CN102993646A - 一种聚噻吩纳米导电复合材料及其制备方法 - Google Patents

一种聚噻吩纳米导电复合材料及其制备方法 Download PDF

Info

Publication number
CN102993646A
CN102993646A CN2012105159458A CN201210515945A CN102993646A CN 102993646 A CN102993646 A CN 102993646A CN 2012105159458 A CN2012105159458 A CN 2012105159458A CN 201210515945 A CN201210515945 A CN 201210515945A CN 102993646 A CN102993646 A CN 102993646A
Authority
CN
China
Prior art keywords
polythiophene
attapulgite
composite material
organic solvent
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105159458A
Other languages
English (en)
Other versions
CN102993646B (zh
Inventor
姚超
左士祥
陈群
刘文杰
纪俊玲
孔泳
罗士平
王茂华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201210515945.8A priority Critical patent/CN102993646B/zh
Publication of CN102993646A publication Critical patent/CN102993646A/zh
Application granted granted Critical
Publication of CN102993646B publication Critical patent/CN102993646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明克服了现有技术中聚噻吩-无机纳米复合材料成本高的不足,利用凹凸棒石特殊的晶体结构、物化性质及价格低廉等优势,提供一种聚噻吩纳米导电复合材料及其制备方法。该材料为碘掺杂多孔棒状二氧化硅/聚噻吩无定型导电复合材料。上述的聚噻吩纳米导电复合材料的制备方法,将噻吩单体溶于有机溶剂Ⅰ中,将纯化后的纳米凹凸棒石、氧化剂加入到有机溶剂Ⅱ中,然后将其逐滴滴加到噻吩的溶液中制备凹凸棒石/聚噻吩纳米复合材料;最后将所制备的凹凸棒石/聚噻吩纳米复合材料置于碘蒸气中制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。

Description

一种聚噻吩纳米导电复合材料及其制备方法
技术领域
本发明属于纳米复合材料的制备技术领域,具体涉及一种以凹凸棒石为核体,在其单晶表面化学氧化聚合噻吩制备凹凸棒石/聚噻吩纳米复合材料,然后通过碘蒸气掺杂制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
背景技术
聚噻吩作为一种重要的结构型导电高分子材料,由于具有易聚合、良好的光电性、环境稳定性以及分子链结构易于调控等优点而备受关注,尤其是聚噻吩与无机纳米材料的复合物因其兼具聚噻吩和纳米材料特殊性质而越来越引起了人们的兴趣。近年来,金属、金属氧化物、碳材料与聚噻吩及其衍生物的复合材料被相继报道了。中国专利CN1923888A提出了一种采用原位化学氧化聚合制备聚噻吩-多壁碳纳米管复合材料的方法,该法先对多壁碳纳米管进行表面处理,使其分散在氯仿中,然后加入单体、引发剂进行聚合制备核壳聚噻吩-多壁碳纳米线复合材料;然而在该方法中首先要用浓HNO3、浓H2SO4以及有机改性剂对多壁碳纳米管进行回流酸化、表面改性处理,这不仅增加了反应工序,而且易产生浓废酸,从而导致所制备的复合材料成本增加。
凹凸棒石粘土是一种天然的、独特且稀有的硅酸盐矿物,具有纤维状或棒状晶体结构,其单晶直径约20纳米,长度可达微米级并且具有良好的机械力学性能,是一种具有高长径比的一维纳米材料。我国凹凸棒石粘土资源丰富,与其他纤维状纳米材料如碳纳米管相比,具有明显的价格优势。目前,以凹凸棒石单晶为核体,通过界面反应制备凹凸棒石/聚噻吩纳米复合材料以及多孔棒状二氧化硅/聚噻吩纳米导电复合材料都还未见报道。
发明内容
本发明要解决的技术问题是:克服现有技术中聚噻吩-无机纳米复合材料成本高的不足,利用凹凸棒石特殊的晶体结构、物化性质及价格低廉等优势,提供一种聚噻吩纳米导电复合材料及其制备方法。
为解决上述技术问题本发明采用的技术方案是:该材料为碘掺杂多孔棒状二氧化硅/聚噻吩无定型导电复合材料。
上述的聚噻吩纳米导电复合材料的制备方法:将噻吩单体溶于有机溶剂Ⅰ中,将纯化后的纳米凹凸棒石、氧化剂加入到有机溶剂Ⅱ中,然后将其逐滴滴加到噻吩的溶液中制备凹凸棒石/聚噻吩纳米复合材料;最后将所制备的凹凸棒石/聚噻吩纳米复合材料置于碘蒸气中制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
具体步骤如下:
(1)凹凸棒石/聚噻吩纳米复合材料的制备:
将噻吩单体溶于有机溶剂Ⅰ中,将凹凸棒石、氧化剂加入到有机溶剂Ⅱ中,接着向含噻吩的有机溶剂中滴加凹凸棒石的分散液,滴加完毕后保温,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2)多孔棒状二氧化硅/聚噻吩纳米导电复合材料的制备:
将步骤1所制得的凹凸棒石/聚噻吩纳米复合材料与单质碘置于密闭的容器内反应,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
步骤(1)中有机溶剂Ⅰ为甲苯、二甲苯、三氯甲烷、硝基甲烷、正己烷、氯苯或二氯苯中的一种;所述的有机溶剂Ⅱ为四氢呋喃、丙酮、乙腈或丙醇中的一种,所述的氧化剂为无水三氯化铁或过硫酸铵中的一种。
步骤(1)所述的凹凸棒石与有机溶剂Ⅱ质量之比为0.1~0.3:1,,凹凸棒石与噻吩质量之比为1~4:1,氧化剂与噻吩摩尔比为1~3:1,有机溶剂Ⅰ与有机溶剂Ⅱ质量之比为0.5~2.0:1。
步骤(1)所述的滴加条件为在温度为0~30℃下,边搅拌边以10~20毫升/分钟的速率滴加,滴加完成后保温2~12h。
步骤(2)所述的碘与凹凸棒石/聚噻吩纳米复合材料质量之比为0.2~0.8:1,反应条件为在温度为75~150℃条件下保温2~10小时。
本发明的有益效果是:
1.本发明使用界面合成法一步制备了凹凸棒石/聚噻吩纳米复合材料,无需对纳米凹凸棒石进行表面改性,缩短了反应工序,降低了生产成本。
2.本发明将凹凸棒石/聚噻吩纳米复合材料置于碘蒸气中,这样做的好处在于:①起到掺杂作用,制得纳米导电复合材料;②能够使得凹凸棒石转变成无定型多孔棒状二氧化硅,从而得到多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
3.本发明选用的纳米凹凸棒石具有特殊的一维棒状结构和较优越的机械力学性能,进一步提高了复合材料的综合性能,拓展了其应用范围,同时凹凸棒石价格低廉,降低了生产成本。
附图说明
图1是按实施例5制备的凹凸棒石/聚噻吩纳米复合材料、碘掺杂的凹凸棒石/聚噻吩纳米复合材料以及凹凸棒石、聚噻吩的X-射线衍射(XRD)图;
图2为按实施例5制备的碘掺杂所制得的纳米复合材料的EDS图谱;
图3为按实施例5制备的凹凸棒石/聚噻吩纳米复合材料与碘掺杂的凹凸棒石/聚噻吩纳米复合材料的透射电镜(TEM)照片。
具体实施方式
下面结合实施例和比较例,对本发明作进一步的描述,但本发明所要保护的范围并不局限于实施例所涉及的范围:
实施例1
(1).将1.5克的噻吩单体加入到10.0克三氯甲烷中,将6.0克纳米凹凸棒石分散于20.0克丙酮中,接着加入5.78克无水三氯化铁使其充分溶解,在温度为30℃条件下一边搅拌一边以10毫升/分钟的速率将凹凸棒石的丙酮分散液逐滴滴入噻吩的三氯甲烷溶液中,滴加完毕后继续搅拌,保温反应2小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入1.0克碘单质,在温度为75℃条件下保温10小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
实施例2
(1).将3.0克的噻吩单体加入到40.0克正己烷中,将6.0克纳米凹凸棒石分散于40.0克四氢呋喃中,接着加入8.14克过硫酸铵使其充分溶解,在温度为0℃条件下一边搅拌一边以20毫升/分钟的速率将凹凸棒石的四氢呋喃分散液逐滴滴入噻吩的正己烷溶液中,滴加完毕后继续搅拌,保温反应12小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入4.0克碘单质,在温度为110℃条件下保温6小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
实施例3
(1).将1.7克的噻吩单体加入到37.5克硝基甲烷中,将5.0克纳米凹凸棒石分散于25.0克丙醇中,接着加入6.92克过硫酸铵使其充分溶解,在温度为5℃条件下一边搅拌一边以12.5毫升/分钟的速率将凹凸棒石的丙醇分散液逐滴滴入噻吩的硝基甲烷溶液中,滴加完毕后继续搅拌,保温反应10小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入2.0克碘单质,在温度为90℃条件下保温8小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
实施例4
(1).将2.0克的噻吩单体加入到25.0克二氯苯中,将5.0克纳米凹凸棒石分散于20.0克乙腈中,接着加入9.64克无水三氯化铁使其充分溶解,在温度为15℃条件下一边搅拌一边以17.5毫升/分钟的速率将凹凸棒石的乙腈分散液逐滴滴入噻吩的二氯苯溶液中,滴加完毕后继续搅拌,保温反应8小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入3.0克碘单质,在温度为130℃条件下保温4小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
实施例5
(1).将5.0克的噻吩单体加入到100克甲苯中,将5.0克纳米凹凸棒石分散于50.0克乙腈中,接着加入28.9克无水三氯化铁使其充分溶解,在温度为10℃条件下一边搅拌一边以15毫升/分钟的速率将凹凸棒石的乙腈分散液逐滴滴入噻吩的甲苯溶液中,滴加完毕后继续搅拌,保温反应6小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入2.5克碘单质,在温度为150℃条件下保温2小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
从图1中可以看出,凹凸棒石/聚噻吩复合材料中凹凸棒石的特征峰虽有所减弱,但仍存在,这说明在液相的反应体系中,凹凸棒石的晶体结构没有被完全破坏;而从碘掺杂过的凹凸棒石/聚噻吩复合材料的XRD曲线中可以看出,凹凸棒石特征峰基本消失,这表明碘掺杂基本上破坏了凹凸棒石的晶体结构,凹凸棒石主要以无定型的二氧化硅形式存在,并且还含有其他一些化合物,从图2中分析可得,其含有的元素及含量如表1所示:
表1EDS测试材料含有的元素及含量
Figure BDA00002528303500041
由图3可见,凹凸棒石/聚噻吩纳米复合材料(图3.a、b和c)中的凹凸棒石棒晶清晰可见,而从碘掺杂的凹凸棒石/聚噻吩纳米复合材料(图3.d、e和f)中可以看出凹凸棒石棒晶被侵蚀成许多密密麻麻的微孔,再结合XRD与EDS测试分析可得,碘掺杂后的凹凸棒石/聚噻吩纳米复合材料为多孔棒状二氧化硅/聚噻吩纳米复合材料。
比较例1
在比较例1中,去掉实施例5中的凹凸棒石工序,具体步骤如下:
(1).将5.0克的噻吩单体加入到100克甲苯中,将28.9克无水三氯化铁溶解于50.0克乙腈中,在温度为10℃条件下一边搅拌一边以15毫升/分钟的速率将三氯化铁的乙腈溶液逐滴滴入噻吩的甲苯溶液中,滴加完毕后继续搅拌,保温反应6小时,过滤,洗涤,干燥即制得纯聚噻吩;
(2).取步骤1所制得的纯聚噻吩置于密闭的容器内,加入2.5克碘单质,在温度为150℃条件下保温2小时,冷却至室温即制得导电聚噻吩。
比较例2
在比较例2中,将实施例5的步骤(1)中的甲苯改为乙腈,其他工艺条件不变,具体步骤如下:
(1).将5.0克的噻吩单体加入到100克乙腈中,将5.0克纳米凹凸棒石分散于50.0克乙腈中,接着加入28.9克无水三氯化铁使其充分溶解,在温度为10℃条件下一边搅拌一边以15毫升/分钟的速率将凹凸棒石的乙腈分散液逐滴滴入噻吩的乙腈溶液中,滴加完毕后继续搅拌,保温反应6小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入2.5克碘单质,在温度为150℃条件下保温2小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
比较例3
在比较例3中,去掉实施例5中的“将凹凸棒石的乙腈分散液逐滴滴入噻吩的甲苯溶液中”这个工序,其他工艺条件不变,具体步骤如下:
(1).将5.0克的噻吩单体加入到100克甲苯中,将5.0克纳米凹凸棒石分散于50.0克乙腈中,接着加入28.9克无水三氯化铁使其充分溶解,在温度为10℃条件下一边搅拌一边将凹凸棒石的乙腈分散液和噻吩的甲苯溶液混合,保温反应6小时,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2).取5.0克步骤1所制得的凹凸棒石/聚噻吩纳米复合材料置于密闭的容器内,加入2.5克碘单质,在温度为150℃条件下保温2小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
比较例4
在比较例4中,将实施例5中步骤2中的碘单质改为在步骤1中加入,其他工艺条件不变,具体步骤如下:
将5.0克的噻吩单体,2.5克碘单质加入到100克甲苯中,将5.0克纳米凹凸棒石分散于50.0克乙腈中,接着加入28.9克无水三氯化铁使其充分溶解,在温度为10℃条件下一边搅拌一边以15毫升/分钟的速率将凹凸棒石的乙腈分散液逐滴滴入噻吩的甲苯溶液中,滴加完毕后继续搅拌,保温反应6小时,过滤,洗涤,在温度为150℃条件下保温2小时,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
多孔棒状二氧化硅/聚噻吩纳米导电材料性能评价:
下面通过性能试验对实验所得的多孔棒状二氧化硅/聚噻吩纳米材料导电性能进行评价,试验结果如表2所示。
体积电阻率测试方法:实施例1-5和比较例1-4中的体积电阻率按以下方法进行测定:在带刻度的聚丙烯酸酯玻璃管内,放入5.00g粉体,用9.81×105Pa的压力把复合材料粉体压在2个金属片之间,用万用电表测出2个金属片间的电阻,根据Rsp=R×A/L (其中:Rsp为体积电阻率,Ω·cm;R为实测电阻,Ω;A为玻璃管的内径截面积,cm2;L为粉体层的高度,cm)计算粉体的体积电阻率。由表2可见,本发明所制备的多孔棒状二氧化硅/聚噻吩纳米材料导电性能和热稳定性优异。
表2多孔棒状二氧化硅/聚噻吩纳米材料热处理前后的导电性能比较
体积电阻率/Ω·cm 140℃处理后的体积电阻率/Ω·cm
实施例1 4.56×102 5.19×102
实施例2 7.84×102 7.91×102
实施例3 5.19×102 6.13×102
实施例4 4.83×102 5.24×102
实施例5 3.56×102 4.17×102
比较例1 4.89×103 6.72×105
比较例2 5.58×103 6.72×103
比较例3 9.78×102 1.02×103
比较例4 5.82×105 6.74×105
将比较例1制得的聚噻吩和实施例5制得的导电复合材料分别加入纯丙乳液AC-261(含量50%,长兴化学工业有限公司),球磨(1500转/分)30分钟,以镀锌白口铁皮作为底材,将75毫米×25毫米的镀锌白口铁皮用细砂纸沿纵向反复打磨除去镀锌层后用乙酸乙酯清洗晾干。将制备好的丙烯酸导电涂料均匀喷涂在底材上,将喷涂好的试样放于无尘的橱中自然干燥24小时在50℃干燥2小时,涂层厚度为30~80微米。每个样品做三块平行试样,待干燥后进行涂层力学性能测试如表3。按GR/T9286-1998测定涂层的附着力;按GB/T6739-1996测定涂层的硬度;按GB/T 1732-93测定涂层的耐冲击性。由表3可见,与纯聚噻吩相比,本发明所制备的多孔棒状二氧化硅/聚噻吩导电复合材料对丙烯酸树脂涂层的力学性能较好。
表3聚噻吩和二氧化硅/聚噻吩导电复合材料对涂层力学性能比较
填料(质量分数10%) 耐冲击力 附着力 硬度
聚噻吩 20cm 3级 2H
导电复合材料 40cm 2级 4H

Claims (6)

1.一种聚噻吩纳米导电复合材料,其特征在于:该材料为碘掺杂多孔棒状二氧化硅/聚噻吩无定型导电复合材料。
2.根据权利要求1所述的聚噻吩纳米导电复合材料的制备方法,其特征在于:步骤如下:
(1)凹凸棒石/聚噻吩纳米复合材料的制备:
将噻吩单体溶于有机溶剂Ⅰ中,将凹凸棒石、氧化剂加入到有机溶剂Ⅱ中,接着向含噻吩的有机溶剂中滴加凹凸棒石的分散液,滴加完毕后保温,过滤,洗涤,干燥即制得凹凸棒石/聚噻吩纳米复合材料;
(2)多孔棒状二氧化硅/聚噻吩纳米导电复合材料的制备:
将步骤1所制得的凹凸棒石/聚噻吩纳米复合材料与单质碘置于密闭的容器内反应,冷却至室温即制得多孔棒状二氧化硅/聚噻吩纳米导电复合材料。
3.根据权利要求2所述的聚噻吩纳米导电复合材料的制备方法,其特征在于:步骤(1)中有机溶剂Ⅰ为甲苯、二甲苯、三氯甲烷、硝基甲烷、正己烷、氯苯或二氯苯中的一种;所述的有机溶剂Ⅱ为四氢呋喃、丙酮、乙腈或丙醇中的一种,所述的氧化剂为无水三氯化铁或过硫酸铵中的一种。
4.根据权利要求2所述的多孔棒状二氧化硅/聚噻吩纳米导电复合材料的制备方法,其特征在于:步骤(1)所述的凹凸棒石与有机溶剂Ⅱ质量之比为0.1~0.3:1,,凹凸棒石与噻吩质量之比为1~4:1,氧化剂与噻吩摩尔比为1~3:1,有机溶剂Ⅰ与有机溶剂Ⅱ质量之比为0.5~2.0:1。
5.根据权利要求2所述的聚噻吩纳米导电复合材料的制备方法,其特征在于:步骤(1)所述的滴加条件为在温度为0~30℃下,边搅拌边以10~20毫升/分钟的速率滴加,滴加完成后保温2~12h。
6.根据权利要求2所述的聚噻吩纳米导电复合材料的制备方法,其特征在于:步骤(2)所述的碘与凹凸棒石/聚噻吩纳米复合材料质量之比为0.2~0.8:1,反应条件为在温度为75~150℃条件下保温2~10小时。
CN201210515945.8A 2012-12-05 2012-12-05 一种聚噻吩纳米导电复合材料及其制备方法 Active CN102993646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210515945.8A CN102993646B (zh) 2012-12-05 2012-12-05 一种聚噻吩纳米导电复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210515945.8A CN102993646B (zh) 2012-12-05 2012-12-05 一种聚噻吩纳米导电复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102993646A true CN102993646A (zh) 2013-03-27
CN102993646B CN102993646B (zh) 2015-06-03

Family

ID=47922789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210515945.8A Active CN102993646B (zh) 2012-12-05 2012-12-05 一种聚噻吩纳米导电复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102993646B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867018A (zh) * 2017-03-01 2017-06-20 东北石油大学 一种用纳米反应器合成微孔导电高分子材料的方法
CN106986983A (zh) * 2017-04-25 2017-07-28 安徽博硕科技有限公司 一种聚噻吩/石墨烯/凹凸棒土导电复合材料的制备方法
CN108598484A (zh) * 2018-05-04 2018-09-28 芜湖天科生物科技有限公司 一种气凝胶掺杂聚噻吩电池添加剂及其制备方法
CN109535395A (zh) * 2018-11-08 2019-03-29 上海萃励电子科技有限公司 一种聚3-氟噻吩纳米线的界面合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886808A (zh) * 2003-09-29 2006-12-27 通用电气公司 导电热塑性组合物、其制造方法以及由此种组合物衍生的制品
CN101215418A (zh) * 2007-12-27 2008-07-09 江苏工业学院 聚苯胺/凹凸棒土纳米导电复合材料的制备方法
CN101284945A (zh) * 2008-05-27 2008-10-15 江苏工业学院 快速制备聚苯胺/凹凸棒土纳米导电复合材料的方法
CN101418122A (zh) * 2008-12-09 2009-04-29 江苏工业学院 一种制备聚吡咯/凹凸棒土纳米导电复合材料的方法
CN101838392A (zh) * 2010-01-08 2010-09-22 兰州理工大学 聚吡咯/凹凸棒土导电复合材料的制备方法
CN102311703A (zh) * 2011-09-28 2012-01-11 常州大学 一种水性聚吡咯/凹凸棒石导电涂料及其制备方法
CN102532539A (zh) * 2011-12-28 2012-07-04 中国科学院宁波材料技术与工程研究所 一种一维导电聚吡咯/凹凸棒纳米复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886808A (zh) * 2003-09-29 2006-12-27 通用电气公司 导电热塑性组合物、其制造方法以及由此种组合物衍生的制品
CN101215418A (zh) * 2007-12-27 2008-07-09 江苏工业学院 聚苯胺/凹凸棒土纳米导电复合材料的制备方法
CN101284945A (zh) * 2008-05-27 2008-10-15 江苏工业学院 快速制备聚苯胺/凹凸棒土纳米导电复合材料的方法
CN101418122A (zh) * 2008-12-09 2009-04-29 江苏工业学院 一种制备聚吡咯/凹凸棒土纳米导电复合材料的方法
CN101838392A (zh) * 2010-01-08 2010-09-22 兰州理工大学 聚吡咯/凹凸棒土导电复合材料的制备方法
CN102311703A (zh) * 2011-09-28 2012-01-11 常州大学 一种水性聚吡咯/凹凸棒石导电涂料及其制备方法
CN102532539A (zh) * 2011-12-28 2012-07-04 中国科学院宁波材料技术与工程研究所 一种一维导电聚吡咯/凹凸棒纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾永斌: "盐酸掺杂聚苯胺/凹凸棒土纳米导电复合材料的研究", 《非金属矿》, vol. 31, no. 4, 31 July 2008 (2008-07-31), pages 53 - 56 *
李恒: "聚吡咯/凹凸棒石纳米导电复合材料的制备和表征", 《非金属矿》, vol. 34, no. 2, 31 March 2011 (2011-03-31), pages 5 - 10 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867018A (zh) * 2017-03-01 2017-06-20 东北石油大学 一种用纳米反应器合成微孔导电高分子材料的方法
CN106867018B (zh) * 2017-03-01 2019-04-19 东北石油大学 一种用纳米反应器合成微孔导电高分子材料的方法
CN106986983A (zh) * 2017-04-25 2017-07-28 安徽博硕科技有限公司 一种聚噻吩/石墨烯/凹凸棒土导电复合材料的制备方法
CN108598484A (zh) * 2018-05-04 2018-09-28 芜湖天科生物科技有限公司 一种气凝胶掺杂聚噻吩电池添加剂及其制备方法
CN109535395A (zh) * 2018-11-08 2019-03-29 上海萃励电子科技有限公司 一种聚3-氟噻吩纳米线的界面合成方法
CN109535395B (zh) * 2018-11-08 2020-12-15 上海萃励电子科技有限公司 一种聚3-氟噻吩纳米线的界面合成方法

Also Published As

Publication number Publication date
CN102993646B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN102040714B (zh) 聚合物接枝石墨烯的制备方法
Luo et al. Synthesis of single-crystal tetragonal α-MnO2 nanotubes
CN102320599B (zh) 一种纳米氧化石墨烯表面聚合物功能化的方法
CN103407992B (zh) 硫醇-烯点击化学法制备亲水性温度和pH双敏感性石墨烯的方法
Kumar et al. Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system
CN100480302C (zh) 聚苯胺纳米结构的可控合成方法和用途
Deetuam et al. Synthesis of well dispersed graphene in conjugated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry
CN100549097C (zh) 聚苯胺/凹凸棒土纳米导电复合材料的制备方法
CN102993646B (zh) 一种聚噻吩纳米导电复合材料及其制备方法
CN104672445A (zh) 一种多壁碳纳米管/聚苯胺纳米复合材料制备方法
WO2020244608A1 (zh) 可与碳纳米管有序超组装的噻吩乙炔基聚合物及制备方法
WO2020244609A1 (zh) 可与碳基材料超组装的3,4-乙烯二氧噻吩聚合物及其制备方法
Tung et al. The effects of dopant on morphology formation in polyaniline graphite nanoplatelet composite
Liu et al. Core-shell attapulgite@ polyaniline composite particles via in situ oxidative polymerization
CN103303909B (zh) 一种亲水性pH敏感性石墨烯的制备方法
CN102898872A (zh) 功能化石墨烯、其制备方法及在石墨烯/非极性聚合物复合材料中的应用
CN102558553B (zh) 一种一维导电聚苯胺/凹凸棒纳米复合材料的制备方法
CN105752970A (zh) 一种碳纳米管/石墨烯复合物的制备方法
CN102964716B (zh) 一种高导电导磁石墨烯掺杂改性的聚氯乙烯的制备方法
CN103342903B (zh) 热稳定性增强的三聚氰胺共价功能化石墨烯基纳米杂化材料
CN101555007B (zh) 一种以聚丙烯腈微纳米球制备多壁碳纳米管的方法
CN103333367B (zh) 热稳定性增强的三聚氰胺共价功能化石墨烯基纳米杂化材料的制备方法
Ding et al. Carbon microbeads produced through synthesis and pyrolysis of poly (1, 8-dibutyl-1, 3, 5, 7-octatetrayne)
Chen et al. Dispersion of functionalized multi-walled carbon nanotubes in multi-walled carbon nanotubes/liquid crystal nanocomposites and their thermal properties
CN101935451B (zh) 反相乳液法制备聚苯胺/坡缕石纳米导电复合材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant