在一些实施方案中,该监视与消融装置(例如,能量递送装置)一起工作,以使递送到特定组织区域的能量的量依据组织区域的成像。这些成像系统不限于特定类型的监视。本发明不限于利用这些成像装置监视的内容。在一些实施方案中,该监视是对特定区域的血流灌注成像,以便检测例如热消融手术之前、期间和之后该区域中的变化。在一些实施方案中,该监视包括但不限于,MRI成像、CT成像、超声波成像、核医学成像和荧光检查成像。例如,在一些实施方案中,在热消融操作之前,向受试者(例如患者)提供对比剂(例如,碘或其他适合的CT对比剂;钆螯合物或其他适合的MRI对比剂、微气泡或其他适合的超声波对比剂等),并且监视遍布接受消融操作的特定组织区域的对比剂灌注以查看血流灌注变化。在一些实施方案中,该监视是有关消融区特性(例如,直径、长度、横截面面积、体积)的定性信息。该成像系统不限于用于监视定性信息的特定技术。在一些实施方案中,用于监视定性信息的技术包括但不限于,非成像技术(例如,时域反射计、飞行时间脉冲检测、调频距离检测、在任何频率上的本征或共振频率检测或反射和传送、单独基于一个间质装置或与其他间质装置或外部装置协同工作)。在一些实施方案中,该间质装置提供用于成像的信号和/或检测(例如,电声成像、电磁成像、电阻抗断层成像)。在一些实施方案中,使用非成像技术监视天线周围的介质的电介质特性,通过若干方式检测消融的组织与正常组织之间的介面,包括共振频率检测、反射计或距离发现技术、从间质天线或外部天线的功率反射/传送等。在一些实施方案中,定性信息是消融状态的估计、功率递送状态的估计和/或简单的通过/未通过检查以确保正在施加功率。在一些实施方案中,这些成像系统设计成按期望的频度(例如,每秒间隔时间、每分钟间隔时间、每十分钟间隔时间、每小时间隔时间等)自动地监视特定组织区域。在一些实施方案中,本发明提供设计成自动获取组织区域的图像(例如,MRI成像、CT成像、超声波成像、原子核医疗成像、透视成像),自动检测组织区域中的任何变化(例如,血流灌注、温度、坏死组织的量等),并基于检测自动调节经由能量递送装置递送到组织区域的能量的量的软件。同样地,可以应用算法以预测要消融的组织区域的形状和尺寸(例如肿瘤形状),以便系统建议用于有效治疗该区域的消融探针的类型、数量和位置。在一些实施方案中,该系统配置成利用导航或引导系统(例如,采用三角测量或其他定位例行程序)来协助或指引探针的安置和使用。
例如,此类手术可以使用对比材料团注的增强或不增强来跟踪消融或其他治疗操作的进度。还可以使用减影方法(例如,与用于数字减影血管造影的方法类似)。例如,可以在第一时间点处拍摄第一图像。后续图像从第一图像减去一些或全部信息,以使组织中的变化更易于观察。同样地,可以使用加速成像技术,其应用于“欠采样”技术(相对于Nyquist采样而言)。可设想,此类技术使用不同时间上获取的多个低分辨率图像来提供优良的信噪比。例如,称为HYPER(高度约束投影重构)的算法可用于MRI,可以将其应用于本发明的系统的实施方案。
因为组织温度超过例如50℃时,基于热的治疗使血管凝固,所以凝固使得对已经完全凝固的区域的供血减少。凝固的组织区域在造影剂给药之后不会增强。在一些实施方案中,本发明利用成像系统来通过例如给予小剂量对比剂试验注射来确定对比剂到达相应组织区域的时间并建立基准增强以自动地跟踪消融操作的进度。在一些实施方案中,在开始消融操作之后,接着执行一系列小剂量对比剂注射(例如,在CT情况中,注射最多15次的一系列10ml团注的300mgI/ml水溶性对比剂),在期望的适合注射后时间(例如,从试验注射确定的)执行扫描,并使用例如关注区域(ROI)来跟踪多个参数的任何一个(包括但不限于,CT的衰减(Hounsfield单位[HU])、信号(MRI)、回声(超声波)等)来确定靶向区域的对比剂增强。成像的数据不限于特定方式的呈示。在一些实施方案中,成像图像表示为颜色编码的或灰阶地图或衰减/信号/回声中变化的叠层,靶向的组织与非靶向的组织之间的差,治疗期间对比剂团注的到达时间差、组织灌注的变化以及在注射对比剂材料之前和之后可测量的任何其他组织特性。本发明的方法不限于选定的ROI,而是可以推广到任何图像内的所有像素。这些像素可以颜色编码的,或用于演示已经发生以及正在发生组织变化的位置的叠层。这些像素可以随着组织特性变化而改变颜色(或其他特性),从而提供治疗进度的接近实时的显示。此方法还可以推广到图像显示的3d/4d方法。
在一些实施方案中,要治疗的区域呈示在计算机叠层上,不同颜色或阴影的第二叠层得到治疗进度的接近实时的显示。在一些实施方案中,将呈示和成像自动化,从而对于治疗技术(RF、MW、HIFU、激光、低温等)存在基于成像表现来调制功率(或任何其他控制参数)的反馈回路。例如,如果对靶向区域的灌注降低到目标水平,则可以降低功率或停止供电。例如,此类实施方案可应用于多应用器系统,因为对于相控阵系统中的每个个体应用器或元件调制功率/时间/频率/占空比等以形成组织治疗的精确雕刻区。相反地,在一些实施方案中,这些方法用于选择不要治疗的区域(例如,需要避开的易感染结构,如胆管、肠等)。在此类实施方案中,这些方法监视要避开的区域中的组织变化,并使用警报(例如,可视和/或可听警报)警示使用者(例如,治疗医师):要保留的结构处于受损的风险中。在一些实施方案中,使用反馈回路修改功率或任何其他参数以避免对不要治疗的组织区域的持续损伤。在一些实施方案中,保护组织区域免于消融通过使用者按需在易感染区域中设置阈值(如目标ROI)或使用计算机叠层来定义“不治疗”区来实现。
V.调谐系统
在一些实施方案中,本发明的能量递送系统利用调谐元件来调节递送到组织的能量的量。在一些实施方案中,调谐元件由系统的使用者手动调节。在一些实施方案中,将调谐系统并入到能量递送装置中,以使使用者能够按需调节装置的能量递送(参见例如美国专利号5.957969、5,405,346;各通过引用全部并入本文)。在一些实施方案中,将该装置针对期望的组织预先调谐并在整个操作中固定不变。在一些实施方案中,该调谐系统设计成使发生器与能量递送装置之间的阻抗匹配(参见例如美国专利号5,364,392;其通过引用全部并入本文)。在一些实施方案中,该调谐元件由本发明的处理器自动地调节和控制(参见例如美国专利号5,693,082;其通过引用全部并入本文)。在一些实施方案中,处理器将任何数量的期望因素纳入,以在不同时间上调节能量递送以便在整个操作中提供恒定的能量,这些期望的因素包括但不限于,靶组织的热、属性和/或位置、期望的切口尺寸、治疗时间长度、与敏感器官区域或血管的接近度等。在一些实施方案中,该系统包括传感器,该传感器向使用者提供或向处理器提供持续地或在时间点上监视装置的功能的反馈。该传感器可以记录和/或回报任何数量的特性,包括但不限于,系统的组件的一个或多个位点处的热、组织处的热、组织的特性等。该传感器可以采用成像装置的形式,如CT、超声波、磁共振成像或任何其他成像装置。在一些实施方案中,特定对于研究应用而言,该系统记录并存储在总体地将来优化系统中使用和/或用于特定条件下(例如,患者类型、组织类型、靶区域的尺寸和形状、靶区域的位置等)优化能量递送的信息。
VI.温度调节系统
在一些实施方案中,本发明的能量递送系统利用冷却剂系统以便减少能量递送装置(例如组织消融导管)内以及沿着能量递送装置的非期望发热。本发明的系统不限于特定的冷却系统机构。在一些实施方案中,这些系统设计成使冷却剂(例如,空气、液体等)遍布能量递送装置循环,以降低同轴传输线或三轴传输线和天线温度。在一些实施方案中,这些系统利用其中具有通道的能量递送装置,这些通道设计成适于冷却剂循环。在一些实施方案中,这些系统提供围绕天线或天线的多个部分的冷却剂护套以实现在外部将天线降温的目的(参见例如美国专利申请号11/053,987;其通过引用全部并入本文)。在一些实施方案中,冷却剂护套包括可收缩材料(例如,boPET),该可收缩材料在收缩(例如,为了插入和/或部署)时采用低横截剖面,并在冷却剂流经护套时膨胀(参见图32I和32J)。在一些实施方案中,冷却剂护套还用作同轴电缆的外层导体,或三轴电缆的外层或第二导体(中间层导体)。在一些实施方案中,这些系统利用围绕天线具有导电罩的能量递送装置,以实现限制对周围组织上的热耗散的目的(参见例如美国专利号5,358,515;其通过引用全部并入本文)。在一些实施方案中,在冷却剂循环时,它排出到例如废料容器中。在一些实施方案中,在冷却剂循环时,它是再循环的。在一些实施方案中,该冷却剂是在其临界点处或附近循环的气体。在一些实施方案中,在其临界点处或附近递送的气体是二氧化碳气体。在一些实施方案中,这些能量递送装置配置成在期望的压力下压缩传送的冷却剂(例如,在其临界点处或附近的二氧化碳气体),以便将冷却剂保持在其临界点处或附近。
在一些实施方案中,这些系统与能量递送装置结合利用可膨胀气囊,以实现将组织推离开天线表面的目的(参见例如美国专利申请号11/053,987;其通过引用全部并入本文)。
在一些实施方案中,这些系统利用配置成附着于能量递送装置以实现减少能量递送内以及沿着能量递送装置的非期望发热的装置(参见例如美国专利申请号11/237,430;其通过引用全部并入本文)。
在一些实施方案中,冷却剂通道可以是任何适合配置的(参见图32),并且可与任何配置的能量递送装置和/或系统(例如,同轴、三轴、多导管等)一起应用。在一些实施方案中,同轴传输线的电介质材料(或三轴传输线的同轴部分(例如,内层导体、电介质材料、第二导体)的电介质材料)包含也作为传输线(参见图32A)的冷却剂的流体(例如气体(例如,空气、CO2等)或液体)。在一些实施方案中,冷却剂(电介质材料)流经内层导体与第二导体(例如,外层导体)之间的一个或多个区域。在一些实施方案中,传输线包括电介质材料和/或冷却剂流经的一个或多个冷却剂通道(例如,1个通道、2个通道、3,个通道、4个通道、5个通道、6个通道、7,个通道、8个通道、9个通道、10个通道等)。在一些实施方案中,冷却剂通道覆盖和/或扩散以提供最优冷却和/或两种或更多种冷却剂成分的混合(例如,以便提供吸热冷却反应)。在一些实施方案中,一个或多个通道提供从装置的近端到远端的冷却剂流(冷却剂通道),以及一个或多个通道提供从装置的远端到近端的冷却剂(例如,返回通道)。在一些实施方案中,冷却的电介质材料(例如,冷却剂液体、空气、CO2等)从位置靠近装置或系统的近端的泵经由一个或多个冷却剂通道沿着传输线流动。在一些实施方案中,将流动传输线远端的电介质材料传送到返回通道,并流回近端。在一些实施方案中,电介质材料能够在冷却剂通道和返回通道中均对传输线进行冷却。在一些实施方案中,冷却剂和/或电介质材料填注通道而非连续流动。在一些实施方案中,将冷却剂和/或电介质材料泵入和泵出单个通道。在一些实施方案中,电介质吸收能量传输产生的热,并将其从传输线带走,因为电介质材料沿着传输线流动并流出近端。在一些实施方案中,多孔性电介质材料使得冷却剂能够直接流经(例如单向、双向等)电介质材料(参见图32H)。
在一些实施方案中,能量递送装置利用降温能量模式降低沿着传输线长度的非期望发热。在一些实施方案中,恒定的低功率能量传输在靶位点处提供足够的能量(例如,足够用于有效肿瘤消融),而不会造成沿传输线路径的过度发热。在一些实施方案中,以脉冲模式来递送能量以在靶位点处提供足够的能量突发(例如,足够用于有效肿瘤消融),而比连续递送更少地沿传输线形成热。在一些实施方案中,通过监视沿着传输线和传输线周围组织的温度来设置脉冲模式的长度和强度。在一些实施方案中,将脉冲模式预定为将递送到靶位点的能量的量与沿传输线的热释放的量平衡。在一些实施方案中,任何适合的脉冲模式将可应用于本发明的装置、系统和方法。在一些实施方案中,基于时间(例如治疗的时间、脉冲的时间、脉冲之间的时间)、功率(例如,生成的功率、递送的功率、功率损失等)和温度监视的组合来计算或确定消融算法。
在一些实施方案中,能量递送装置包括位于传输线远端处的电容器和/或能量栅极。一旦在电容器和/或栅极后聚集了阈值的能量,则电容器和/或栅极将能量(例如微波能量)递送到靶位点。沿着传输线递送低级别能量,从而降低沿着该路径聚集的热。一旦在电容器和/或栅极聚集足够了能量,则向靶位点递送能量(例如微波能量)的高能量突发。电容器和/或栅极递送方法具有由于低级别能量传递而沿传输线的发热降低,以及将高能量突发递送到靶点(例如,足够用于肿瘤消融)的优点。
在一些实施方案中,能量发生电路的全部或部分位于沿着传输线的一个或多个点处。在一些实施方案中,微波发生电路的全部或部分位于沿着传输线的一个或多个点处。在一些实施方案中,在沿着传输线的一个或多个点处发生能量(例如微波能量)缩短能量需要行进的距离,从而减少能量耗散和非期望的发热。在一些实施方案中,在沿着传输线的一个或多个点处发生能量(例如微波能量)能够以降低的能量级工作,同时向治疗点提供相同的能量级。
VII.标识系统
在一些实施方案中,本发明的能量递送系统利用与系统的一个或多个组件关联的标识元件(例如,RFID元件、标识环(例如,基准点)、条形码等)。在一些实施方案中,标识元件传送有关系统的特定组件的信息。本发明不受限于传送的信息。在一些实施方案中,所传送的信息包括但不限于,组件的类型(例如,制造商、尺寸、额定能量、组织构造等)、组件之前是否使用过(例如,以便确保不使用非无菌组件)、组件的位置、患者相关信息等。在一些实施方案中,该信息被本发明的处理器读取。在一些此类实施方案中,处理器配置系统的其他组件以与包含标识元件的组件一起使用或与之一起优化使用。
在一些实施方案中,这些能量递送装置其中具有标记(例如,刻痕、颜色方案、蚀刻、涂覆的对比剂标记、标识环(例如,基准线)和/或突起部),以便改进特定能量递送装置的标识(例如,改进位于外观相似的其他装置附近的特定装置的标识)。这些标记可应用于将多个装置插入到患者体内的情况。在此类情况中,尤其是装置可能按多种角度交叉的情况中,对于治疗医师来说,对应于位于患者体内的装置远端,难以关联上位于患者体外的装置近端。在一些实施方案中,在装置近端上呈示标记(例如,数字)以便可被医师查看到,以及在装置远端呈示第二标记(例如对应于该数字)以便在患者体内时可被成像装置查看到。在其中采用一组天线的一些实施方案中,同时在近端和远端上对该组天线的各个构件编号(例如,1、2、3、4等)。在一些实施方案中,对手柄编号,并且在使用之前将编号匹配的可拆(例如,一次性)天线连接到手柄。在一些实施方案中,该系统的处理器确保了手柄和天线正确地匹配(例如,通过RFID标签或其他方式)。在天线是一次性的一些实施方案中,如果一次性组件应该已废弃时,试图再次使用,则该系统提供警报。在一些实施方案中,这些标记改进任何类型的检测系统中的标识,包括但不限于MRI、CT和超声波检测。
本发明的能量递送系统不限于特定类型的跟踪装置。在一些实施方案中,使用GPS和GPS相关装置。在一些实施方案中,使用RFID和RFID相关装置。在一些实施方案中,使用条形码。
在此类实施方案中,使用具有标识元件的装置之前,使用之前需要授权(例如,输入代码、扫描条形码)。在一些实施方案中,信息元件标识组件之前已使用过,并向处理器发送信息来锁定(例如阻止)系统的使用,直到提供新的无菌组件为止。
VIII.温度监视系统
在一些实施方案中,本发明的这些能量递送系统利用温度监视系统。在一些实施方案中,温度监视系统用于(例如,利用温度传感器)监视能量递送装置的温度。在一些实施方案中,温度监视系统用于监视组织区域(例如,正在治疗的组织,周围组织)的温度。在一些实施方案中,这些温度监视系统设计成与处理器通信,以实现将温度信息提供给使用者或处理器以使处理器能够适当地调节系统的目的。在一些实施方案中,在沿着天线的若干点处监视温度以估计消融状态、冷却状态或安全性检查。在一些实施方案中,使用在沿着天线的若干点处监视的温度来(例如,基于组织类型和能量递送装置中使用的功率量)确定例如消融区的地理特征(例如,直径、深度、长度、密度、宽度等)。在一些实施方案中,使用在沿着天线的若干点处监视的温度来确定例如操作状态(例如,操作的结束)。在一些实施方案中,使用热电偶或电磁方式通过间质天线来监视温度。在一些实施方案中,使用从温度监视收集的数据启动本文描述的一个或多个冷却操作(例如,冷却剂、降低功率、脉冲程序、关机等)。
IX.操作装置衬套
本发明的系统还可以采用直接或间接地利用或协助本发明的特征的一个或多个附加组件。例如,在一些实施方案中,使用一个或多个监视装置监视和/或报告系统的任何一个或多个组件的功能。此外,可以将直接或间接地与本发明的装置结合使用的任何医疗装置或系统与系统包括在一起。此类组件包括但不限于,消毒系统、装置和组件、其他手术、诊断或监护装置或系统、计算机设备、手册、指令、标签和指引、机器人设备等。
在一些实施方案中,这些系统采用为本发明系统的多种组件的连通提供材料的泵、贮存器、管线、布线或其他组件。例如,可以使用任何类型的泵来向本发明的天线提供气体或液体冷却剂。系统中可以采用包含冷却剂的气体或液体处理罐。在一些实施方案中,使用多于一个罐,以使当一个罐清空时,将自动地使用其他罐以便防止手术的中断(例如,当一个CO2罐清空时,自动地使用第二个CO2罐,从而防止操作中断)。在某些实施方案中,这些能量递送系统(例如,能量递送装置、处理器、功率源、成像系统、温度调节系统、温度监视系统和/或标识系统)以及所有相关的能量递送系统利用源(例如,提供能量气体、冷却剂、液体、压力和通信内容的电缆、布线、电线、管线、管道)是以降低非期望的显现问题(例如,与无条理的能量递送系统利用源相关的缠绕、杂乱和消毒效果下降)的方式来提供。本发明不限于使得非期望的显现问题减少来提供能量递送系统和能量递送系统利用源的特定方式。在一些实施方案中,如图13所示,为这些能量递送系统和能量递送系统利用源排布以导入/导出盒1300、输送护套1310和操作装置连接器1320。在一些实施方案中,为能量递送系统和能量递送系统利用源排布以导入/导出盒、输送护套和操作装置连接器提供若干获益。此类获益包括但不限于,减少发生器(例如,微波发生器)与患者之间遍布的电线的数量(例如,减少地板上的电线的数量)、整理无菌环境和手术室、通过使能量递送系统与患者一起“移动”从而减少能量递送装置内能量行进距离以增加患者安全性以及通过缩短一次性电缆的长度来降低一次性成本。
本发明不限于特定类型或种类的导入/导出盒。在一些实施方案中,导入/导出盒包含功率源和冷却剂源。在一些实施方案中,导入/导出盒位于治疗患者所在的无菌区外。在一些实施方案中,导入/导出盒位于治疗患者所在的房间外。在一些实施方案中,一个或多个电缆将导入/导出盒连接到操作装置连接器。在一些实施方案中,使用一个电缆(例如,输送护套)。例如,在此类一些实施方案中,输送护套包括用于和/或从导入/导出盒递送同时递送能量和冷却剂的组件。在一些实施方案中,输送护套连接到操作装置连接器,而不会导致对医生的物理阻碍(例如,在地板下方、头顶上等走线)。在一些实施方案中,电缆是低耗电缆(例如,将功率源连接到操作装置衬套的低耗电缆)。在一些实施方案中,将该低耗电缆固定(例如,固定到操作装置衬套、操作台、天花板)以便防止意外拉动电缆的情况下造成伤害。在一些实施方案中,连接功率发生器(例如,微波功率发生器)和操作装置衬套的电缆是低耗可再用电缆。在一些实施方案中,将操作装置衬套连接到能量递送装置的电缆是柔性一次性电缆。
本发明不限于特定类型或种类的操作装置连接器。在一些实施方案中,该操作装置连接器配置成从导入/导出盒或其他源接收功率、冷却剂或其他元件。在一些实施方案中,操作装置连接器提供物理上位于患者附近的控制中心,用于如下功能的任何一种或多种:将能量递送到医疗装置、将冷却剂循环到医疗装置、收集和处理数据(例如,成像数据、能量递送数据、安全性监视数据、温度数据等)以及提供有助于医疗操作的任何其他功能。在一些实施方案中,操作装置连接器配置成接合输送护套以便接收相关的能量递送系统利用源。在一些实施方案中,操作装置连接器配置成接收多种能量递送系统利用源并将其分配到适用装置(例如,能量递送装置、成像系统、温度调节系统、温度监视系统和/或标识系统)。例如,在一些实施方案中,操作装置连接器配置成从能量递送系统利用源接收微波能量和冷却剂,并将微波能量和冷却剂分配到能量递送装置。在一些实施方案中,操作装置连接器配置成按期望(例如自动地或以手动方式)开启或关闭、校准和调节特定能量递送系统利用源的量。在一些实施方案中,操作装置连接器其中具有功率分配器,功率分配器用于按期望调节(例如以手动方式自动地开启、关闭、校准)特定能量递送系统利用源的量。在一些实施方案中,操作装置连接器其中具有设计成以期望的方式提供能量递送系统利用源的软件。在一些实施方案中,操作装置连接器具有指示每个能量递送系统利用源的相关特征(例如,当前正在使用/未使用哪个装置、特定身体区域的温度、特定CO2罐中现存的气体量等)的显示区域。在一些实施方案中,显示区域具有触控功能(例如,触摸屏)。在一些实施方案中,与能量递送系统相关的处理器位于操作装置连接器内。在一些实施方案中,与能量递送系统相关的功率源位于操作装置连接器内。在一些实施方案中,操作装置连接器具有传感器,该传感器配置成在发生非期望的情况(例如,非期望的发热、非期望的泄漏、非期望的压力变化等)时自动抑制一个或多个能量递送系统利用源。在一些实施方案中,操作装置连接器的重量为使得它能够被置于患者身体上,而不会引起患者的不适和/或伤害(例如,小于15磅、小于10磅、小于5磅)。
本发明的操作装置连接器不限于特定环境内的任何特定的用途或使用。实际上,操作装置连接器设计成在可应用能量发射的任何环境中使用。此类用途包括任何和所有医疗、兽医和研究应用。此外,该操作装置连接器可以用在农业环境、制造环境、机械环境或要递送能量的任何其他应用中。在一些实施方案中,将这些操作装置连接器用于不限制患者移动的医疗操作中(例如,CT扫描、超声波成像等)。
在一些实施方案中,操作装置连接器设计成位于无菌环境内。在一些实施方案中,操作装置连接器位于患者病床上、患者所在的操作台上(例如用于CT成像、超声波、MRI成像等的操作台)或患者附近的其他结构(例如,CT台架)上。在一些实施方案中,操作装置连接器设在单独的操作台上。在一些实施方案中,操作装置容器附着于天花板。在一些实施方案中,操作装置连接器附着于天花板,以使使用者(例如,医师)可以将其移到期望的位置(从而避免需要在使用时将能量递送系统利用源(例如,提供能量、气体、冷却剂、液体、压力和通信内容的电缆、布线、电线、管线、管道)定位于患者上方或附近)。在一些实施方案中,操作装置衬套定位成放置在患者身体(例如,患者腿部、大腿部、腕部、胸部)上。在一些实施方案中,操作装置衬套定位于患者头部上方或患者足部下方。在一些实施方案中,操作装置衬套具有尼龙搭扣,从而能够附着到期望的区域上(例如,操作台、患者的盖布和/或手术服)。
在一些实施方案中,操作装置衬套配置成附着到用于医疗手术的操作托架(例如,CT安全托架)。在一些实施方案中,操作托架(例如通过操作台侧边的槽部、通过尼龙搭扣、通过粘胶通过吸附)附着于操作台(例如,CT台),并用于(例如,通过缠绕患者身体并与例如尼龙搭扣连接)将患者固定于操作台。操作装置衬套不限于附着于操作托架的特定方式。在一些实施方案中,操作装置衬套附着于操作托架。在一些实施方案中,操作装置衬套附着于单独的托架,从而能够更换操作托架。在一些实施方案中,操作装置衬套附着于单独的托架,该单独的托架配置成附着于操作托架。在一些实施方案中,操作装置衬套附着于单独的托架,该单独的托架配置成附着于操作台的任何区域。在一些实施方案中,操作装置衬套附着于单独的托架,该单独的托架具有绝热和/或衬垫以确保患者舒适。图18示出连接到操作台托架的操作装置衬套。
在一些实施方案中,操作装置衬套配置成附着于操作环。本发明不限于特定类型或种类的操作环。在一些实施方案中,操作环配置成安置在患者周围(例如,患者的躯干、头部、足部、臂部等周围)。在一些实施方案中,操作环配置成附着于操作台(例如,CT台)。该操作装置环不限于特定形状。在一些实施方案中,该操作装置环是例如,椭圆形、圆形、矩形、对角线等。在一些实施方案中,该操作装置环是圆柱形形状的大约一半(例如,圆柱形形状的25%、圆柱形形状的40%、圆柱形形状的45%、圆柱形形状的50%、圆柱形形状的55%、圆柱形形状的60%、圆柱形形状的75%)。在一些实施方案中,操作环是例如金属、塑料、碳纤维、木质、陶瓷或其任何组合。该操作装置衬套不限于附着于操作环的特定方式。在一些实施方案中,操作装置衬套附着于操作环上(例如,利用尼龙搭扣、利用按扣、利用粘合剂)。在利用低耗电缆的一些实施方案中,低耗电缆附加地附着到操作环上。在一些实施方案中,可以将操作环的尺寸调节(例如,收缩、展开)以适应患者的尺寸。在一些实施方案中,可以将其他物件附着于操作环。在一些实施方案中,操作环可以容易地在患者附近来回移动。
在一些实施方案中,操作装置衬套配置成附着于定制的无菌盖布。本发明不限于特定类型或种类的定制无菌盖布。在一些实施方案中,该无菌盖布配置成安置在患者上方(例如,安置在患者的躯干、头部、足部、臂部等上方)。在一些实施方案中,该定制无菌盖布配置成附着于操作台(例如,CT台)。该定制无菌盖布不限于特定形状。在一些实施方案中,该定制无菌盖布是例如,椭圆形、圆形、矩形、对角线等。在一些实施方案中,该定制无菌盖布的形状使得它适应患者的特定身体区域。在一些实施方案中,操作环是例如织物、塑料或其任何组合。该操作装置衬套不限于附着于定制无菌盖布的特定方式。在一些实施方案中,操作装置衬套附着到定制无菌盖布上(例如,利用尼龙搭扣、利用按扣、利用粘合剂、夹子(例如,鳄鱼夹))。在利用低耗电缆的一些实施方案中,低耗电缆附加地附着到定制无菌盖布上。在一些实施方案中,可以将其他物件附着于定制无菌盖布。在一些实施方案中,该定制无菌盖布可以容易地在患者附近来回移动。在一些实施方案中,定制无菌盖布具有用于实施医疗手术的一个或多个开窗。图19示出定制消毒盖布,其具有开窗和经由开窗插入的电缆。图20示出本发明的能量递送系统,其经由电缆将发生器连接到操作装置衬套,其中操作装置衬套(例如经由操作台托架)固定于操作台。而且,如图20所示,定制无菌盖布定位于躺在在操作台上的患者上方,其中定制无菌盖布具有开窗。
在一些实施方案中,操作装置衬套配置有用于将衬套定位于患者附近的支脚。在一些实施方案中,操作装置衬套具有可调支脚(例如,从而能够将操作装置衬套定位于位置附近)。在一些实施方案中,操作装置衬套具有可调支脚,从而使该装置能够定位于多种三脚架位置中。在一些实施方案中,支脚其中具有尼龙搭扣,从而能够附着到期望的区域上(例如,操作台、患者的盖布和/或手术服)。在一些实施方案中,支脚由弹性材料制成,其配置成在操作台(例如,CT台)上方形成弧度并压入操作台的导轨。在一些实施方案中,支脚配置成附着于操作台的导轨上。
在一些实施方案中,操作装置连接器配置成与处理器(例如,计算机、利用因特网、利用蜂窝电话、利用PDA)(无线方式或经由连线)通信。在一些实施方案中,操作装置衬套可以通过遥控装置来操作。在一些实施方案中,操作装置连接器其中具有一个或多个照明灯。在一些实施方案中,当功率从操作装置衬套流到能量递送装置时,操作装置衬套提供可检测信号(例如,可听信号、可视(例如脉冲光))。在一些实施方案中,操作装置衬套具有可听输入(例如,MP3播放器)。在一些实施方案中,操作装置衬套具有用于提供声音的扬声器(例如,来自MP3播放器的声音)。在一些实施方案中,操作装置衬套具有向外部扬声器系统提供声音的可听输出。在一些实施方案中,操作装置连接器的使用使得能够更短电缆、布线、电线、管线和/或管道(例如,小于4英尺、3英尺、2英尺)。在一些实施方案中,操作装置连接器和/或与之连接的一个或多个组件或其多个部分被无菌护套封装。在一些实施方案中,操作装置衬套具有提供功率(例如,向能量递送装置提供功率)的功率放大器)。
在一些实施方案中,操作装置连接器配置成按任何期望的压力压缩输送的冷却剂(例如,CO2),以便将冷却剂保持在期望的压力下(例如,气体的临界点),以便提高冷却或保持温度。例如,在一些实施方案中,在临界点处或附近提供气体,以便将装置、线路、电缆或其他组件保持在恒定的定义的温度处或附近。在一些此类实施方案中,组件本身不会被冷却,因为其温度不是从起始温度(例如室温)下降,而是保持在比组件除了介入以外应有的温度更冷的恒定温度。例如,可以在其临界点(例如78.21kPa下31.1摄氏度)使用CO2以保持温度,以使系统的组件足够冷而不致灼伤组织,但是同样地不会被冷却或保持为显著地低于室温或体温,使得与该组件接触的皮肤冻结或被冻伤。使用此类配置能够实现更少绝热件的使用,因为没有没有“冷”组件必须与人或周围环境隔开。在一些实施方案中,操作装置连接器具有回缩元件,该回缩元件设计成卷回提供能量、气体、冷却剂、液体、压力和/或通信内容的已使用和/或未使用的电缆、布线、电线、管线和管道。在一些实施方案中,操作装置连接器配置成准备用于分配到例如能量递送装置中的冷却剂,使能量递送装置使用之前冷却剂处于期望的温度。在一些实施方案中,操作装置连接器其中具有软件,该软件配置成准备用于分配到例如能量递送装置中的冷却剂,使能量递送装置使用之前系统处于期望的温度。在一些实施方案中,冷却剂在临界点处或附近的循环能够实现能量递送装置的电子元件的冷却而无需使用附加冷却机构(例如,风扇)。
在一个说明性实施方案中,导入/导出盒包括一个或多个微波功率源和冷却剂源(例如,压缩的二氧化碳气体)。此导入/导出盒连接到一个输送护套,该输送护套同时将微波能量和冷却剂递送到操作装置连接器。输送护套内的冷却剂线路或能量线路可以彼此缠绕以便能够最大程度地使输送护套本身冷却。输送护套沿着地板在不干扰护理患者的医务人员移动的位置中行进到将要实施操作的无菌区中。输送护套连接到位于患者躺卧的成像台附近的操作台。该操作台是轻便的(例如在轮子上)且可连接到成像台以便它们一起移动。该操作台包括支架,该支架可以是柔性或可伸缩的,以便能够将支架定位于患者上方和顶上。输送护套或连接到输送护套的电缆沿着支架走线到架空位置。位于支架的端部处是操作装置连接器。在一些实施方案中,对两个或更多个支架提供两个或更多个操作装置连接器或一个操作装置连接器的两个或更多个组件。操作装置连接器是小的(例如,小于1立方英尺、小于10cm3等)以能够实现容易移动以及定位于患者上方。操作装置连接器包括用于控制系统的所有计算方面的处理器。该装置连接器包括一个或多个用于连接引入能量递送装置的电缆的一个或多个连接端口。将电缆连接到端口。这些电缆是可回缩的且长度小于3英尺。使用短电缆降低成本且防止功率耗损。当不使用时,电缆悬空在患者上方,不会接触患者身体。当不使用时(例如,当能量递送装置未连接到特定端口时),这些端口配置有假负载。操作装置连接器在治疗医师接触范围内,以便在操作期间能够实时地调节计算机控制以及能够查看所显示的信息。
X.能量递送系统的用途
本发明的系统不限于特定用途。实际上,本发明的能量递送系统设计成在可应用能量发射的任何环境中使用。此类用途包括任何和所有医疗、兽医和研究应用。此外,本发明的这些系统和装置可以用在农业环境、制造环境、机械环境或要递送能量的任何其他应用中。
在一些实施方案中,这些系统配置成用于开放手术,经皮能量递送、血管内能量递送、心脏内能量递送、内窥镜能量递送、管腔内能量递送、腹腔镜能量递送或手术能量递送。在一些实施方案中,这些能量递送装置可以定经导管、经手术形成的开口和/或经身体孔口(例如,嘴、耳、鼻、眼睛、阴道、阴茎、肛门)(例如,N.O.T.E.S.操作)定位于患者体内。在一些实施方案中,这些系统配置成用于向靶组织或区域递送能量。在一些实施方案中,提供定位板,以便改善利用本发明的能量递送系统的经皮能量递送、血管内能量递送、心脏内能量递送、腹腔镜能量递送和/或手术能量递送。本发明不限于特定类型或种类的定位板。在一些实施方案中,该定位板设计成确保将一个或多个能量递送装置固定在期望的身体区域以用于经皮能量递送、血管内能量递送、心脏内能量递送、腹腔镜能量递送和/或手术能量递送。在一些实施方案中,定位板的组成使得它能够防止身体区域暴露于来自能量递送系统的非期望的热。在一些实施方案中,该板提供用于帮助能量递送装置定位的引导部。本发明不受限于靶组织或区域的属性。用途包括但不限于,心律失常的治疗、肿瘤消融(良性和恶性)、手术期间、创伤之后、针对任何其他出血控制的出血控制、软组织的移除、组织切除和采集、静脉曲张的治疗、腔内组织消融(例如,为了治疗食道疾病(如巴瑞特氏食道症)和食管腺癌)、骨癌、正常骨骼和良性骨骼症状的治疗、眼内用途、整容手术中的用途、中央神经系统的病理治疗(包括脑肿瘤和电干扰)、绝育操作(例如,输卵管的消融)和出于任何目的的血管或组织的烧灼。在一些实施方案中,手术应用包括消融治疗(例如,以实现凝固性坏死)。在一些实施方案中,手术应用包括对靶点的肿瘤消融,例如转移性肿瘤。在一些实施方案中,该装置配置成用于以对组织或生物体的最小损伤来移动和安置在任何期望的位置,包括但不限于肺部、脑部、颈部、胸部、腹部和骨盆。在一些实施方案中,这些系统配置成用于例如通过计算机断层扫描、超声波、磁共振成像、荧光检查等的引导的递送。
在某些实施方案中,本发明提供用于治疗组织区域的方法,包括提供组织区域和本文描述的系统(例如,能量递送装置和如下组件的至少其中之一:处理器、功率源、温度监视器、成像装置、调谐系统、降温系统和/或装置安置系统);将能量递送装置的一部分定位在组织区域的附近,以及利用装置将一定量的能量递送到该组织区域。在一些实施方案中,该组织区域是肿瘤。在一些实施方案中,递送能量促使例如组织区域的消融和/或血管的血栓形成和/或组织区域的电穿孔。在一些实施方案中,该组织区域是肿瘤。在一些实施方案中,该组织区域包括肺部、心脏、肝脏、生殖器、胃部、肺部、大肠、小肠、脑部、颈部、骨骼、肾脏、肌肉、肌腱、血管、前列腺、膀胱和脊髓的其中一个或多个组织区域。
在一些实施方案中,本发明提供介入身体中难以达到的区域(例如肺部的周围)的系统。在一些实施方案中,该系统导航穿过分支性身体结构(例如,支气管树)以达到靶点。在一些实施方案中,本发明的系统、装置和方法提供将能量(例如,微波能量、用于组织消融的能量)递送到身体、器官或组织的难以达到的区域(例如,肺部的周围)。在一些实施方案中,该系统穿过分支性结构(例如,支气管树)将能量(例如,微波能量、用于组织消融的能量)递送到靶点。在一些实施方案中,该系统穿过支气管(例如,一级支气管、二级支气管、三级支气管、细支气管等)将能量(例如,微波能量、用于组织消融的能量)递送到肺部的周围。在一些实施方案中,穿过支气管介入肺部提供精确且准确的方法同时将对肺部的伴随性损伤减到最小。从肺部外介入肺部(例如,肺部周围)需要穿刺或切开肺部,通过支气管介入能够避免此情况。穿过肺部插入具有内科并发症,通过本发明的系统和方法实施方案避免了此情况。
在一些实施方案中,将包括通道导管和可转向导航导管的主导管(例如,内窥镜、支气管镜等)(例如经由气管)推进到支气管树中,直到支气管的逐渐减小的周长将不允许主导管进一步推进为止。在一些实施方案中,将包括通道导管和可转向导航导管的主导管(例如,内窥镜、支气管镜等)(例如经由气管)推进到支气管树中直到用于部署通道导管的期望点。在一些实施方案中,将主导管推进到气管、一级支气管和/或二级支气管,但是不进一步推进。在一些实施方案中,穿过主导管推进包括可转向导航导管的通道导管,并超出主导管的远端头(例如,经由气管、经由一级支气管、经由二级支气管、经由三级支气管、经由细支气管等)进入支气管树,直至靶位点(例如,治疗点、肿瘤等)。在一些实施方案中,将包括可转向导航导管的通道导管(例如经由气管、主支气管等)推进到支气管树中,直到支气管的逐渐减小的尺寸将不允许进一步推进为止(例如,在三级支气管中、在细支气管中、在治疗点处)。在一些实施方案中,将通道导管推进到气管、一级支气管、二级支气管、三级支气管和/或细支气管中。在一些实施方案中,将可转向导航导管推进到气管、一级支气管、二级支气管、三级支气管和/或细支气管中直至治疗点。在一些实施方案中,穿过通道导管将可转向导航导管抽回,留下开口通道管腔从插入点(例如,插入在受试者体内、插入在气管中、插入在支气管树中等)延伸,穿过支气管树(例如,穿过气管、一级支气管、二级支气管、三级支气管、细支气管等)延伸到靶位点(例如,治疗点、肿瘤、周围肺部肿瘤)。在一些实施方案中,将能量递送装置(例如,微波消融装置)穿过开口通道管腔插入以介入靶位点。在一些实施方案中,本发明提供利用微波消融装置穿过支气管树介入周围肺部肿瘤的系统、装置和方法。
在一些实施方案中,本发明提供用于将能量递送装置安置在受试者体内难以介入的组织区域处的系统、方法和装置。在一些实施方案中,本发明提供安置能量递送装置以用于组织消融治疗(例如,肿瘤消融)。在一些实施方案中,本发明提供对肺部周围的肿瘤、赘生物和/或结节的介入和/或治疗。在一些实施方案中,本发明提供对周围肺结节的介入和消融。外围肺结节难以穿过支气管树介入,因为它们的位置接近三级支气管和细支气管,超出常规装置和技术的达到范围。在一些实施方案中,本发明的装置、系统和方法提供穿过支气管树介入周围肺结节。外围肺结节大致直径小于25mm(例如,<25mm、<20mm、<10mm、<5mm、<2mm、<1mm等)。在一些实施方案中,外围肺结节的直径为0.1mm-25mm(例如,0.1mm...0.2mm...0.5mm...1.0mm...1.4mm...2.0mm...5.0mm...10mm...20mm...25mm以及其中直径)。在一些实施方案中,本发明提供对受试者体内(例如,受试者肺部内)的任何尺寸和任何位置的肿瘤、赘生物和结节的介入和治疗。在一些实施方案中,本发明提供对周围肺部的肿瘤(例如结节)的治愈系治疗和/或姑息治疗。
XI.装置安置系统
在一些实施方案中,本发明提供主导管(例如,内窥镜、支气管镜等)。在一些实施方案中,本领域技术人员公知的任何适合的内窥镜或支气管镜均可应用于作为本发明中的主导管。在一些实施方案中,主导管采用本领域中公知的一个或多个内窥镜和/或支气管镜的特征,以及本文描述的特征。美国专利号4,880,015中描述一种类型的常规柔性支气管镜,其通过引用全部并入本文。支气管镜测量长度790mm且具有两个主要部分,工作头和插管。工作头包括目镜;具有屈光度调节环的接目镜;用于吸附管、吸附阀和光源的附接件;以及介入口或活检入口,经由介入口或活检入口,能够将多种装置和流体传递到工作通道中并从支气管镜的远端送出。工作头附接到插管,插管典型地测量长度580mm以及直径6.3mm。插管包括光导纤维束,其在目镜中端接于远端头、光导和工作通道。如下专利中描述了可以应用于本发明的实施方案的其他内窥镜和支气管镜或可应用于本发明的其多个部分:美国专利号7,473,219;美国专利号6,086,529;美国专利号4,586,491;美国专利号7,263,997;美国专利号7,233,820;以及美国专利号6,174,307。
在一些实施方案中,本发明提供通道导管(也称为引导导管、护套、护套导管等)。在一些实施方案中,引导导管配置成安装在主导管的管腔内并包括足够直径(例如,1mm...2mm...3mm...4mm...5mm)的通道管腔以容纳可转向导航导管和/或一个或多个适合的工具(例如,能量递送装置)。在一些实施方案中,通道导管具有从插入点(例如,口腔、受试者身体中的切口等)穿过气管和/或支气管树延伸到周围肺部中的治疗点的足够长度(例如,50cm...75cm...1m...1.5m...2m)。在一些实施方案中,通道导管具有延伸超出主导管的达到范围以达到治疗点(例如,周围肺部组织)的足够长度。在一些实施方案中,通道导管足够柔性以穿过受试者(例如,穿过分支性结构、穿过支气管树等)介入迂回路径。在一些实施方案中,通道导管由编织材料构成以同时提供强度和柔性,正如本领域中所理解的。在一些实施方案中,通道导管包括三轴传输线的外层导体。在一些实施方案中,通道导管包括导航和/或转向机构。在一些实施方案中,通道导管没有单独的导航、位置识别或机动的装置。在一些实施方案中,通道导管依赖于主导管或可转向导航导管来进行安置。
在一些实施方案中,本发明提供一种可转向导航导管。在一些实施方案中,可转向导航导管配置成安装在通道导管的管腔内。在一些实施方案中,可转向导航导管具有与本文描述的能量传输线相似的直径(例如,0.2mm...0.5mm...1.0mm...1.5mm...2.0mm)。在一些实施方案中,可转向导航导管具有从插入点(例如,口腔、受试者身体中的切口等)延伸到治疗点(例如穿过例如气管和/或支气管树延伸到周围肺部中的治疗点)的足够长度(例如,50cm...75cm...1m...1.5m...2m)。在一些实施方案中,通道导管具有延伸超出主导管的达到范围以达到治疗点(例如,周围肺部组织)的足够长度。在一些实施方案中,可转向导航导管接合通道导管,以使可转向通道导管的移动促使通道导管的同步移动。在一些实施方案中,随着可转向导航导管沿着受试者体内的路径插入,包围可转向导航导管的通道导管随之移动。在一些实施方案中,通过可转向导航导管将通道导管置于受试者体内。在一些实施方案中,可转向导航导管可以与通道导管分离。在一些实施方案中,可转向导航导管与通道导管的分离,使得可转向通道导管进一步沿着通路移动,而不会移动通道导管。在一些实施方案中,可转向导航导管与通道导管的分离,使得穿过通道导管回缩可转向通道导管不会移动通道导管。
在一些实施方案中,系统或装置的所有插入的组件配置成用于穿过受试者(例如,穿过分支性结构、穿过支气管树等)沿着狭窄且迂回的路径移动。在一些实施方案中,一些组件包括配置成用于密集的转向半径的柔性材料。在一些实施方案中,将必要的硬质组件缩小尺寸(例如,短长度)以能够用于密集的转向半径。
试验
实施例I.
本实施例演示使用本发明的能量递送装置使得冷却剂穿过冷却剂通道来避免非期望的组织发热。所有试验的消融针头是20.5cm。手柄组装件有最小冷却,这指示手柄冷却影响被很好隔离。温度探针1、2和3被放置在不锈钢针头的端头附近4、8和12cm处(参见图9)。在插入猪肝脏之后对应于35%功率测量以及插入猪肝脏之后对应于45%功率测量,取得温度测量值。对于35%功率测量,探针4位于手柄本身上。对于45%功率测量,探针4位于针头外皮表面处,从不锈钢针头尖往回约16cm。
如图10所示,在35%功率下持续10分钟,具有特别性高(6.5%)的反射功率,这演示探针1、2、3和手柄处,装置保持在不损伤组织的温度下。
如图11所示,在45%功率下持续10分钟,具有特别性高(6.5%)的反射功率,这演示探针1、2、3和4,装置保持在不损伤组织的温度下。持续10分钟具有特别高(6.5%)的反射功率下,在45%功率下10分钟之后观察皮肤和脂肪层,演示无可见烧灼或热损伤。
实施例II.
此实施例演示发生器校准。发生器校准由Cober-Muegge公司在工厂完成,并设为对应于大于150W的功率最精确。磁电管表现更像二极管:增加阴极电压不会增加真空电流(与输出功率成比例),直到达到临界阈值为止,在此点处,真空电流随着电压快速升高。控制磁电管源依赖于将阴极电压精确地控制在该临界点附近。因此,发生器未针对0-10%的功率给予规定,输出功率与理论功率百分比输入之间的相关性不足低于15%。
为了测试发生器校准,将功率控制拨盘从0.25%按1%增量更改(对应于3W增量下理论输出功率0-75W),以及记录发生器的输出功率显示,并测量功率输出。室温下,对应于同轴电缆、耦合器和负载的测量损耗,调节测得的功率输出。还对应于偏移量误差调节输出显示(即,当拨盘设为0.0%时,发生器读出2.0%)。
拨盘与发生器输出功率显示之间的误差对于低功率拨盘设置值很大。对于高于15%的拨盘设置值,将这两个值快速地覆盖到小于5%的百分比误差。相似地,对于低于15%的拨盘设置值,测得的输出功率显著地不同于理论输出功率,但是对于高于15%的拨盘设置值更精确。
实施例III.
此实施例描述制造期间天线的安装和测试。这提供一种用于制造环境中安装和测试的方法。该方法采用液体组织等效体模,而非组织。
根据对天线已经进行的数值和试验测量,已知~1mm的L2变化将增加从<-30dB至~-20-25dB的反射功率。此增加可能因消融期间发生的组织特性的改变不显著地造成,所以认为长度L2上的0.5mm的相对容差是合理的。同样地,使用长度L1上的0.5mm的容差,即使总反射系数与L1的相关性较L2低。
出于质量控制目的而进行天线调谐的测试可以使用设计成模拟肝脏、肺或肾的电介质特性的液体溶液来实现(参见例如GuyAW(1971)IEEE Trans.Microw.Theory Tech.19:189-217;其通过引用全部并入本文)。将天线浸入体模中,使用1端口测量装置或全矢量网络分析仪(VNA)记录反射系数。低于-30dB的反射系数的验证选为确保正确的调谐。
实施例IV.
此实施例比较三轴和中心馈电双极天线的效率、发热能力和可制造性。需要对原三轴设计进行修改,以便构造能够容易地插入的更硬尖锐的端头。最初使用计算机建模来确定添加氧化铝护套和面状金属端头的情况下需要天线长度上的什么更改在建模确认需要加长天线且金属端头不会降低性能之后,构造天线以用于间接体内肝脏组织中测试。此测试显示修改的设计保持了其高效率同时对于经皮安置提供足够的机械强度。中心馈电双极设计的计算机建模得到边际结果以及后续装置制造证明难以复制。相应地,选择可插入三轴装置作为引线天线设计。
计算机建模展示阻热涂层和重绝热都能够减少允许从天线远端头流到天线近端部分的热量。但是有效的水冷却溶液能够使0.020″同轴电缆的功率吞吐量从~8W增加到超过150W。当使用150W输入功率时,水冷却还消除从天线端头延伸到近端的任何杆体发热(图21)。但是,实施时需要使用昂贵的0.020”同轴电缆来提供足够的水流速率(~30ml/min)。此外0.020″电缆比先前使用的0.047″电缆多2-3x损耗,这使功率吞吐量降低15W并且需要对该附加功率损耗的冷却。最终的天线设计在整个组装件周围集成了PEEK护套以减少金属天线与周围组织之间可能发生的粘黏,同时还提供显示为减少热传导发热的热缓冲。
使用Valleylab/Covidien公司的已冷却的17标准设计原型天线或17标准已冷却的RF电极经皮实施研究,在正常直接体内猪肺模型中形成消融。使用对于RF使用200W且采用阻抗控制和对于微波组使用135W的临床标准,实施消融持续10分钟。微波组中形成的消融显著地大于RF组,其中平均消融直径(平均±标准偏差)分别为3.32±0.19cm和2.7±0.27cm(P<.0001,图9)。消融圆形度在微波组中也显著高于RF组(0.90±0.06对比0.82±0.09,P<.05)。整个研究中未观察到主要并发症。在均来自RF组的两例消融期间在一个动物体内观察到较小气胸。二者早未予干预下保持稳定。根据此研究,得出结论,微波更有效并且比RF电流通常更快速地将肺组织加热。
实施例V.
此实施例研究模拟发热环境中的冷却。将加热器线圈穿过与三轴天线的第三层导体几乎完全相同的17标准不锈钢针头。沿着针头外侧放置四个热电偶,并以封孔泡沫将整个系统隔热。此设置被考虑为最差情况,因为血流和生物组织的高热传导性往往提供一定的天线冷却。以0-50W将线圈加热,并且在NC-CO2以0-10stpL/分钟流速工作下记录温度。测试结果显示CO2的中等流速足够将50W总输入功率降温到使得被加热的管保持在环境温度处(图24)。
在没有冷却的情况下在针头外表面上记录的温度超过100℃,但是在10-20stpL/分钟的NC-CO2冷却下将表面温度降低到30℃以下(图24)。这些测试显示中等量的NC-CO2(~10stpL/分钟)能够有效地将来自消融天线内部的50W降温。
实施例VI.
此试验测量从加热的天线端头向近端的热传导的影响。将修改的天线-将陶瓷辐射段替换为导热铜管-置于电热器中,利用导热膏以确保加热器与天线之间的良好热接触(图25)。沿着天线外表面在若干点处放置热电偶以对照NC-CO2流速测量温度。
在冷却之前,在接近加热器1cm处,沿着外层导体的温度超过80℃。当以13stpL/分钟的中等流速开始冷却时,温度下降到NC-CO2气体的输入温度:~0℃(图25)。增加流速会进一步降温。将热交换器中气体稍微预先冷却以测试针头杆体上“粘着”功能的可能性,与采用冷冻消融术的相似。此预先冷却导致对于接近临界工作比需要更低的温度31℃,以及附加的实施则超出本研究的范围。
还实施了使用相同设置和加热器的后续测试以评估所需的冷却功率的下限。在本研究中,10stpL/分钟的初始流显示将温度降低到~0℃。然后将该流去除,并且当杆体温度上升大于30℃时,注入1stpL/分钟的CO2脉冲持续大约10秒。尽管未冷却而温度快速上升,但是只需小CO2脉冲即可消除温度上升,并将系统保持在环境温度(图26)。这些结果说明例如,操作期间,使用少量CO2就能够将天线保持在ISO 60601-1标准以下。可以采用温度反馈/监视系统来将操作期间CO2的使用减到最小。在微波消融天线内,接近临界点的CO2是对液体冷却的可行且有效替代。NC-CO2的更大热容量确保仅需要少量流体即可将消融天线冷却到安全水平。这显示适度流速~10stpL/分钟足够将50W的天线发热冷却。
实施例VII.
此实施例评估在消融过程中使用小量碘化对比剂材料的周期性注射的可行性,其中采用新重构技术以改进消融区可视性同时减少对比剂材料的剂量。没有普适且有效的手中成像技术是热肿瘤消融领域的关键局限。超声波成像可能被加热期间形成的气泡阻挡,而对比剂增强型CT通常限于利用大剂量对比剂材料注射的一次扫描。
制备并麻醉雌性家猪。使用三个内部冷却的开关式电极实施RF消融持续20分钟。消融期间,每2分钟给药15ml碘化对比剂材料(300mg/ml),并在每次注射之后延长时间(90秒)在预定的肝脏处收集腹腔CT。同时使用常规的在线重构和离线重构形成CT图像,采用高度抑制反投影(HYPR)。将常规和HYPR重构的图像比较以得到消融区与背景肝脏之间的成像对比和信噪比。
消融区增长能够以2分钟时间分辨率观察到。利用15-45ml的累积对比剂剂量,消融区在2-6分钟内更容易显见到。利用累积对比剂剂量,图像质量提高。HYPR重构的图像中的SNR比标准重构和HYPR好~3-4x,消融区与背景肝脏之间的信号对比度提高最多6x(图27和图28)。
本说明书上文提到的所有出版物和专利均通过引用并入本文。在不背离本发明的范围和精神的前提下,本领域技术人员将显见到本发明的所述方法和系统的多种修改和变化。虽然本发明是结合特定实施方案来描述的,但是应该理解,如要求权利的本发明不应过度局限于此类特定实施方案。实际上对于相关领域的技术人员显见到的用于实现本发明的所述方式的多种修改应在所附权利要求的范围内。

Claims (13)

1.一种治疗周围肺结节的方法,其包括通过施加微波能量将所述结节消融。
2.如权利要求1所述的方法,其中沿着微波递送装置递送所述微波能量。
3.如权利要求2所述的方法,其中经由受试者的支气管树插入所述微波递送装置。
4.一种系统,其包括:
a)主导管,其中所述主导管包括主管腔;
b)通道导管,其中所述通道导管配置成安装在所述主管腔内,以及其中所述通道导管包括通道管腔;
c)可转向导航导管,其中所述可转向导航导管配置成安装在所述通道管腔内,以及其中所述可转向导航导管包括可转向端头和位置感测元件;以及
d)能量递送装置,其中所述能量递送装置配置成安装在所述通道管腔内。
5.如权利要求4所述的系统,其中所述主导管包括支气管镜。
6.如权利要求4所述的系统,其中所述能量递送装置包括微波消融装置。
7.如权利要求4所述的系统,还包括手柄,其用于操控所述主导管、所述通道导管、所述可转向导航导管和所述能量递送装置中的一个或多个。
8.如权利要求4所述的系统,还包括所述系统的组件的处理器操作。
9.如权利要求4所述的系统,其中所述能量递送装置能够经由所述通道导管递送微波能量。
10.一种将能量递送装置置于难以达到的治疗点的方法,其包括:
a)提供如权利要求1所述的系统,其中所述可转向导航导管位于所述通道管腔内,以及所述通道导管位于所述主管腔内;
b)将所述主导管插入到受试者的开口中,并将所述主导管向所述治疗点引导,直到所述主导管的直径约束了进一步推进为止;
c)推进所述通道导管超出所述主导管的远端,并将所述通道导管延伸到所述治疗点;
d)将所述通道导管的远端固定在所述治疗点处;
e)经由所述通道管腔抽回所述可转向导航导管,并从所述通道导管的近端抽出;
f)经由所述通道管腔将所述能量递送装置插入,直到所述能量递送装置的远端达到所述治疗点为止。
11.如权利要求10所述的方法,其中所述难以达到的治疗点包括肺部的周围。
12.如权利要求11所述的方法,其中所述难以达到的治疗点包括周围肺结节。
13.如权利要求12所述的方法,其中经由支气管树介入所述肺结节。
CN201180032792.5A 2010-05-03 2011-05-03 能量递送系统 Active CN103025262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911134613.3A CN110801282B (zh) 2010-05-03 2011-05-03 能量递送系统及其用途

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33080010P 2010-05-03 2010-05-03
US61/330800 2010-05-03
PCT/US2011/035000 WO2011140087A2 (en) 2010-05-03 2011-05-03 Energy delivery systems and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911134613.3A Division CN110801282B (zh) 2010-05-03 2011-05-03 能量递送系统及其用途

Publications (2)

Publication Number Publication Date
CN103025262A true CN103025262A (zh) 2013-04-03
CN103025262B CN103025262B (zh) 2019-12-17

Family

ID=44904428

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180032792.5A Active CN103025262B (zh) 2010-05-03 2011-05-03 能量递送系统
CN201911134613.3A Active CN110801282B (zh) 2010-05-03 2011-05-03 能量递送系统及其用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911134613.3A Active CN110801282B (zh) 2010-05-03 2011-05-03 能量递送系统及其用途

Country Status (7)

Country Link
US (6) US9861440B2 (zh)
EP (2) EP3804651A1 (zh)
JP (6) JP6153865B2 (zh)
CN (2) CN103025262B (zh)
CA (1) CA2800312C (zh)
ES (1) ES2856026T3 (zh)
WO (1) WO2011140087A2 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103479358A (zh) * 2013-09-26 2014-01-01 深圳先进技术研究院 磁共振成像的处理方法和系统
CN105636502A (zh) * 2013-09-06 2016-06-01 柯惠有限合伙公司 用于基于光的肺部可视化的系统和方法
CN106109011A (zh) * 2016-08-30 2016-11-16 北京天助畅运医疗技术股份有限公司 一种血管微波热凝水冷导管
CN106730375A (zh) * 2016-12-30 2017-05-31 镇江步云电子有限公司 肺部微波辐射治疗仪
CN107595384A (zh) * 2017-08-29 2018-01-19 南京亿高微波系统工程有限公司 一种智能微波消融针及其功率控制方法
CN108289712A (zh) * 2015-09-30 2018-07-17 Gem公司 电磁组织消融装置
CN108348733A (zh) * 2015-07-22 2018-07-31 心脏护理生物医学有限责任公司 具有直接可视化特征部的导线导航系统
US10098565B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
CN109069203A (zh) * 2016-04-15 2018-12-21 纽韦弗医疗设备公司 用于能量输送的系统和方法
CN109069201A (zh) * 2016-04-04 2018-12-21 科瑞欧医疗有限公司 用于递送rf和微波能量的电外科探针
CN109475382A (zh) * 2016-05-25 2019-03-15 爱科美德科技公司 用于治疗多余组织的系统
CN109674528A (zh) * 2019-01-10 2019-04-26 江苏邦士医疗科技有限公司 一种多功能微创等离子消融针
CN109949551A (zh) * 2019-04-24 2019-06-28 深圳德里克设备有限公司 养殖物的输出方法及输出系统
CN110603005A (zh) * 2016-09-28 2019-12-20 项目莫里股份有限公司 心律失常诊断和/或治疗的递送方法和装置,以及用于其它用途的机器人系统
CN113543691A (zh) * 2019-03-08 2021-10-22 纽韦弗医疗设备公司 用于能量递送的系统和方法

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112102A1 (en) 2006-03-24 2007-10-04 Micrablate Center fed dipole for use with tissue ablation systems, devices, and methods
US10363092B2 (en) 2006-03-24 2019-07-30 Neuwave Medical, Inc. Transmission line with heat transfer ability
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
WO2014143014A1 (en) 2013-03-15 2014-09-18 Triagenics, Llc Therapeutic tooth bud ablation
CN102625676A (zh) 2009-07-28 2012-08-01 纽韦弗医疗设备公司 能量递送系统及其使用
JP6153865B2 (ja) * 2010-05-03 2017-06-28 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー送達システム
US11033318B2 (en) 2011-06-14 2021-06-15 Aerin Medical, Inc. Methods and devices to treat nasal airways
US11241271B2 (en) 2011-06-14 2022-02-08 Aerin Medical Inc. Methods of treating nasal airways
US11304746B2 (en) 2011-06-14 2022-04-19 Aerin Medical Inc. Method of treating airway tissue to reduce mucus secretion
WO2013096803A2 (en) * 2011-12-21 2013-06-27 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US20130281851A1 (en) * 2012-04-19 2013-10-24 Kenneth L. Carr Heating/sensing catheter apparatus for minimally invasive applications
US9854259B2 (en) * 2012-07-09 2017-12-26 Qualcomm Incorporated Smoothing of difference reference picture
US9247993B2 (en) * 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9161814B2 (en) * 2013-03-15 2015-10-20 Covidien Lp Microwave energy-delivery device and system
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9119650B2 (en) 2013-03-15 2015-09-01 Covidien Lp Microwave energy-delivery device and system
JP6180016B2 (ja) * 2013-04-23 2017-08-16 沖野 晃俊 大気圧プラズマを用いた生物細胞および外皮系のケア装置
MX2016000023A (es) 2013-07-03 2016-07-07 Uvlrx Therapeutics Inc Dispositivo de acceso vascular con conductor de luz integrado.
CN103948405B (zh) * 2014-05-12 2016-02-03 王云彦 一种全自动神经介入治疗器械输送器
US9652894B1 (en) * 2014-05-15 2017-05-16 Wells Fargo Bank, N.A. Augmented reality goal setter
WO2015190435A1 (ja) * 2014-06-10 2015-12-17 オリンパス株式会社 内視鏡システム、内視鏡装置及びプロセッサ
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
JP2018504154A (ja) 2014-12-03 2018-02-15 カーディオフォーカス,インコーポレーテッド アブレーション処置中の肺静脈隔離の目視確認のためのシステム及び方法
KR102457219B1 (ko) * 2015-01-13 2022-10-21 삼성메디슨 주식회사 초음파 영상 장치 및 그 제어 방법
US10674982B2 (en) 2015-08-06 2020-06-09 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10716525B2 (en) 2015-08-06 2020-07-21 Covidien Lp System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction
US10702226B2 (en) 2015-08-06 2020-07-07 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
CN113367788A (zh) * 2015-10-26 2021-09-10 纽韦弗医疗设备公司 能量递送系统及其用途
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10939963B2 (en) 2016-09-01 2021-03-09 Covidien Lp Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
US11529190B2 (en) 2017-01-30 2022-12-20 Covidien Lp Enhanced ablation and visualization techniques for percutaneous surgical procedures
CA3028792C (en) * 2017-02-15 2024-03-12 Synaptive Medical (Barbados) Inc. Sensored surgical tool and surgical intraoperative tracking and imaging system incorporating same
US11793579B2 (en) 2017-02-22 2023-10-24 Covidien Lp Integration of multiple data sources for localization and navigation
WO2018156460A1 (en) * 2017-02-22 2018-08-30 The Trustees Of Columbia University In The City Of New York Method and apparatus for computer-vision guided targeted delivery of small liquid volumes into selected lung regions
CN110769897B (zh) * 2017-03-28 2024-02-23 恩布莱申有限公司 狭窄症治疗
EP3381393A1 (en) * 2017-03-31 2018-10-03 National University of Ireland Galway An ablation probe
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
CN109464186B (zh) 2017-09-08 2023-12-22 泽丹医疗股份有限公司 治疗肺部肿瘤的装置和方法
WO2019075074A1 (en) 2017-10-10 2019-04-18 Covidien Lp SYSTEM AND METHOD FOR IDENTIFICATION AND MARKING OF A TARGET IN A THREE-DIMENSIONAL FLUOROSCOPIC RECONSTRUCTION
EP3488806A1 (en) * 2017-11-27 2019-05-29 Universität Regensburg - Universitätsklinikum Multipolar radiofrequency ablation device and system
US20190201093A1 (en) 2018-01-03 2019-07-04 Neuwave Medical, Inc. Systems and methods for energy delivery
US10893842B2 (en) 2018-02-08 2021-01-19 Covidien Lp System and method for pose estimation of an imaging device and for determining the location of a medical device with respect to a target
US20190246876A1 (en) 2018-02-15 2019-08-15 Neuwave Medical, Inc. Compositions and methods for directing endoscopic devices
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
EP3776723A4 (en) 2018-03-29 2021-12-15 Intuitive Surgical Operations, Inc. SYSTEMS AND PROCESSES ASSOCIATED WITH FLEXIBLE ANTENNAS
EP3801343B1 (en) 2018-05-31 2022-05-11 BH Scientific, LLC System for microwave ablation and measuring temperature during ablation
JP7218966B2 (ja) * 2018-06-14 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
GB2575485A (en) * 2018-07-12 2020-01-15 Creo Medical Ltd Electrosurgical instrument
US11705238B2 (en) 2018-07-26 2023-07-18 Covidien Lp Systems and methods for providing assistance during surgery
US11944388B2 (en) 2018-09-28 2024-04-02 Covidien Lp Systems and methods for magnetic interference correction
US11877806B2 (en) 2018-12-06 2024-01-23 Covidien Lp Deformable registration of computer-generated airway models to airway trees
US11617493B2 (en) 2018-12-13 2023-04-04 Covidien Lp Thoracic imaging, distance measuring, surgical awareness, and notification system and method
US11801113B2 (en) 2018-12-13 2023-10-31 Covidien Lp Thoracic imaging, distance measuring, and notification system and method
US11357593B2 (en) 2019-01-10 2022-06-14 Covidien Lp Endoscopic imaging with augmented parallax
US11625825B2 (en) 2019-01-30 2023-04-11 Covidien Lp Method for displaying tumor location within endoscopic images
US11744643B2 (en) 2019-02-04 2023-09-05 Covidien Lp Systems and methods facilitating pre-operative prediction of post-operative tissue function
GB2588070B (en) 2019-04-29 2022-11-16 Creo Medical Ltd Electrosurgical system
EP3979938A4 (en) 2019-06-06 2023-06-28 TriAgenics, Inc. Ablation probe systems
US11210479B2 (en) 2019-06-26 2021-12-28 Medtronic, Inc. Wireless tracking of device characteristics
US11627924B2 (en) 2019-09-24 2023-04-18 Covidien Lp Systems and methods for image-guided navigation of percutaneously-inserted devices
AU2020391498B2 (en) * 2019-11-27 2023-08-17 Blossom Innovations, LLC Devices, systems and methods for tissue analysis, location determination and tissue ablation
WO2021202541A1 (en) * 2020-03-30 2021-10-07 Guy Frederick R Plasma generating bronchoscope and method of killing pathogens and healing lung tissue
KR102409465B1 (ko) * 2020-07-28 2022-06-16 원텍 주식회사 고주파 에너지 전달장치
CN116421295B (zh) * 2023-06-15 2023-08-29 海杰亚(北京)医疗器械有限公司 低温冷冻系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070114A1 (en) * 2000-03-17 2001-09-27 Rita Medical Systems Inc. Lung treatment apparatus
US20050245919A1 (en) * 2004-04-29 2005-11-03 Van Der Weide Daniel W Triaxial antenna for microwave tissue ablation
US20060189973A1 (en) * 2004-04-29 2006-08-24 Van Der Weide Daniel W Segmented catheter for tissue ablation
US7160292B2 (en) * 1999-06-17 2007-01-09 Vivant Medical, Inc. Needle kit and method for microwave ablation, track coagulation, and biopsy
CN101511295A (zh) * 2006-07-14 2009-08-19 纽华沃医药公司 能量传输系统及其用途
CN101511292A (zh) * 2005-03-28 2009-08-19 明诺医学有限公司 用于选择性地治疗动脉粥样硬化和其他目标组织的内腔电组织表征和调谐射频能量

Family Cites Families (389)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800552A (en) 1972-03-29 1974-04-02 Bendix Corp Cryogenic surgical instrument
US3838242A (en) 1972-05-25 1974-09-24 Hogle Kearns Int Surgical instrument employing electrically neutral, d.c. induced cold plasma
US3991770A (en) 1974-01-24 1976-11-16 Leveen Harry H Method for treating benign and malignant tumors utilizing radio frequency, electromagnetic radiation
US4057064A (en) 1976-01-16 1977-11-08 Valleylab, Inc. Electrosurgical method and apparatus for initiating an electrical discharge in an inert gas flow
US4074718A (en) 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
FR2421628A1 (fr) 1977-04-08 1979-11-02 Cgr Mev Dispositif de chauffage localise utilisant des ondes electromagnetiques de tres haute frequence, pour applications medicales
US4557272A (en) 1980-03-31 1985-12-10 Microwave Associates, Inc. Microwave endoscope detection and treatment system
US4375220A (en) 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US4446874A (en) 1981-12-30 1984-05-08 Clini-Therm Corporation Microwave applicator with discoupled input coupling and frequency tuning functions
JPS58173541A (ja) 1982-04-03 1983-10-12 銭谷 利男 マイクロ波手術装置
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
JPS5957650A (ja) 1982-09-27 1984-04-03 呉羽化学工業株式会社 腔内加熱用プロ−ブ
US4534347A (en) 1983-04-08 1985-08-13 Research Corporation Microwave coagulating scalpel
GB2139500B (en) 1983-05-14 1986-07-30 Hpw Ltd Surgical laser knives
US4589424A (en) 1983-08-22 1986-05-20 Varian Associates, Inc Microwave hyperthermia applicator with variable radiation pattern
US4601296A (en) 1983-10-07 1986-07-22 Yeda Research And Development Co., Ltd. Hyperthermia apparatus
USRE33791E (en) 1984-07-05 1992-01-07 M/A-Com, Inc. Non-invasive temperature monitor
US4800899A (en) 1984-10-22 1989-01-31 Microthermia Technology, Inc. Apparatus for destroying cells in tumors and the like
US4586491A (en) 1984-12-14 1986-05-06 Warner-Lambert Technologies, Inc. Bronchoscope with small gauge viewing attachment
GB2171309B (en) 1985-02-26 1988-11-02 North China Res I Electro Opti Microwave therapeutic apparatus
US4712559A (en) 1985-06-28 1987-12-15 Bsd Medical Corporation Local current capacitive field applicator for interstitial array
US4641649A (en) 1985-10-30 1987-02-10 Rca Corporation Method and apparatus for high frequency catheter ablation
US4643186A (en) 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
US4700716A (en) 1986-02-27 1987-10-20 Kasevich Associates, Inc. Collinear antenna array applicator
US4901719A (en) 1986-04-08 1990-02-20 C. R. Bard, Inc. Electrosurgical conductive gas stream equipment
US4790311A (en) 1986-06-03 1988-12-13 Ruiz Oscar F Radio frequency angioplasty catheter system
US4860752A (en) 1988-02-18 1989-08-29 Bsd Medical Corporation Invasive microwave array with destructive and coherent phase
AU3696989A (en) 1988-05-18 1989-12-12 Kasevich Associates, Inc. Microwave balloon angioplasty
US5074861A (en) 1988-05-23 1991-12-24 Schneider Richard T Medical laser device and method
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US5344435A (en) 1988-07-28 1994-09-06 Bsd Medical Corporation Urethral inserted applicator prostate hyperthermia
US5150717A (en) 1988-11-10 1992-09-29 Arye Rosen Microwave aided balloon angioplasty with guide filament
US5026959A (en) 1988-11-16 1991-06-25 Tokyo Keiki Co. Ltd. Microwave radiator for warming therapy
FR2639238B1 (fr) 1988-11-21 1991-02-22 Technomed Int Sa Appareil de traitement chirurgical de tissus par hyperthermie, de preference la prostate, comprenant des moyens de protection thermique comprenant de preference des moyens formant ecran radioreflechissant
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US4974587A (en) 1988-12-22 1990-12-04 Bsd Medical Corporation Applicator array and positioning system for hyperthermia
US5057104A (en) 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US5007437A (en) 1989-06-16 1991-04-16 Mmtc, Inc. Catheters for treating prostate disease
DE3926934A1 (de) 1989-08-16 1991-02-21 Deutsches Krebsforsch Hyperthermie-mikrowellenapplikator zur erwaermung einer begrenzten umgebung in einem dissipativen medium
US5697375A (en) 1989-09-18 1997-12-16 The Research Foundation Of State University Of New York Method and apparatus utilizing heart sounds for determining pressures associated with the left atrium
US5167619A (en) 1989-11-17 1992-12-01 Sonokineticss Group Apparatus and method for removal of cement from bone cavities
US5211625A (en) 1990-03-20 1993-05-18 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5098429A (en) 1990-04-17 1992-03-24 Mmtc, Inc. Angioplastic technique employing an inductively-heated ferrite material
US5213561A (en) * 1990-09-06 1993-05-25 Weinstein Joseph S Method and devices for preventing restenosis after angioplasty
CA2089739A1 (en) 1990-09-14 1992-03-15 John H. Burton Combined hyperthermia and dilation catheter
US5409453A (en) 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
JP3091253B2 (ja) 1991-04-25 2000-09-25 オリンパス光学工業株式会社 温熱治療装置
US5301687A (en) 1991-06-06 1994-04-12 Trustees Of Dartmouth College Microwave applicator for transurethral hyperthermia
US5597146A (en) 1991-08-05 1997-01-28 Putman; J. Michael Rail-mounted stabilizer for surgical instrument
US5308342A (en) * 1991-08-07 1994-05-03 Target Therapeutics, Inc. Variable stiffness catheter
WO1993009845A1 (en) 1991-11-12 1993-05-27 Trustees Of Dartmouth College Microwave hyperthermia system and method
US5344418A (en) 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5295955A (en) 1992-02-14 1994-03-22 Amt, Inc. Method and apparatus for microwave aided liposuction
US5413588A (en) 1992-03-06 1995-05-09 Urologix, Inc. Device and method for asymmetrical thermal therapy with helical dipole microwave antenna
US5300099A (en) 1992-03-06 1994-04-05 Urologix, Inc. Gamma matched, helical dipole microwave antenna
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5281217A (en) 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5755752A (en) 1992-04-24 1998-05-26 Segal; Kim Robin Diode laser irradiation system for biological tissue stimulation
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5275597A (en) 1992-05-18 1994-01-04 Baxter International Inc. Percutaneous transluminal catheter and transmitter therefor
US5248312A (en) 1992-06-01 1993-09-28 Sensor Electronics, Inc. Liquid metal-filled balloon
US5720718A (en) 1992-08-12 1998-02-24 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
DE69321963T2 (de) * 1992-09-01 1999-04-01 Adair Edwin Lloyd Sterilisierbares endoskop mit einer trennbaren wegwerfbaren rohranordnung
US5643175A (en) * 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5369251A (en) 1992-09-14 1994-11-29 Kdc Technology Corp. Microwave interstitial hyperthermia probe
US5620479A (en) 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
DE9301616U1 (de) 1993-02-05 1994-06-01 Gore W L & Ass Gmbh Flexibler Katheter
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5398708A (en) 1993-04-16 1995-03-21 Sheldon; Morris W. Parts cleaning machine
US5693082A (en) 1993-05-14 1997-12-02 Fidus Medical Technology Corporation Tunable microwave ablation catheter system and method
US5364392A (en) 1993-05-14 1994-11-15 Fidus Medical Technology Corporation Microwave ablation catheter system with impedance matching tuner and method
US5405346A (en) 1993-05-14 1995-04-11 Fidus Medical Technology Corporation Tunable microwave ablation catheter
US5462556A (en) 1993-06-24 1995-10-31 Powers; William J. Ectoparasite remover and method for removing an ectoparasite from a host organism
GB9315473D0 (en) 1993-07-27 1993-09-08 Chemring Ltd Treatment apparatus
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5540649A (en) 1993-10-08 1996-07-30 Leonard Medical, Inc. Positioner for medical instruments
US5507743A (en) 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5788694A (en) 1993-12-08 1998-08-04 Vancaillie; Thierry G. Self-guiding electrode for tissue resection
US6241725B1 (en) 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US6530922B2 (en) 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6002968A (en) 1994-06-24 1999-12-14 Vidacare, Inc. Uterine treatment apparatus
US6044846A (en) 1994-06-24 2000-04-04 Edwards; Stuart D. Method to treat esophageal sphincters
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5531739A (en) 1994-09-23 1996-07-02 Coherent, Inc. Method of treating veins
US6694163B1 (en) 1994-10-27 2004-02-17 Wake Forest University Health Sciences Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US5559295A (en) 1994-12-01 1996-09-24 Sheryll; Richard P. Underwater sampling method and apparatus
US5603697A (en) 1995-02-14 1997-02-18 Fidus Medical Technology Corporation Steering mechanism for catheters and methods for making same
US6106524A (en) 1995-03-03 2000-08-22 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
ATE352999T1 (de) 1995-05-04 2007-02-15 Sherwood Serv Ag Chirurgiesystem mit gekühlter elektrodenspitze
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5769879A (en) 1995-06-07 1998-06-23 Medical Contouring Corporation Microwave applicator and method of operation
US5788692A (en) 1995-06-30 1998-08-04 Fidus Medical Technology Corporation Mapping ablation catheter
US5810804A (en) 1995-08-15 1998-09-22 Rita Medical Systems Multiple antenna ablation apparatus and method with cooling element
US5782827A (en) 1995-08-15 1998-07-21 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with multiple sensor feedback
US5849029A (en) 1995-12-26 1998-12-15 Esc Medical Systems, Ltd. Method for controlling the thermal profile of the skin
US5716389A (en) 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
DE19609831A1 (de) 1996-03-13 1997-09-18 Philips Patentverwaltung Schaltungsanordnung zum Liefern eines Gleichstromes
US6258083B1 (en) 1996-03-29 2001-07-10 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
US6302880B1 (en) 1996-04-08 2001-10-16 Cardima, Inc. Linear ablation assembly
US5904709A (en) 1996-04-17 1999-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microwave treatment for cardiac arrhythmias
US6898454B2 (en) 1996-04-25 2005-05-24 The Johns Hopkins University Systems and methods for evaluating the urethra and the periurethral tissues
AUPN957296A0 (en) 1996-04-30 1996-05-23 Cardiac Crc Nominees Pty Limited A system for simultaneous unipolar multi-electrode ablation
US6449507B1 (en) 1996-04-30 2002-09-10 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
US7022105B1 (en) 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US5902251A (en) 1996-05-06 1999-05-11 Vanhooydonk; Neil C. Transcervical intrauterine applicator for intrauterine hyperthermia
US5776129A (en) 1996-06-12 1998-07-07 Ethicon Endo-Surgery, Inc. Endometrial ablation apparatus and method
US5776176A (en) 1996-06-17 1998-07-07 Urologix Inc. Microwave antenna for arterial for arterial microwave applicator
US6102885A (en) 1996-08-08 2000-08-15 Bass; Lawrence S. Device for suction-assisted lipectomy and method of using same
US5800494A (en) 1996-08-20 1998-09-01 Fidus Medical Technology Corporation Microwave ablation catheters having antennas with distal fire capabilities
US5759200A (en) 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US5737384A (en) 1996-10-04 1998-04-07 Massachusetts Institute Of Technology X-ray needle providing heating with microwave energy
US5741249A (en) 1996-10-16 1998-04-21 Fidus Medical Technology Corporation Anchoring tip assembly for microwave ablation catheter
US5810803A (en) 1996-10-16 1998-09-22 Fidus Medical Technology Corporation Conformal positioning assembly for microwave ablation catheter
US6719755B2 (en) 1996-10-22 2004-04-13 Epicor Medical, Inc. Methods and devices for ablation
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6073052A (en) 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease
US6235022B1 (en) 1996-12-20 2001-05-22 Cardiac Pathways, Inc RF generator and pump apparatus and system and method for cooled ablation
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
JP3417778B2 (ja) * 1997-01-17 2003-06-16 ペンタックス株式会社 内視鏡用処置具
US6083255A (en) 1997-04-07 2000-07-04 Broncus Technologies, Inc. Bronchial stenter
ES2353846T3 (es) 1997-04-11 2011-03-07 United States Surgical Corporation Aparato para ablación con rf y controlador del mismo.
US6223085B1 (en) 1997-05-06 2001-04-24 Urologix, Inc. Device and method for preventing restenosis
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6086529A (en) 1997-05-13 2000-07-11 Wisconsin Medical, Inc. Bronchoscopic manifold with compressible diaphragmatic valve for simultaneous airway instrumentation
EP0991372B1 (en) 1997-05-15 2004-08-04 Palomar Medical Technologies, Inc. Apparatus for dermatology treatment
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6273885B1 (en) 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6246784B1 (en) 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
DE19739699A1 (de) 1997-09-04 1999-03-11 Laser & Med Tech Gmbh Elektrodenanordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
US5891114A (en) 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US5995875A (en) 1997-10-01 1999-11-30 United States Surgical Apparatus for thermal treatment of tissue
US6120496A (en) 1998-05-05 2000-09-19 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and coupling device for use with same
US6602074B1 (en) 1997-10-29 2003-08-05 Bisco, Inc. Dental composite light curing system
US6310629B1 (en) 1997-12-19 2001-10-30 Texas Instruments Incorporated System and method for advanced interfaces for virtual environments
US6582486B1 (en) 1997-12-30 2003-06-24 Pirelli Ambient S.P.A. Solid combustible composition
US7016811B2 (en) 2001-08-15 2006-03-21 National Instruments Corporation Network-based system for configuring a programmable hardware element in a measurement system using hardware configuration programs generated based on a user specification
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US20030135206A1 (en) 1998-02-27 2003-07-17 Curon Medical, Inc. Method for treating a sphincter
WO1999051157A1 (en) 1998-04-07 1999-10-14 The General Hospital Corporation Apparatus and methods for removing blood vessels
US6210323B1 (en) 1998-05-05 2001-04-03 The University Of British Columbia Surgical arm and tissue stabilizer
GB9809536D0 (en) 1998-05-06 1998-07-01 Microsulis Plc Sensor positioning
US6635055B1 (en) 1998-05-06 2003-10-21 Microsulis Plc Microwave applicator for endometrial ablation
US6127450A (en) 1998-06-09 2000-10-03 Kerr Corporation Dental restorative composite
US6251128B1 (en) 1998-09-01 2001-06-26 Fidus Medical Technology Corporation Microwave ablation catheter with loop configuration
US6016811A (en) 1998-09-01 2000-01-25 Fidus Medical Technology Corporation Method of using a microwave ablation catheter with a loop configuration
US6188930B1 (en) 1998-09-11 2001-02-13 Medivance Incorporated Method and apparatus for providing localized heating of the preoptic anterior hypothalamus
WO2000018191A1 (en) 1998-09-18 2000-03-30 Marc Seghatol Microwave polymerization system for dentistry
US6602227B1 (en) 1998-09-25 2003-08-05 Sherwood Services Ag Surgical system console
US6245062B1 (en) 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
US6067475A (en) 1998-11-05 2000-05-23 Urologix, Inc. Microwave energy delivery system including high performance dual directional coupler for precisely measuring forward and reverse microwave power during thermal therapy
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US20070066972A1 (en) 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6190382B1 (en) 1998-12-14 2001-02-20 Medwaves, Inc. Radio-frequency based catheter system for ablation of body tissues
US7731677B2 (en) 1999-01-19 2010-06-08 Olympus Corporation Ultrasonic surgical system
US6097985A (en) 1999-02-09 2000-08-01 Kai Technologies, Inc. Microwave systems for medical hyperthermia, thermotherapy and diagnosis
US6427089B1 (en) 1999-02-19 2002-07-30 Edward W. Knowlton Stomach treatment apparatus and method
GB9904373D0 (en) 1999-02-25 1999-04-21 Microsulis Plc Radiation applicator
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
US6287297B1 (en) 1999-03-05 2001-09-11 Plc Medical Systems, Inc. Energy delivery system and method for performing myocardial revascular
US6161049A (en) 1999-03-26 2000-12-12 Urologix, Inc. Thermal therapy catheter
US7226446B1 (en) 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US6325796B1 (en) 1999-05-04 2001-12-04 Afx, Inc. Microwave ablation instrument with insertion probe
US6962586B2 (en) 1999-05-04 2005-11-08 Afx, Inc. Microwave ablation instrument with insertion probe
US6461352B2 (en) 1999-05-11 2002-10-08 Stryker Corporation Surgical handpiece with self-sealing switch assembly
US6277113B1 (en) 1999-05-28 2001-08-21 Afx, Inc. Monopole tip for ablation catheter and methods for using same
US6287302B1 (en) 1999-06-14 2001-09-11 Fidus Medical Technology Corporation End-firing microwave ablation instrument with horn reflection device
US6464625B2 (en) 1999-06-23 2002-10-15 Robert A. Ganz Therapeutic method and apparatus for debilitating or killing microorganisms within the body
US6246905B1 (en) 1999-07-30 2001-06-12 Jamil Ahmad Mogul Medical instrument that supplies multiple energy forms
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6230060B1 (en) 1999-10-22 2001-05-08 Daniel D. Mawhinney Single integrated structural unit for catheter incorporating a microwave antenna
US7097641B1 (en) 1999-12-09 2006-08-29 Cryocath Technologies Inc. Catheter with cryogenic and heating ablation
US6347251B1 (en) 1999-12-23 2002-02-12 Tianquan Deng Apparatus and method for microwave hyperthermia and acupuncture
US7033352B1 (en) 2000-01-18 2006-04-25 Afx, Inc. Flexible ablation instrument
US6435872B1 (en) 2000-02-02 2002-08-20 Bisco, Inc. Tapered light probe with non-circular output for a dental light curing unit
US6869430B2 (en) 2000-03-31 2005-03-22 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
US6471696B1 (en) 2000-04-12 2002-10-29 Afx, Inc. Microwave ablation instrument with a directional radiation pattern
US6673068B1 (en) 2000-04-12 2004-01-06 Afx, Inc. Electrode arrangement for use in a medical instrument
US6638277B2 (en) 2000-07-06 2003-10-28 Scimed Life Systems, Inc. Tumor ablation needle with independently activated and independently traversing tines
JP2004520865A (ja) 2000-07-25 2004-07-15 リタ メディカル システムズ インコーポレイテッド 局在化インピーダンス測定を使用する腫瘍の検出および処置のための装置
US6942661B2 (en) 2000-08-30 2005-09-13 Boston Scientific Scimed, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6866624B2 (en) 2000-12-08 2005-03-15 Medtronic Ave,Inc. Apparatus and method for treatment of malignant tumors
US6666579B2 (en) 2000-12-28 2003-12-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for obtaining and displaying computed tomography images using a fluoroscopy imaging system
US20030083654A1 (en) 2000-12-29 2003-05-01 Afx, Inc. Tissue ablation system with a sliding ablating device and method
US20020087151A1 (en) 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
EP1363700A4 (en) 2001-01-11 2005-11-09 Rita Medical Systems Inc INSTRUMENT AND METHOD FOR BONE TREATMENT
US6546077B2 (en) 2001-01-17 2003-04-08 Medtronic Ave, Inc. Miniature X-ray device and method of its manufacture
CN1966106A (zh) 2001-03-02 2007-05-23 帕洛玛医疗技术公司 用于光照美容和光照皮肤病治疗的设备和方法
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US6972016B2 (en) 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
US6890968B2 (en) 2001-05-16 2005-05-10 Kerr Corporation Prepolymerized filler in dental restorative composite
US6593395B2 (en) 2001-05-16 2003-07-15 Kerr Corporation Dental composition containing discrete nanoparticles
US7324104B1 (en) 2001-09-14 2008-01-29 The Research Foundation Of State University Of New York Method of centerline generation in virtual objects
EP1429676A4 (en) 2001-09-19 2007-10-24 Urologix Inc MICROWAVE FREQUENCY ABLATION DEVICE
US20030060813A1 (en) 2001-09-22 2003-03-27 Loeb Marvin P. Devices and methods for safely shrinking tissues surrounding a duct, hollow organ or body cavity
EP1429678B1 (en) 2001-09-28 2006-03-22 Rita Medical Systems, Inc. Impedance controlled tissue ablation apparatus
US6585733B2 (en) 2001-09-28 2003-07-01 Ethicon, Inc. Surgical treatment for atrial fibrillation using radiofrequency technology
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7128739B2 (en) 2001-11-02 2006-10-31 Vivant Medical, Inc. High-strength microwave antenna assemblies and methods of use
FR2832516B1 (fr) 2001-11-19 2004-01-23 Tokendo Sarl Endoscopes rotatifs a visee distale deviee
US6709271B2 (en) 2001-11-20 2004-03-23 Bisco, Inc. Low shrinkage dental composite
CA2468531C (en) 2001-11-29 2010-06-01 Medwaves, Inc. Radio-frequency-based catheter system with improved deflection and steering mechanisms
US6849075B2 (en) 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US6740107B2 (en) 2001-12-19 2004-05-25 Trimedyne, Inc. Device for treatment of atrioventricular valve regurgitation
US6893436B2 (en) * 2002-01-03 2005-05-17 Afx, Inc. Ablation instrument having a flexible distal portion
US6817999B2 (en) 2002-01-03 2004-11-16 Afx, Inc. Flexible device for ablation of biological tissue
US6813515B2 (en) 2002-01-04 2004-11-02 Dune Medical Devices Ltd. Method and system for examining tissue according to the dielectric properties thereof
US20050075629A1 (en) 2002-02-19 2005-04-07 Afx, Inc. Apparatus and method for assessing tissue ablation transmurality
US6702576B2 (en) 2002-02-22 2004-03-09 Ultradent Products, Inc. Light-curing device with detachably interconnecting light applicator
US20050177209A1 (en) 2002-03-05 2005-08-11 Baylis Medical Company Inc. Bipolar tissue treatment system
US9364281B2 (en) 2002-03-05 2016-06-14 Avent, Inc. Methods for treating the thoracic region of a patient's body
US6918905B2 (en) 2002-03-21 2005-07-19 Ceramoptec Industries, Inc. Monolithic irradiation handpiece
AU2003230845A1 (en) 2002-04-10 2003-10-27 Stereotaxis, Inc. Systems and methods for interventional medicine
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
EP1499242B1 (en) 2002-04-16 2017-03-29 Covidien LP Localization element with energized tip
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
EP3189781A1 (en) * 2002-04-17 2017-07-12 Covidien LP Endoscope structures and techniques for navigating to a target in branched structure
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US6924325B2 (en) 2002-06-21 2005-08-02 Kerr Corporation Silver-containing dental composition
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
GB2390545B (en) 2002-07-09 2005-04-20 Barts & London Nhs Trust Hollow organ probe
US6858025B2 (en) 2002-08-06 2005-02-22 Medically Advanced Designs, Llc Cryo-surgical apparatus and method of use
US20040030367A1 (en) 2002-08-09 2004-02-12 Olympus Optical Co., Ltd. Medical control device, control method for medical control device, medical system device and control system
US6837712B2 (en) 2002-08-23 2005-01-04 Kerr Corporation Dental restorative compositions
GB2387544B (en) 2002-10-10 2004-03-17 Microsulis Plc Microwave applicator
US6834837B2 (en) 2002-11-07 2004-12-28 Rultract, Inc. Surgical instrument support device and method
ES2276133T3 (es) 2002-11-27 2007-06-16 Medical Device Innovations Limited Aparato para la ablacion de tejidos.
CN2579361Y (zh) 2002-12-02 2003-10-15 孙良俊 低杆温微波穿刺治疗探头
US20040116921A1 (en) 2002-12-11 2004-06-17 Marshall Sherman Cold tip rf/ultrasonic ablation catheter
US6994546B2 (en) 2002-12-18 2006-02-07 Ultradent Products, Inc. Light curing device with detachable power supply
US6847848B2 (en) 2003-01-07 2005-01-25 Mmtc, Inc Inflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
US7410484B2 (en) 2003-01-15 2008-08-12 Cryodynamics, Llc Cryotherapy probe
US20040158237A1 (en) 2003-02-11 2004-08-12 Marwan Abboud Multi-energy ablation station
US10172538B2 (en) * 2003-02-21 2019-01-08 3Dt Holdings, Llc Body lumen junction localization
US7473219B1 (en) 2003-03-07 2009-01-06 Glenn Joshua P Flexible fiber optic bronchoscope one-way valve
USD507649S1 (en) 2003-03-21 2005-07-19 Microsulis Limited Treatment device
AU2003901390A0 (en) 2003-03-26 2003-04-10 University Of Technology, Sydney Microwave antenna for cardiac ablation
US7153298B1 (en) 2003-03-28 2006-12-26 Vandolay, Inc. Vascular occlusion systems and methods
US20040199154A1 (en) 2003-04-02 2004-10-07 Cryocath Technologies Inc. Device for tissue ablation
US20050107870A1 (en) 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
USD493531S1 (en) 2003-04-17 2004-07-27 Microsulis Limited Treatment device probe
US7263997B2 (en) 2003-05-06 2007-09-04 Kimberly-Clark Worldwide, Inc Respiratory apparatus having an instrument introduction section and manifold
US7641668B2 (en) * 2003-05-16 2010-01-05 Scimed Life Systems, Inc. Fluid delivery system and related methods of use
US6957108B2 (en) 2003-06-02 2005-10-18 Bsd Medical Corporation Invasive microwave antenna array for hyperthermia and brachytherapy
US6932776B2 (en) 2003-06-02 2005-08-23 Meridian Medicalssystems, Llc Method and apparatus for detecting and treating vulnerable plaques
GB2403148C2 (en) 2003-06-23 2013-02-13 Microsulis Ltd Radiation applicator
US7207985B2 (en) 2003-06-25 2007-04-24 Endocare, Inc. Detachable cryosurgical probe
US7794454B2 (en) 2003-07-11 2010-09-14 Medtronic Cryocath Lp Method and device for epicardial ablation
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
GB2416203B (en) 2004-07-13 2007-03-07 Microsulis Ltd Motion rate sensor
CA2541025A1 (en) 2003-10-03 2005-04-21 Microsulis Limited Device and method for the treatment of hollow anatomical structures
GB2406521B (en) 2003-10-03 2007-05-09 Microsulis Ltd Treatment of hollow anatomical structures
US7266407B2 (en) 2003-11-17 2007-09-04 University Of Florida Research Foundation, Inc. Multi-frequency microwave-induced thermoacoustic imaging of biological tissue
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
AU2004308416B2 (en) 2003-12-22 2010-03-18 Ams Research Corporation Cryosurgical devices and methods for endometrial ablation
US7182762B2 (en) 2003-12-30 2007-02-27 Smith & Nephew, Inc. Electrosurgical device
US7402140B2 (en) 2004-02-12 2008-07-22 Sanarus Medical, Inc. Rotational core biopsy device with liquid cryogen adhesion probe
US20070208389A1 (en) * 2004-02-25 2007-09-06 Amundson David C Coronary Sinus Locater Method and Apparatus for Biventricular Pacing
US7127033B2 (en) 2004-02-28 2006-10-24 Xoft, Inc. Miniature x-ray tube cooling system
US7142633B2 (en) 2004-03-31 2006-11-28 General Electric Company Enhanced X-ray imaging system and method
US20070016180A1 (en) 2004-04-29 2007-01-18 Lee Fred T Jr Microwave surgical device
US7244254B2 (en) 2004-04-29 2007-07-17 Micrablate Air-core microwave ablation antennas
US20070055224A1 (en) 2004-04-29 2007-03-08 Lee Fred T Jr Intralumenal microwave device
US20070016181A1 (en) 2004-04-29 2007-01-18 Van Der Weide Daniel W Microwave tissue resection tool
US20050245920A1 (en) 2004-04-30 2005-11-03 Vitullo Jeffrey M Cell necrosis apparatus with cooled microwave antenna
CN1296014C (zh) 2004-06-17 2007-01-24 上海交通大学 水冷式射频肿瘤消融治疗系统
CA2571521C (en) 2004-06-29 2010-05-04 Corus Staal B.V. Steel sheet with hot dip galvanized zinc alloy coating and process to produce it
GB2415630C2 (en) 2004-07-02 2007-03-22 Microsulis Ltd Radiation applicator and method of radiating tissue
GB2416307A (en) 2004-07-16 2006-01-25 Microsulis Ltd Microwave applicator head with null forming conductors allowing for sensor placement
US20060064083A1 (en) 2004-09-17 2006-03-23 Steve Khalaj Multi-tip probe used for an ocular procedure
US8357148B2 (en) 2004-09-30 2013-01-22 Boston Scientific Scimed, Inc. Multi-functional endoscopic system for use in electrosurgical applications
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US20060094956A1 (en) 2004-10-29 2006-05-04 Viswanathan Raju R Restricted navigation controller for, and methods of controlling, a remote navigation system
CN2753408Y (zh) 2004-11-30 2006-01-25 南京康友微波能应用研究所 带有气体冷却装置的微波辐射针
US7722620B2 (en) 2004-12-06 2010-05-25 Dfine, Inc. Bone treatment systems and methods
US7568619B2 (en) 2004-12-15 2009-08-04 Alcon, Inc. System and method for identifying and controlling ophthalmic surgical devices and components
US20060264921A1 (en) 2004-12-29 2006-11-23 Imflux Llc Retractable Surgical Instruments
US20060200026A1 (en) 2005-01-13 2006-09-07 Hansen Medical, Inc. Robotic catheter system
ITMO20050034A1 (it) 2005-02-11 2006-08-12 Hs Hospital Service Spa Dispositivo a microonde per l'ablazione di tessuti.
US7601149B2 (en) 2005-03-07 2009-10-13 Boston Scientific Scimed, Inc. Apparatus for switching nominal and attenuated power between ablation probes
US7799019B2 (en) 2005-05-10 2010-09-21 Vivant Medical, Inc. Reinforced high strength microwave antenna
US7621890B2 (en) * 2005-06-09 2009-11-24 Endocare, Inc. Heat exchange catheter with multi-lumen tube having a fluid return passageway
GB2434314B (en) 2006-01-03 2011-06-15 Microsulis Ltd Microwave applicator with dipole antenna
JP2007029457A (ja) 2005-07-27 2007-02-08 Univ Nihon マイクロ波凝固療法用同軸アンテナ
WO2007031936A2 (en) 2005-09-13 2007-03-22 Koninklijke Philips Electronics, N.V. Automatic generation of optimal views for computed tomography thoracic diagnosis
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US20070142852A1 (en) 2005-12-21 2007-06-21 Manoa Medical, Inc., A Delaware Corporation Tissue cutting device
US7826904B2 (en) 2006-02-07 2010-11-02 Angiodynamics, Inc. Interstitial microwave system and method for thermal treatment of diseases
US10363092B2 (en) 2006-03-24 2019-07-30 Neuwave Medical, Inc. Transmission line with heat transfer ability
EP1998699A1 (en) * 2006-03-24 2008-12-10 Neuwave Medical, Inc. Energy delivery system
WO2007112102A1 (en) 2006-03-24 2007-10-04 Micrablate Center fed dipole for use with tissue ablation systems, devices, and methods
US8548562B2 (en) 2006-04-04 2013-10-01 John Trachtenberg System and method of guided treatment within malignant prostate tissue
US8073551B2 (en) 2006-04-04 2011-12-06 University Health Network Coil electrode apparatus for thermal therapy
US8007496B2 (en) * 2006-05-26 2011-08-30 Boston Scientific Scimed, Inc. Method of therapeutically treating tissue while preventing perfusion/ventilation of the tissue
US8515554B2 (en) 2006-06-26 2013-08-20 Meridian Medical Systems, Llc Radiometric heating/sensing probe
ATE494040T1 (de) * 2006-06-28 2011-01-15 Ardian Inc Systeme für wärmeinduzierte renale neuromodulation
US11389235B2 (en) * 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8155416B2 (en) 2008-02-04 2012-04-10 INTIO, Inc. Methods and apparatuses for planning, performing, monitoring and assessing thermal ablation
EP2061397B1 (en) * 2006-09-02 2015-01-07 Barosense, Inc. Intestinal sleeves and associated deployment systems
GB0620058D0 (en) 2006-10-10 2006-11-22 Medical Device Innovations Ltd Tissue measurement and ablation antenna
GB0620063D0 (en) 2006-10-10 2006-11-22 Medical Device Innovations Ltd Needle structure and method of performing needle biopsies
ES2545120T3 (es) 2006-10-10 2015-09-08 Medical Device Innovations Limited Aparato para el tratamiento de tejido con radiación de microondas
US20140163664A1 (en) * 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US20100286791A1 (en) * 2006-11-21 2010-11-11 Goldsmith David S Integrated system for the ballistic and nonballistic infixion and retrieval of implants
US9421071B2 (en) * 2006-12-01 2016-08-23 Boston Scientific Scimed, Inc. Direct drive methods
JP4618241B2 (ja) * 2006-12-13 2011-01-26 株式会社村田製作所 同軸プローブ装置
US20080161890A1 (en) 2007-01-03 2008-07-03 Boston Scientific Scimed, Inc. Methods, systems, and apparatuses for protecting esophageal tissue during ablation
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
WO2008142686A2 (en) 2007-05-21 2008-11-27 Uc-Care Ltd. Ablation probe
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
US20090005766A1 (en) 2007-06-28 2009-01-01 Joseph Brannan Broadband microwave applicator
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
US20090082762A1 (en) * 2007-09-20 2009-03-26 Ormsby Theodore C Radio frequency energy transmission device for the ablation of biological tissues
US9008793B1 (en) 2007-10-15 2015-04-14 Chenes Llc Multiple electrode radiofrequency generator
US8439907B2 (en) 2007-11-07 2013-05-14 Mirabilis Medica Inc. Hemostatic tissue tunnel generator for inserting treatment apparatus into tissue of a patient
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
EP2080483B1 (de) 2008-01-17 2013-06-05 Biotronik CRM Patent AG Ablationskatheter-Anordnung und Kühlungssteuerung
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8965536B2 (en) 2008-03-03 2015-02-24 Covidien Lp Intracooled percutaneous microwave ablation probe
EP2529686B1 (en) * 2008-05-09 2015-10-14 Holaira, Inc. System for treating a bronchial tree
EP2274051A4 (en) 2008-05-09 2011-07-20 Hugh Beckman MEDICAL DEVICE FOR USE IN THE DIAGNOSIS AND TREATMENT OF TISSUE ANOMALIES AND METHOD FOR THE IMPLEMENTATION
US8059059B2 (en) 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US9173706B2 (en) 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US20100045559A1 (en) 2008-08-25 2010-02-25 Vivant Medical, Inc. Dual-Band Dipole Microwave Ablation Antenna
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US20100081928A1 (en) 2008-09-29 2010-04-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Histological Facilitation systems and methods
CN201267529Y (zh) 2008-10-10 2009-07-08 南京福中信息产业集团有限公司 具有冷循环的静脉曲张治疗装置
EP2349045B1 (en) * 2008-10-21 2014-07-16 Microcube, LLC Devices for applying energy to bodily tissues
WO2010048334A1 (en) * 2008-10-21 2010-04-29 Microcube, Llc Microwave treatment devices and methods
JP2012506293A (ja) 2008-10-22 2012-03-15 ミラマー ラブズ, インコーポレイテッド マイクロ波エネルギーを用いた組織の非侵襲的処置のためのシステム、装置、方法、および手順
EP2376189B1 (en) 2008-12-09 2018-02-07 Nephera Ltd. Stimulation of the urinary system
US20100268223A1 (en) 2009-04-15 2010-10-21 Tyco Health Group Lp Methods for Image Analysis and Visualization of Medical Image Data Suitable for Use in Assessing Tissue Ablation and Systems and Methods for Controlling Tissue Ablation Using Same
US8934989B2 (en) 2009-04-15 2015-01-13 Medwaves, Inc. Radio frequency based ablation system and method with dielectric transformer
US8292881B2 (en) * 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8235981B2 (en) 2009-06-02 2012-08-07 Vivant Medical, Inc. Electrosurgical devices with directional radiation pattern
EP2440129A4 (en) * 2009-06-08 2015-06-03 Mri Interventions Inc MRI-CONTROLLED SURGICAL SYSTEMS WITH PRESET SCAN SURFACES
CN102625670B (zh) * 2009-06-16 2015-07-15 核磁共振成像介入技术有限公司 Mri导向装置以及能够近实时地跟踪和生成该装置的动态可视化的mri导向的介入系统
WO2011008903A2 (en) 2009-07-15 2011-01-20 Uab Research Foundation Catheter having temperature controlled anchor and related methods
CN102625676A (zh) * 2009-07-28 2012-08-01 纽韦弗医疗设备公司 能量递送系统及其使用
US9872605B2 (en) 2009-08-26 2018-01-23 Carefusion 2200, Inc. Mechanisms for positioning and/or holding surgical instruments and performing other functions, and methods of manufacture and use thereof
US9113926B2 (en) 2009-09-29 2015-08-25 Covidien Lp Management of voltage standing wave ratio at skin surface during microwave ablation
US8876814B2 (en) 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8911439B2 (en) * 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8551083B2 (en) 2009-11-17 2013-10-08 Bsd Medical Corporation Microwave coagulation applicator and system
US8454589B2 (en) 2009-11-20 2013-06-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing effective delivery of ablation therapy
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
EP3482709B1 (en) * 2010-04-06 2021-07-07 Nuvaira, Inc. System for pulmonary treatment
JP6153865B2 (ja) 2010-05-03 2017-06-28 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー送達システム
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US20120053577A1 (en) * 2010-08-25 2012-03-01 Neuwave Medical, Inc. Energy delivery systems and uses thereof
DE102010043574A1 (de) 2010-11-08 2012-05-10 Fresenius Medical Care Deutschland Gmbh Manuell zu öffnender Klemmhalter mit Sensor
BR112013015181A2 (pt) 2010-12-15 2016-09-13 Koninkl Philips Electronics Nv método e sistema
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US20120232549A1 (en) 2011-03-09 2012-09-13 Vivant Medical, Inc. Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
AU2015202149B2 (en) 2011-04-08 2016-11-17 Covidien Lp Flexible microwave catheters for natural or artificial lumens
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
DE102011078278A1 (de) 2011-06-29 2013-01-03 Siemens Aktiengesellschaft Verfahren zur Bilderzeugung und Bildauswertung
US20130072924A1 (en) 2011-09-20 2013-03-21 Bsd Medical Corporation Ablation antenna
WO2013096803A2 (en) 2011-12-21 2013-06-27 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
EP3639781B1 (en) 2012-05-18 2023-12-20 Nuvaira, Inc. Systems and apparatuses for treating tissue and controlling stenosis
CN104487013B (zh) 2012-06-22 2017-06-20 柯惠有限合伙公司 微波消融系统和测量微波消融系统中温度的方法
WO2014005155A1 (en) 2012-06-30 2014-01-03 Cibiem, Inc. Carotid body ablation via directed energy
US9247993B2 (en) 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9437036B2 (en) 2012-12-04 2016-09-06 Samsung Medison Co., Ltd. Medical system, medical imaging apparatus, and method of providing three-dimensional marker
KR101468419B1 (ko) 2012-12-04 2014-12-03 삼성메디슨 주식회사 3차원 캘리퍼를 이용하여 측정 정보를 제공하는 의료 시스템 및 방법
US20140276200A1 (en) 2013-03-15 2014-09-18 Covidien Lp Microwave energy-delivery device and system
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9119650B2 (en) 2013-03-15 2015-09-01 Covidien Lp Microwave energy-delivery device and system
US10765477B2 (en) 2014-03-10 2020-09-08 Wisconsin Alumni Research Foundation Microwave ablation antenna system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160292B2 (en) * 1999-06-17 2007-01-09 Vivant Medical, Inc. Needle kit and method for microwave ablation, track coagulation, and biopsy
WO2001070114A1 (en) * 2000-03-17 2001-09-27 Rita Medical Systems Inc. Lung treatment apparatus
US20050245919A1 (en) * 2004-04-29 2005-11-03 Van Der Weide Daniel W Triaxial antenna for microwave tissue ablation
US20060189973A1 (en) * 2004-04-29 2006-08-24 Van Der Weide Daniel W Segmented catheter for tissue ablation
CN101511292A (zh) * 2005-03-28 2009-08-19 明诺医学有限公司 用于选择性地治疗动脉粥样硬化和其他目标组织的内腔电组织表征和调谐射频能量
CN101511295A (zh) * 2006-07-14 2009-08-19 纽华沃医药公司 能量传输系统及其用途

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10098565B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
US10448862B2 (en) 2013-09-06 2019-10-22 Covidien Lp System and method for light based lung visualization
US11931139B2 (en) 2013-09-06 2024-03-19 Covidien Lp System and method for lung visualization using ultrasound
US10098566B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
US10448861B2 (en) 2013-09-06 2019-10-22 Covidien Lp System and method for light based lung visualization
CN105636502B (zh) * 2013-09-06 2019-07-30 柯惠有限合伙公司 用于基于光的肺部可视化的系统和方法
CN105636502A (zh) * 2013-09-06 2016-06-01 柯惠有限合伙公司 用于基于光的肺部可视化的系统和方法
US11925452B2 (en) 2013-09-06 2024-03-12 Covidien Lp System and method for lung visualization using ultrasound
CN103479358A (zh) * 2013-09-26 2014-01-01 深圳先进技术研究院 磁共振成像的处理方法和系统
CN103479358B (zh) * 2013-09-26 2015-09-30 深圳先进技术研究院 磁共振成像的处理系统
CN108348733A (zh) * 2015-07-22 2018-07-31 心脏护理生物医学有限责任公司 具有直接可视化特征部的导线导航系统
US11272971B2 (en) 2015-09-30 2022-03-15 Myra Medical Sàrl Electromagnetic tissue ablation device
CN108289712B (zh) * 2015-09-30 2021-05-25 Gem公司 电磁组织消融装置
CN108289712A (zh) * 2015-09-30 2018-07-17 Gem公司 电磁组织消融装置
CN109069201A (zh) * 2016-04-04 2018-12-21 科瑞欧医疗有限公司 用于递送rf和微波能量的电外科探针
CN109069201B (zh) * 2016-04-04 2021-11-05 科瑞欧医疗有限公司 用于递送rf和微波能量的电外科探针
CN109069203A (zh) * 2016-04-15 2018-12-21 纽韦弗医疗设备公司 用于能量输送的系统和方法
CN109475382A (zh) * 2016-05-25 2019-03-15 爱科美德科技公司 用于治疗多余组织的系统
US11445911B2 (en) 2016-05-25 2022-09-20 Ikomed Technologies Inc. System for treating unwanted tissue
CN106109011A (zh) * 2016-08-30 2016-11-16 北京天助畅运医疗技术股份有限公司 一种血管微波热凝水冷导管
CN110603005A (zh) * 2016-09-28 2019-12-20 项目莫里股份有限公司 心律失常诊断和/或治疗的递送方法和装置,以及用于其它用途的机器人系统
CN106730375A (zh) * 2016-12-30 2017-05-31 镇江步云电子有限公司 肺部微波辐射治疗仪
CN107595384A (zh) * 2017-08-29 2018-01-19 南京亿高微波系统工程有限公司 一种智能微波消融针及其功率控制方法
CN109674528A (zh) * 2019-01-10 2019-04-26 江苏邦士医疗科技有限公司 一种多功能微创等离子消融针
CN113543691A (zh) * 2019-03-08 2021-10-22 纽韦弗医疗设备公司 用于能量递送的系统和方法
CN113543691B (zh) * 2019-03-08 2024-02-13 纽韦弗医疗设备公司 用于能量递送的系统和方法
CN109949551A (zh) * 2019-04-24 2019-06-28 深圳德里克设备有限公司 养殖物的输出方法及输出系统

Also Published As

Publication number Publication date
US20230138004A1 (en) 2023-05-04
JP2020171766A (ja) 2020-10-22
US9872729B2 (en) 2018-01-23
US20180078309A1 (en) 2018-03-22
JP2013525075A (ja) 2013-06-20
US20200197090A1 (en) 2020-06-25
CN110801282A (zh) 2020-02-18
EP2566410A4 (en) 2013-10-30
JP2017213420A (ja) 2017-12-07
JP2019130333A (ja) 2019-08-08
CN110801282B (zh) 2024-04-16
WO2011140087A2 (en) 2011-11-10
JP2021180906A (ja) 2021-11-25
EP2566410A2 (en) 2013-03-13
CA2800312A1 (en) 2011-11-10
JP6193954B2 (ja) 2017-09-06
CN103025262B (zh) 2019-12-17
US20160015453A1 (en) 2016-01-21
US20130116679A1 (en) 2013-05-09
US11490960B2 (en) 2022-11-08
EP3804651A1 (en) 2021-04-14
US20180125579A1 (en) 2018-05-10
JP6153865B2 (ja) 2017-06-28
ES2856026T3 (es) 2021-09-27
US10603106B2 (en) 2020-03-31
EP2566410B1 (en) 2020-12-09
JP7234313B2 (ja) 2023-03-07
JP2016027910A (ja) 2016-02-25
CA2800312C (en) 2021-01-19
US10524862B2 (en) 2020-01-07
US9861440B2 (en) 2018-01-09
WO2011140087A3 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN103025262A (zh) 能量递送系统及其用途
US11638607B2 (en) Energy delivery systems and uses thereof
CN102784007B (zh) 能量传输系统及其用途
CN106214246A (zh) 能量递送系统及其使用
US20240130782A1 (en) Energy delivery systems and uses thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant