CN103007997A - 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法 - Google Patents

用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法 Download PDF

Info

Publication number
CN103007997A
CN103007997A CN 201110295891 CN201110295891A CN103007997A CN 103007997 A CN103007997 A CN 103007997A CN 201110295891 CN201110295891 CN 201110295891 CN 201110295891 A CN201110295891 A CN 201110295891A CN 103007997 A CN103007997 A CN 103007997A
Authority
CN
China
Prior art keywords
catalyst
acrylic acid
acid
lactic acid
zeolite beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110295891
Other languages
English (en)
Inventor
徐柏庆
陶丽芝
严波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Nippon Shokubai Co Ltd
Original Assignee
Tsinghua University
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nippon Shokubai Co Ltd filed Critical Tsinghua University
Priority to CN 201110295891 priority Critical patent/CN103007997A/zh
Priority to PCT/CN2012/082340 priority patent/WO2013044854A1/zh
Publication of CN103007997A publication Critical patent/CN103007997A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups

Abstract

本发明的催化剂可用于由乳酸制备丙烯酸,以含有β型沸石分子筛或羟基磷灰石为特征。此外,本发明的丙烯酸的制备方法的特征在于,在本发明的催化剂的存在下,乳酸发生脱水反应可以有选择地生成丙烯酸。通过在由乳酸制备丙烯酸的催化剂中使用β型沸石分子筛或羟基磷灰石,明显提高了丙烯酸的选择性和收率。

Description

用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法
技术领域
本发明涉及两类用于使乳酸发生脱水反应制备丙烯酸的催化剂,一类是含有β型沸石分子筛的催化剂、另一类是羟基磷灰石催化剂,以及使用该这些催化剂的丙烯酸的制备方法,属于化工催化剂技术领域。
背景技术
众所周知,化石资源的使用导致了温室气体二氧化碳的排放。在世界范围内,人们正寻求发展能够减少或抑制二氧化碳排放的各种方法。此外,由于化石资源将面临枯竭,其价格有可能上升,因此必须开发以可再生资源为基础的化学品和能源生产技术。乳酸能够通过糖类化合物的发酵而生产,而作为原料的糖类化合物可以从广泛易得的甘蔗和甜菜等再生性植物资源获取,其中的碳源自大气中的二氧化碳。因此,乳酸可看成是碳中性物质。即,即使最终使乳酸燃烧,构成乳酸的碳也只是变回到二氧化碳返回到大气中,对大气中二氧化碳总量的增减也没有影响。因此,乳酸是可再生自然资源。
丙烯酸是一种主要的有机化工中间体,以往广泛使用的丙烯酸是通过以分子氧为氧化剂的丙烷、丙烯或丙烯醛的气相氧化催化工艺而生产的,作为原料的丙烷、丙烯、丙烯醛均由化石资源得到。因此,开发以可再生资源为原料生产丙烯酸的技术也成为追求碳中性的目标之一。由乳酸或其衍生物制备丙烯酸即是以可再生资源为原料生产丙烯酸的方法。例如,专利文献1公开了一种使用Y型沸石催化剂将乳酸酯脱水制备丙烯酸酯和丙烯酸的方法,其中的催化剂包括用K、Mg、Co、Sr或者B修饰的NaY型沸石(以Na+为阳离子的Y型沸石)。专利文献2公开了使用Y型沸石催化剂将乳酸脱水以制备丙烯酸的方法,其中的催化剂以K+、Ca2+、Ba2+、La3+、或者Sr2+作为平衡Y型沸石骨架电荷的阳离子。专利文献3公开了使用Y型沸石催化剂将乳酸酯脱水的方法。专利文献4公开了使用NaY型沸石催化剂将乳酸脱水的方法。专利文献5公开了将活性组分负载在多孔性无机载体上的催化剂,其中多孔性无机载体为HZSM-5和HY沸石。在专利文献6中公开了使用成型的Y型沸石为催化剂。专利文献7公开了利用填充有Y型沸石催化剂的流化床式反应器将乳酸脱水的方法。专利文献8中公开了在成型的Y型沸石中浸渍有碱金属的催化剂。专利文献9公开了在ZSM-5型沸石中浸渍有碱和磷酸的催化剂。
现有技术文献
专利文献
专利文献1:中国专利申请公开第101186576号公报
专利文献2:中国专利申请公开第101255109号公报
专利文献3:中国专利申请公开第101260035号公报
专利文献4:中国专利申请公开第101279910号公报
专利文献5:中国专利申请公开第101352688号公报
专利文献6:中国专利申请公开第101462069号公报
专利文献7:中国专利申请公开第101462945号公报
专利文献8:中国专利申请公开第101474572号公报
专利文献9:中国专利申请公开第101602010号公报
发明内容
在专利文献1-9中公开的用于由乳酸或其衍生物制备丙烯酸的各种催化剂上,由乳酸生成丙烯酸的选择性和收率均不够高。因此,仍有必要寻找能够以更高收率制备丙烯酸的催化剂。本发明提供两类能够有效地由乳酸制备丙烯酸的催化剂、以及使用了这些催化剂的丙烯酸的制备方法。
本发明的第一类催化剂用于由乳酸制备丙烯酸,其特征在于,含有β型沸石。稍早已知Y型沸石可以用作由乳酸制备丙烯酸的催化剂。但是,本发明通过在由乳酸制备丙烯酸的催化剂中使用β型沸石,明显提高了由乳酸生成丙烯酸的收率。
为了获得高性能β型沸石催化剂,优选含有选自碱金属离子和碱土金属离子中至少一种阳离子的β型沸石,更优选含有选自碱金属离子和碱土金属离子中的至少两种阳离子的β型沸石。另外,为进一步提高催化剂的性能,β型沸石优选Si/Al摩尔比不超过30,更优选为20以下。
本发明的第二类催化剂用于由乳酸制备丙烯酸,其特征在于该催化剂含有羟基磷灰石(Ca10(PO4)6(OH)2)。为了获得高性能的催化剂,优选在温度为600℃以下,更优选500℃以下,进一步优选在450℃以下焙烧羟基磷灰石。
本发明还提供了一种丙烯酸的制备方法,其特征在于,该方法包括在本发明的催化剂的存在下,使乳酸脱水有选择地得到丙烯酸的催化反应工艺。使用本发明的催化剂使乳酸进行脱水反应,能够有效地制备丙烯酸。
以下介绍本发明的具体实施方式
【催化剂】
本发明的第一类催化剂用于使乳酸进行脱水反应选择性制备丙烯酸,其特征在于,含有β型沸石。早先,已知使用Y型沸石催化剂能够由乳酸制备丙烯酸,但生成丙烯酸的选择性和收率均不够高。使用本发明的β型沸石催化剂,能够以更高的收率制得丙烯酸。
β型沸石属于一类已知的物质,它们是由带负电荷的铝硅酸盐晶体骨架以及插入其中的平衡骨架负电荷的阳离子构成,其组成为Mm[AlnSi64-nO128]·xH2O(M表示平衡阳离子,m、n、x是正实数)。在所述的组成式中,m取决于n和M的价态,例如,在M为1价阳离子的情况下,m与n相等;通过阳离子交换可以改变M的性质。β型沸石属于BEA结构,其晶体结构可以通过X射线衍射确认。
在β型沸石中起平衡骨架负电荷作用的阳离子可以是单一一种,也可以是多种。本发明对β沸石催化剂中阳离子的种类虽然没有特别的限定,但是,优选碱金属离子和碱土金属离子中的至少一种阳离子。使用这样的β型沸石为催化剂时,很容易得到高的丙烯酸收率。其中,碱金属离子包括锂离子、钠离子、钾离子、铷离子、铯离子等;碱土金属离子包括铍离子、镁离子、钙离子、锶离子、钡离子等。在制备本发明的β沸石催化剂时,可以仅使用这些金属离子中的一种,也可以两种以上并用。
在β型沸石中的阳离子为碱金属离子或碱土金属离子的情况下,由β型沸石中的碱金属的摩尔含量p和碱土金属的摩尔含量q以及铝的摩尔含量r计算出的(p+2q)/r比值优选为0.80以上,更优选为0.90以上,更优选为0.98以上,特别优选为1.0。在(p+2q)/r比值为1.0时,β型沸石催化剂中将只含有碱金属离子和/或碱土金属离子作为平衡其骨架负电荷的阳离子。
β型沸石优选具有选自碱金属离子和碱土金属离子中的至少两种阳离子作为平衡其骨架负电荷的阳离子。使用这样的β型沸石作为由乳酸制备丙烯酸的催化剂时,可获得高的丙烯酸收率。更优选的是含有两种以上的碱金属离子的β型沸石催化剂。
从催化剂的容易制备性和制备成本等方面考虑,优选选自锂离子、钠离子、钾离子、钙离子、以及镁离子中的至少两种阳离子作为碱金属离子和碱土金属离子中的至少两种阳离子。进一步从催化剂性能方面考虑,β型沸石中的阳离子更优选为钠离子和钾离子。
在β型沸石含有钠离子和钾离子的情况下,钠离子和钾离子的比例没有特别的限定,但钾离子/钠离子的比例(K/Na摩尔比)优选为大于50/50,更优选为80/20以上,进一步优选为85/15以上,特别优选为90/10以上。通常,钾离子含量越高的β沸石催化剂上丙烯酸的收率也越高。另一方面,作为K/Na摩尔比的上限,优选K/Na摩尔比为98/2以下。
β型沸石中所含的铝和硅原子的比例没有特别的限定,但是从提高催化剂性能方面考虑,优选Si/Al摩尔比为30以下,更优选为25以下,进一步优选为20以下。
作为本发明的第一类催化剂,特别优选含有选自碱金属离子和碱土金属离子中的至少两种阳离子、并且Si/Al摩尔比为20以下的β型沸石。进一步优选含有钠离子和钾离子、并且Si/Al摩尔比为20以下的β型沸石。
本发明的第二类催化剂用于由乳酸制备丙烯酸,其特征在于含有羟基磷灰石。羟基磷灰石属于已知的无机物,从获得好的催化性能方面考虑,需要对其进行焙烧处理,优选焙烧温度为600℃以下,更优选500℃以下,进一步优选450℃以下。
本发明的催化剂,除了β型沸石或羟基磷灰石以外,还可以含有其它成分。例如,还可以是负载在特定载体上的β型沸石或羟基磷灰石,也即负载型β沸石或羟基磷灰石催化剂。其中的载体材料可以是二氧化硅、氧化铝、二氧化钛、氧化锆等无机氧化物或复合氧化物,含杂原子的沸石分子筛等其他结晶性硅酸盐(metallosilicate),活性炭、碳化硅等无机物等,不锈钢、铝等金属或合金。
当然,本发明的催化剂还可以为非负载型催化剂。例如,可以在β型沸石中添加粘合剂并制成各种现状的成型催化剂;还可以通过将特定形状的二氧化硅载体变换为沸石等而制成完全不含粘合剂的沸石催化剂。
本发明对催化剂的形状没有特别的限定。例如,可列举的形状包括球状、粒状、柱状、环状、鞍状、蜂窝状、粉末状等。
【催化剂的制备方法】
本发明所涉及的β型沸石和羟基磷灰石可以是商业产品或市售品,也可以通过公知的方法制备。但是,本发明的催化剂中使用的β型沸石优选根据需要进行阳离子交换,羟基磷灰石也优选根据需要进行适当的焙烧处理。
β型沸石可以通过在硅源、铝源、碱、模板剂或结构导向剂(Structure-directing Agent)、以及水的存在下,采用水热合成方法而制备。例如,作为β型沸石的制备方法,可以参考特开平6-287015号专利公报。
可用作硅源的化合物有硅酸钠、硅溶胶、二氧化硅气溶胶、烷氧基硅烷等;可用作铝源的化合物有氧化铝、氢氧化铝、铝的无机酸盐(例如氯化铝、硝酸铝、硫酸铝、碳酸铝等)等的水溶液;可用作结构导向剂的代表性化合物是四乙基铵化合物(例如四乙基氢氧化铵、四乙基氯化铵等)。各个原料的具体用量,要根据所期望的β型沸石的组成进行设定。例如,在制备过程中硅源与铝源的用量决定了β型沸石的Si/Al摩尔比。
β型沸石可以通过在密闭式压力容器(高压釜)中加热所述原料的混合物进行制备(水热合成)。水热合成的温度范围为100℃-250℃,时间为12小时-300小时,其结果,必须得到具有β型沸石结构特征的的铝硅酸盐晶体。在水热合成后,要将所得到的β型沸石进行洗涤和干燥,并进一步在空气氛围下,在400℃-650℃的温度范围内焙烧1小时-12小时,以除去样品中的结构导向剂(四乙基铵化合物)。
在制备Si/Al摩尔比低于15的β型沸石方面,优选使用那些能够在不与液态水接触的情况下,使含有硅源、铝源、以及结构导向剂的混合物仅与水蒸气接触的干凝胶转化法(DGC法)。干凝胶转化法是在特开2001-114511号专利公报中专门记载的技术方法。
为了在β型沸石引入所希望的金属阳离子,将β型沸石加入到含有目标金属阳离子的溶液中进行阳离子交换即可。例如,要制备含有碱金属离子(如K+)或碱土金属离子(如Mg2+)的β型沸石为例,只需将β型沸石加入到含有碱金属离子或碱土金属离子的溶液中,然后进行加热、搅拌,即可发生阳离子交换反应。阳离子交换的程度,可以通过溶液中目标金属阳离子的浓度、交换反应的温度和时间、以及交换次数等操作参数进行调节。如果经过一次离子交换反应的操作不能达到所希望的阳离子交换程度,则优选增加离子交换反应的操作次数;通过将离子交换反应的操作重复多次,使阳离子交换度提高到所希望的程度。
对于β型沸石含有选自碱金属离子和碱土金属离子中的至少两种阳离子的情况,优选采用以下方法进行制备。例如,如果希望在β型沸石中含有阳离子A和阳离子B,优选采用:(I)将β型沸石加入到含有阳离子A的溶液中先与A进行交换,然后再移入到含有阳离子B的溶液中与B进行交换的分步交换方法;(II)将β型沸石加入到同时含有阳离子A和阳离子B的溶液中的共同交换方法。另外,在所述方法(I)和(II)中,必须留意以下情况。由于沸石分子筛的晶体骨架结构通常会对一些特定的阳离子表现出选择性,因此,在所述的分步交换方法(I)中,β型沸石对阳离子B的选择性应当比阳离子A高;在所述的共同交换方法(II)的离子交换溶液中,选择性低的阳离子A的摩尔浓度应适当高出阳离子B的摩尔浓度。
经过上述阳离子交换的β型沸石,可以根据需要实施干燥和/或焙烧处理。例如,焙烧处理可以在空气氛围下、把样品加热到400℃-650℃保持1小时-12小时即可。
羟基磷灰石可以使用普通的容器,适当加热含有钙源、磷源、碱(调节pH)的水溶液进行合成。可用作钙源的化合物有硝酸钙、氯化钙、氢氧化钙等,可用作磷源的化合物有各种可溶性磷酸盐,如磷酸氨、磷酸氢氨等。合成时的加热温度范围为40℃-65℃,时间为4小时-20小时。随后,要将所制备的羟基磷灰石进行洗涤和干燥,并进一步在空气氛围下,在400℃-650℃的温度范围内焙烧1小时-12小时即可。
通过以上方法可以制备本发明的含有β型沸石或羟基磷灰石的催化剂。将这些催化剂用于使乳酸进行脱水反应可以有选择地制备丙烯酸。因此,使用本发明的催化剂可以有效实现乳酸脱水制备丙烯酸。
【丙烯酸的制备方法】
下面对本发明的丙烯酸的制备方法进行说明。本发明的丙烯酸的制备方法包括在本发明的催化剂的存在下,使乳酸脱水得到丙烯酸的催化反应工艺。
用作原料的乳酸可以是精制乳酸,也可以是粗乳酸。乳酸还可以是以生物质为原料合成的乳酸,例如通过糖类(一类生物质衍生物)发酵可以生产乳酸。
本发明中的乳酸脱水制备丙烯酸反应过程,可以在任意选定的固定床反应器、流化床反应器、移动床反应器等反应器内,通过使含有乳酸的原料气与催化剂相接触的气相脱水反应进行;还可以通过使含有乳酸的水溶液与催化剂相接触的液相脱水反应而进行。在后一种的情况下的液相脱水反应既可以利用固定床和蒸馏塔的组合,也可以利用搅拌槽和蒸馏塔的组合;既可以使用一段式搅拌槽,也可以使用多段式搅拌槽,还可以使用多段式蒸馏塔,以及组合了这些已知方法的各种化工反应技术进行实施。本发明的丙烯酸制备方法既可以是间歇式,也可以是连续式反应工艺,但通常优选以连续式工艺进行实施。
本发明的制备丙烯酸的工艺方法,从有利于提高工业生产效率考虑,优选通过使含有乳酸的原料气体与催化剂相接触的气相脱水反应工艺制备丙烯酸。以下,对通过使用固定床反应器的气相脱水反应,实现由乳酸制备丙烯酸的方法,进行详细说明。
固定床反应器优选填充有本发明的催化剂的反应管。优选在反应管中存在着填充有本发明的催化剂的床层。
导入到催化剂层的原料气可以仅仅含有乳酸分子,为了调节原料气中乳酸的浓度,也可以用惰性气体稀释乳酸蒸汽再进行脱水反应。例如,可用作此类惰性气体的稀释剂有,氮气、二氧化碳气体、水蒸气、空气等。反应进料工艺优选把乳酸加热,使其至少在到达催化剂床层时已经处于气体状态。
原料气中的乳酸浓度范围通常为1%-30%(V/V),优选为2%(V/V)以上,为了经济且高效地进行丙烯酸的制备,更优选为5%(V/V)以上。
原料气的流量,以单位体积催化剂上的原料气流速(即体积空速:GHSV)表示,通常为500h-1-50000h-1,优选为30000h-1以下,为了经济且高效地进行丙烯酸的制备,更优选为20000h-1以下。
对于乳酸的气相脱水反应,过低或多高的反应温度均会降低丙烯酸的收率,因此,反应温度通常优选为280℃以上,更优选为320℃以上,进一步优选为350℃以上。此外,上限反应温度优选为450℃以下,更优选为420℃以下,进一步优选为390℃以下。在此,所谓的气相脱水反应中的“反应温度”的意思是指对反应器的温度进行控制的载热体等的设定温度。
通过乳酸的气相脱水反应,得到粗制的含有丙烯酸的气体产物(以下称作“含丙烯酸的气体”)。含丙烯酸的气体,可以通过冷凝或溶剂捕集等以丙烯酸溶液的方式回收。即,本发明的丙烯酸的制备方法,除了使乳酸脱水得到丙烯酸的反应工序以外,还可以包括利用液体介质捕集含丙烯酸的气体的捕集分离工序、或者冷凝并捕集含丙烯酸的气体的冷凝分离工艺。在捕集分离工序中,在捕集塔中利用液体介质捕集含丙烯酸的气体,此时可用作捕集介质的液体有水、含丙烯酸的水、或者高沸点溶剂(二苯基醚或联苯等)等。
为进一步提高在捕集工序或冷凝工序得到的溶液中丙烯酸的含有率或浓度,本发明的丙烯酸的制备方法还可以在捕集工序或冷凝工序的后段设置精制工序。在精制工序中,采用以往公知的方法(例如蒸馏或结晶等)精制丙烯酸溶液,即可得到高纯度的丙烯酸。
通过以上方法,制备的丙烯酸可以用作制备丙烯酸酯等丙烯酸衍生物,聚丙烯酸、聚丙烯酸钠等吸水性树脂或亲水性树脂,涂料以及粘着剂等的原料。
实施例
以下具体介绍本发明的实施例。但是,本发明当然并不受下述实施例限制,只要处在上述和下述的宗旨范围内,还可以有其它的实施方法,这些均应包含在本发明的技术范围内。
(1)催化剂的制备
制备例1
在马氟炉中将Si/Al摩尔比为19、以质子(H+)为平衡骨架负电荷的阳离子的β型沸石粉末(Hβ沸石,天津南化催化剂有限公司产品)加热到420℃焙烧1小时,然后再升温到540℃焙烧5小时。将焙烧过的Hβ沸石15g加入到300mL的0.5M NaNO3水溶液(NaNO3,北京北化精细化学品有限公司的分析纯试剂)中,在80℃下保持1小时进行离子交换。重复该离子交换操作4次,完成Hβ沸石的阳离子交换。将得到的沸石粉末在110℃干燥一晚,然后再在540℃下焙烧5小时,得到以钠离子为阳离子的β型沸石(Naβ沸石)。X射线荧光(XRF)分析确认,所制得的Naβ沸石的Na/Al摩尔比为1.0(也即,Na+交换度为100%)。将15g的Naβ沸石加入到300mL用油浴保持在80℃的0.5MKBr水溶液(KBr,北京益利精细化学品有限公司的分析纯试剂)中,保持1小时进行离子交换,之后过滤分离。从滤饼中取出一半的量,在110℃下干燥一晚,然后再在540℃下焙烧5小时,即得到以钾离子和钠离子为平衡阳离子的β型沸石(KNaβ沸石),记为催化剂1。
制备例2
使用Si/Al摩尔比为28的Hβ沸石粉末(天津南化催化剂有限公司产品)作为原料,采用与制备例1相同的离子交换与干燥、焙烧过程,得到第二个KNaβ样品,记为催化剂2。
制备例3
在重复制备上述催化剂2的基础上,再重复一次在0.5MKBr溶液中(300ml,80℃)的离子交换操作(即,将Naβ沸石用KBr溶液连续交换2次)。过滤分离后,在110℃下干燥一晚,再在540℃下焙烧5小时,得到第三个KNaβ样品,记为催化剂3。
制备例4
将制备例1中的Hβ沸石粉末,换成在540℃焙烧过的Si/Al摩尔比为17的Hβ沸石(自制样品,通过在原料液中添加适量HF、经在140℃的水热合成制得),重复制备例2的离子交换过程,得到第四个KNaβ样品,记为催化剂4。
制备例5
将制备例1得到的Naβ沸石作为催化剂5。
制备例6
将15g的以钠离子为平衡骨架负电荷的阳离子的Y型沸石(NaY沸石,中国天津南化催化剂有限公司产品)放入到300mL的用油浴保持在80℃的0.5MKBr水溶液中,保持1小时进行离子交换,之后过滤分离。在110℃下将过滤后的固体干燥一晚,然后再在540℃下焙烧5小时,得到以钾离子和钠离子为阳离子的Y型沸石(KNaY沸石),记为催化剂6。
制备例7
羟基磷灰石的制备。将150ml浓度为0.5M(NH4)2HPO4(分析纯,中国国药集团有限公司产品)的水溶液,倒入预先配制的250ml的Ca(NO3)24H2O(分析纯,北京现代东方精细化学有限公司)的乙醇溶液中,用0.5MNH4OH(氨水)调节溶液pH至大于10。接着在40℃下搅拌4h,之后停止搅拌,并将此混合物置于40℃的干燥箱中静置老化12小时。过滤收集其中的成淀,用去离子反复洗涤沉淀,直到滤液的电导值小于10μS/cm;将滤饼固体置于110℃下干燥12h,然后置于管式炉中于流动空气(50ml min-1)中加热到360℃焙烧5h,得到360℃焙烧的羟基磷灰石Ca10(PO4)6(OH)2样品(CaP-360),记为催化剂7。
制备例8
采用与制备例7相同制备过程,但在最后将样品的焙烧温度提高到400℃,得到CaP-400样品,记为催化剂8。
制备例9
采用与制备例7相同制备过程,但在最后将样品的焙烧温度提高到500℃,得到CaP-500样品,记为催化剂9。
制备例10
将制备例7中的焙烧温度提高到600℃,得到CaP-600样品,记为催化剂10。
制备例11
将制备例7中的焙烧温度提高到700℃,得到CaP-700样品,记为催化剂11。
制备例12
将市售的商品羟基磷灰石(Ca10(PO4)6(OH)2,北京现代东方精细化学有限公司试剂,纯度99.9%)在400℃焙烧5h作为参照样品(CaP-C-400),记为催化剂12。
(2)使用催化剂由乳酸制备丙烯酸
使用填充有上述各催化剂1-6的固定床反应器,使乳酸发生脱水反应,制备丙烯酸。固定床反应器使用内径为6-7mm的石英反应管,将其设置为垂直方向,通过下向流动气流将反应原料输入到反应器。在反应器中填充20-40目(0.42-0.84mm)的催化剂颗粒0.5g作为催化剂床层,在催化剂床层的上、下方分别填塞一定厚度(ca.5mm)石英棉。为了将输入到反应器的液体反应原料进行预热并实现完全气化,在催化剂床层上部的石英棉的上面还填充有0.5mL的石英砂。本发明使用模拟的典型精制乳酸发酵产物,即重量浓度为35.7%(10摩尔%)的乳酸水溶液作为反应原料。
在把反应原料输入到反应器之前,以流量为15.5mL/min的干燥氮气,在360℃的温度下对反应器中的催化剂进行1小时的预热处理。气体流量利用质量流量计进行调节。接着,利用微型液体注射泵将液体反应原料由存储原料的容器输入到反应器中。同时,在反应器的入口通入作为载气的氮气(流量:15.5mL/min),帮助反应原料平稳通过催化剂床层。在反应器的出口设置有“冰-水”冷阱,以便在其中冷凝捕集反应的产物;在这个冷阱的后面还设置有一个盛有适量水的气体净化瓶,以便将逃逸出冷阱的少量轻质产物捕集到水中。在反应过程中,每隔1小时收集一次冷凝物,并通过气相色谱(安捷伦HP7890色谱)分析其组成。该气相色谱以岛津制作所制的毛细管HiCapCBP20-S25-050(内径0.32mm×长度25m)作为分离柱、FID作为检测器。通过在冷凝物添加2-丙醇作为内标物质,实现了对产物的定量分析。
对反应过程进行的物料衡算表明,气相色谱分析很难定量检测乳酸。特别地,当冷凝物中未反应的乳酸的浓度不足15wt%时,上述的气相色谱分析根本就检测不到乳酸。通过设置有Metrosep A supp5柱的离子色谱(Metrohm761)能够准确测定未反应的乳酸的量。
基于气相色谱和离子色谱的测定结果,根据下述计算式,计算出乳酸转化率(LA转化率)、丙烯酸选择性(AA选择性)、丙烯酸收率(AA收率)。
LA转化率(%)=(反应中消耗掉的乳酸的摩尔数)/(输入到反应器的乳酸的摩尔数)×100
AA选择性(%)=(反应中生成的丙烯酸中的碳原子的摩尔数)/(反应中消耗掉的乳酸中的碳原子的摩尔数)×100
AA收率(%)=LA转化率×AA选择性/100
表1给出了催化剂1-6的组成,以及使用分别填充有这些催化剂的固定床反应器进行乳酸脱水反应制备丙烯酸的结果;表2给出了使用分别填充有催化剂7-12的固定床反应器中乳酸脱水制备丙烯酸反应的结果。其中,催化剂1-4、7-12上的反应结果是基于在反应开始后第7-8小时的1小时内,对捕集到的冷凝物进行分析的结果;催化剂6上的反应结果是基于在反应开始后第5-6小时的1小时内,对捕集到的冷凝物进行分析的结果。
表1
Figure BDA0000095612160000151
表2
Figure BDA0000095612160000152
使用了β型沸石的催化剂(催化剂1-5),与使用了Y型沸石的催化剂(催化剂6)相比,丙烯酸收率均变得更高。即使在β型沸石中,与只含有钠离子作为交换阳离子的催化剂4相比,同时含有钠离子和钾离子的催化剂1-3明显提高了丙烯酸的收率。其中,与Si/Al摩尔比为28的催化剂2、3相比,Si/Al摩尔比为19和17的催化剂1和4显示出特别高的丙烯酸收率。
以市售的商品羟基磷灰石和焙烧温度为700℃的自制羟基磷灰石为催化剂(催化剂11、12)时,丙烯酸的收率低于15%。但是,使用焙烧温度低于600℃的自制羟基磷灰石为催化剂(催化剂7-9)所得到的丙烯酸收率,与使用了β型沸石的催化剂1-3相当。
工业实用性
本发明可以以高收率由乳酸制备丙烯酸。由于乳酸是可再生生物资源,因此,如果能够以乳酸为原料有效地制备丙烯酸,就可能对温室气体减排作出贡献。

Claims (9)

1.一种用于由乳酸制备丙烯酸的催化剂,其特征在于,该催化剂含有β型沸石。
2.根据权利要求1所述的催化剂,其特征在于,所述β型沸石含有选自碱金属离子和碱土金属离子中的至少一种阳离子。
3.根据权利要求1所述的催化剂,其特征在于,所述β型沸石含有选自碱金属离子和碱土金属离子中的至少两种阳离子。
4.根据权利要求1所述的催化剂,其特征在于,所述β型沸石含有钠离子和钾离子。
5.根据权利要求1所述的催化剂,其特征在于,所述β型沸石的Si/Al摩尔比为30以下。
6.根据权利要求4所述的催化剂,其特征在于,所述β型沸石的Si/Al摩尔比为20以下。
7.一种用于由乳酸制备丙烯酸的催化剂,其特征在于,该催化剂含有羟基磷灰石。
8.根据权利要求7所述的催化剂,其特征在于,所述羟基磷灰石的Ca/P摩尔比为5/3,焙烧温度范围为360-600℃。
9.一种丙烯酸的制备方法,其特征在于,该方法包括在权利要求1-8中任意一项所述的催化剂的存在下,使乳酸脱水得到丙烯酸的催化工艺。
CN 201110295891 2011-09-28 2011-09-28 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法 Pending CN103007997A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN 201110295891 CN103007997A (zh) 2011-09-28 2011-09-28 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法
PCT/CN2012/082340 WO2013044854A1 (zh) 2011-09-28 2012-09-28 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110295891 CN103007997A (zh) 2011-09-28 2011-09-28 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法

Publications (1)

Publication Number Publication Date
CN103007997A true CN103007997A (zh) 2013-04-03

Family

ID=47957429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110295891 Pending CN103007997A (zh) 2011-09-28 2011-09-28 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法

Country Status (2)

Country Link
CN (1) CN103007997A (zh)
WO (1) WO2013044854A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399519A (zh) * 2014-10-29 2015-03-11 清华大学 用于乳酸脱水制取丙烯酸的沸石催化剂及其制备方法
CN106946686A (zh) * 2017-05-05 2017-07-14 佛山慧创正元新材料科技有限公司 一种基于掺杂改性羟基磷灰石催化的丙烯酸的制备方法
CN107206361A (zh) * 2014-12-10 2017-09-26 法国国家科学研究中心 使用卤代磷灰石基催化剂合成不饱和羧酸或羧酸酯
CN116371461A (zh) * 2023-03-31 2023-07-04 北京化工大学 催化乳酸酯脱水制丙烯酸酯的沸石催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050071C (zh) * 1995-08-16 2000-03-08 南开大学 一种用于制备苯乙烯和乙苯的催化剂
CN101462044B (zh) * 2009-01-12 2011-05-11 中国石化扬子石油化工有限公司 一种生产巴豆醛用的催化剂
US8772539B2 (en) * 2009-10-29 2014-07-08 Kabushiki Kaisha Sangi Method for synthesizing unsaturated carboxylic acid and/or derivative of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399519A (zh) * 2014-10-29 2015-03-11 清华大学 用于乳酸脱水制取丙烯酸的沸石催化剂及其制备方法
CN107206361A (zh) * 2014-12-10 2017-09-26 法国国家科学研究中心 使用卤代磷灰石基催化剂合成不饱和羧酸或羧酸酯
CN106946686A (zh) * 2017-05-05 2017-07-14 佛山慧创正元新材料科技有限公司 一种基于掺杂改性羟基磷灰石催化的丙烯酸的制备方法
CN116371461A (zh) * 2023-03-31 2023-07-04 北京化工大学 催化乳酸酯脱水制丙烯酸酯的沸石催化剂及其制备方法

Also Published As

Publication number Publication date
WO2013044854A1 (zh) 2013-04-04

Similar Documents

Publication Publication Date Title
EP3283437A1 (en) Method for preparing the silicoaluminate form of the aei zeolite structure with high yields, and its application in catalysis
CN102811814B (zh) 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
CN104159883A (zh) α,β-不饱和羧酸及其酯的制备
CN105517954A (zh) 含有磷的aei型沸石及其制造方法
CN102513137B (zh) 乳酸或乳酸酯脱水制取丙烯酸和/或丙烯酸酯的催化剂
CN108465483A (zh) 适用于糖转化成乳酸和2-羟基-3-丁烯酸或其酯的金属-硅酸盐材料
CN103007997A (zh) 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法
CN102923727B (zh) 一种多级孔结构的硅铝磷酸盐分子筛及其制备方法和应用
CN103586067B (zh) 一种甲醛水溶液和乙酸合成丙烯酸的方法
CN108452827A (zh) 一种催化裂化催化剂
CN106607081A (zh) 一种有机磷化物改性zsm-5分子筛的方法
CN104709920A (zh) 一种含锡杂原子功能性分子筛及其合成和应用
CN104415779A (zh) 一种催化裂化再生烟气脱硝用分子筛催化剂及其制备方法
CN101352688A (zh) 乳酸脱水制丙烯酸催化剂及反应工艺
CN102050462B (zh) 一种提高水热稳定性的双组元改性分子筛及制备方法
Yan et al. Our journey in zeolite science
CN110980759B (zh) 一种硅铟酸盐分子筛及其制备方法和应用
CN104556139A (zh) 一种用油页岩渣制备β分子筛的方法
CN110105190A (zh) 基于乳酸酯水溶液的丙烯酸的制备方法
CN101428233B (zh) 用于催化裂解的催化剂
CN104761476A (zh) 一种二甲基硫醚的制备方法
CN101579638A (zh) 一种乙醇脱水制乙烯用催化剂及其制备方法
CN101293800B (zh) 含氧化合物与轻烃转化集成制取小分子烯烃的方法
CN108452828A (zh) 一种含磷和稀土的超稳y型分子筛及其制备方法
CN100548488C (zh) 乙苯氧化脱氢催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130403