CN102989495B - 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法 - Google Patents

一种重油加氢改质催化剂及其制备方法和重油加氢改质方法 Download PDF

Info

Publication number
CN102989495B
CN102989495B CN201110271961.2A CN201110271961A CN102989495B CN 102989495 B CN102989495 B CN 102989495B CN 201110271961 A CN201110271961 A CN 201110271961A CN 102989495 B CN102989495 B CN 102989495B
Authority
CN
China
Prior art keywords
weight
catalyst
metallic element
heavy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110271961.2A
Other languages
English (en)
Other versions
CN102989495A (zh
Inventor
龙军
侯焕娣
董明
王子军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201110271961.2A priority Critical patent/CN102989495B/zh
Publication of CN102989495A publication Critical patent/CN102989495A/zh
Application granted granted Critical
Publication of CN102989495B publication Critical patent/CN102989495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供一种重油加氢改质催化剂,其特征在于,以催化剂的总重量为基准,该催化剂含有2-18重量%的金属元素和82-98重量%的非金属元素,其中,以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S,且至少部分所述S与所述金属元素以该金属元素的硫化物形式存在。以及一种重油加氢改质催化剂的制备方法和一种重油加氢改质方法。本发明的重油加氢改质催化剂具有较好的加氢改质功能。此外,本发明的催化剂可适用于杂质含量高和残炭值高的劣质重、渣油的加氢改质过程,能够显著提高馏分油收率降低焦炭产率。

Description

一种重油加氢改质催化剂及其制备方法和重油加氢改质方法
技术领域
本发明涉及一种重油加氢改质催化剂及其制备方法,以及一种利用该重油加氢改质催化剂的重油加氢改质方法。
背景技术
随着开采原油的不断变重、市场对轻质燃料油需求不断增加以及环保要求的日益提高,各炼厂对渣油轻质化技术越来越关注,其中重/渣油浆态床加氢改质是重/渣油轻质化的重要途径之一,于是各大石油公司竞相研究开发重/渣油浆态床加氢技术。
浆态床加氢工艺都是采用细粉状或液体均相催化剂(或添加剂)与原料油混合再与氢气共同以上流形式进入反应器完成临氢热裂解反应,不同之处在于其所使用的催化剂不同。早期的浆态床加氢技术都采用固体粉末态的催化剂,如德国Veba公司开发的VCC工艺(2002年被BP公司购买)采用褐煤或焦炭磨细后作装置的添加剂。CANMET工艺申请的相关专利(或申请)US4299685、CA1276902、CN1035836、CN1042174中涉及了用于浆态床工艺的防焦剂、负载Fe、Co、Mo、Zn等金属盐的煤粉、煤焦粉和硫酸铁以及超细硫酸铁等。委内瑞拉INTEVEP公司研究开发的HDH工艺是以含Ni、V的天然矿物细粉作催化剂。UOP公司的UniflexTM工艺采用纳米尺寸的钼铁固体粉末作为催化剂。由于固体粉末催化剂(或添加剂)的分散度不高,而使其加氢活性较低,因此,不能有效抑制渣油浆态床加氢工艺在高转化率时的反应器结焦,装置运转时间较短。
为了增强催化剂的分散度和加氢活性,80年代后期各大石油公司开始了渣油浆态床加氢均相催化剂的研究开发。均相催化剂在反应过程中都是以金属微粒及其硫化物的形态存在,分散度高。已开发的均相催化剂有Exxon公司申请的专利(或申请)US4226742、US4134825、CA2004882提出的环烷酸盐、脂肪酸盐或多羰基钴、钼、铁等羰基金属化合物。意大利Eni公司的EST工艺采用油溶性的环烷酸钼作为催化剂。Chevron公司的VRSH工艺申请的US4557821、US4710486、US4824821、US4970190专利涉及的钼酸铵水溶性催化剂。
现有技术中,使用高浓度的催化剂成本昂贵,而且由于现有催化剂容易失活,即使增加使用浓度,其对整体催化效果的提升也是有限的,因此,现有技术中,不管是固体粉末催化剂还是均相催化剂,催化剂在加氢反应器内的浓度都较低,一般为200-3000μg/g。因此,亟需发展一种能够高浓度地在加氢反应器内使用,且催化效果保持良好的加氢裂化催化剂。
发明内容
本发明的目的是提供一种可以高浓度地在加氢反应器内使用,且催化效果好的重油加氢改质催化剂及其制备方法,以及提供一种使用该催化剂的重油加氢改质方法。
本发明提供了一种重油加氢改质催化剂,其特征在于,以催化剂的总重量为基准,该催化剂含有2-18重量%的金属元素和82-98重量%的非金属元素,其中,以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S,且至少部分所述S与所述金属元素以该金属元素的硫化物形式存在。
本发明提供了一种重油加氢改质催化剂的制备方法,其特征在于,该方法包括将金属源和非金属源在溶剂存在下以及硫化反应条件下与硫化剂接触,所述金属源为含有V、Ni以及第VIB族金属元素的物质,所述非金属源为含有碳元素的物质,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有2-18重量%的金属元素和82-98重量%的非金属元素,且以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S。以及提供由上述方法制得的重油加氢改质催化剂。
此外,本发明还提供了一种重油加氢改质方法,该方法包括,在重油加氢改质条件下,使重油原料、氢气与重油加氢改质催化剂一同通过液相流动床反应器进行加氢改质反应,其特征在于,该重油加氢改质催化剂为上述的重油加氢改质催化剂中的至少一种,且以重油原料的重量为基准,所述重油加氢改质催化剂的加入量为0.1-25重量%。
本发明的催化剂具有提高渣油转化率、轻质油收率、并显著降低生焦率的优点。当加入15重量%的催化剂E时,渣油转化率(<500℃收率)可达84重量%,而生焦率仅有0.95重量%,较对比例1转化率提高了70%,生焦率下降了88%;轻质油收率为34重量%,较对比例1增加了58%。而加入10重量%的催化剂A的实施例6中,渣油转化率为75.62重量%,生焦率为2.98重量%,轻质油收率为27.92重量%,而使用同样重量的现有催化剂的对比例2中,生焦率高达为16.45重量%,轻质油收率为26.49重量%。这说明,本发明的重油加氢改质催化剂具有较好的加氢改质效果,能够提高轻质油收率、降低焦炭产率。
此外,本发明中所用减压渣油A的S、N、金属和残炭量含量均较高,说明本发明的催化剂适用于对硫、氮、金属等杂质含量高和残炭高的劣质重、渣油进行加氢裂化催化,并且可以有效的抑制反应缩合生焦。
具体实施方式
本发明一种重油加氢改质催化剂,其特征在于,以催化剂的总重量为基准,该催化剂含有2-18重量%的金属元素和82-98重量%的非金属元素;优选地,以催化剂的总重量为基准,该催化剂含有5-11重量%的金属元素和89-95重量%的非金属元素;其中,以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第VIB族金属元素,优选地,99重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S,优选地,99重量%以上的所述非金属元素为C和S;且至少部分所述S与所述金属元素以该金属元素的硫化物的形式存在。
根据本发明,所述第VIB族金属元素可以为任何的第VIB族金属元素,如Cr、Mo和W中的至少一种,优选地,所述第VIB族金属元素为Mo和/或W。
根据本发明,所述催化剂优选为颗粒状,且颗粒的平均粒径优选为0.01-200微米,进一步优选为0.1-100微米,最优选为1-100微米。本发明中,所述平均粒径指D50粒径。
根据本发明,优选地,所述催化剂中金属元素的硫化物分散均匀,且所述金属元素的硫化物为大小为5-50纳米的颗粒,进一步优选为10-30纳米的颗粒。
根据本发明,优选地,以催化剂的总重量为基准,所述催化剂中V的含量为0.1-5.0重量%,Ni的含量为0.05-4.0重量%,第VIB族金属元素的含量为0.1-15.0重量%;进一步优选地,以催化剂的总重量为基准,所述催化剂中V的含量为0.5-3.0重量%,Ni的含量为0.1-3.0重量%,第VIB族金属元素的含量为0.1-10.0重量%;最优选地,以催化剂的总重量为基准,所述催化剂中V的含量为0.8-2.0重量%,Ni的含量为1.5-2.5重量%,第VIB族金属元素的含量为2.0-8.0重量%,最优选地,每种VIB族金属元素的含量为2.5-4.5重量%。
根据本发明,优选地,以催化剂的总重量为基准,所述催化剂中C的含量为50-95重量%,S的含量为1-25重量%,进一步优选地,以催化剂的总重量为基准,所述催化剂中C的含量为60-90重量%,S的含量为2-20重量%,最优选地,以催化剂的总重量为基准,所述催化剂中C的含量为65-90重量%,S的含量为5-16重量%。
根据本发明,优选地,所述非金属元素还包括以催化剂的总重量为基准,含量为0-10重量%的H,和/或含量为0-2重量%的N;进一步优选地,所述非金属元素还包括以催化剂的总重量为基准,含量为0-9重量%的H,和/或含量为0-1.2重量%的N。
本发明还提供一种加氢裂化催化剂的制备方法,其特征在于,该方法包括将金属源和非金属源在溶剂存在下以及硫化反应条件下与硫化剂接触,所述金属源为含有V、Ni以及第VIB族金属元素的物质,所述非金属源为含有碳元素的物质,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有2-18重量%的金属元素和82-98重量%的非金属元素;优选地,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有5-11重量%的金属元素和89-95重量%的非金属元素;且以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;优选地,99重量%以上的所述金属元素为V、Ni以及第VIB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S,优选地,99重量%以上的所述非金属元素为C和S。
根据本发明,所述第VIB族金属元素可以为任何的第VIB族金属元素,如Cr、Mo和W中的至少一种,优选地,所述第VIB族金属元素为Mo和/或W。
根据本发明,所述接触后固体产物的平均粒径优选为0.01-200微米,进一步优选为0.1-100微米,最优选为1-100微米。
根据本发明,为了使金属源和非金属源混合的更加均匀,所述接触优选在搅拌条件下进行,且所述接触的条件使得接触后所得固体产物中金属元素的硫化物形成为大小为5-50纳米的颗粒,优选为10-30纳米。
根据本发明,所述非金属源是指所述催化剂中非金属的主要来源,同样的,所述金属源是指所述催化剂中金属的主要来源,而并非必然是全部来源。
根据本发明,优选地,以催化剂的总重量为基准,所述催化剂中V的含量为0.1-5.0重量%,Ni的含量为0.05-4.0重量%,第VIB族金属元素的总含量为1-15.0重量%;进一步优选地,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中V的含量为0.5-3.0重量%,Ni的含量为0.1-3.0重量%,第VIB族金属元素的总含量为1-10.0重量%;最优选地,以催化剂的总重量为基准,所述催化剂中V的含量为0.8-2.0重量%,Ni的含量为1.5-2.5重量%,第VIB族金属元素的含量为2.0-8.0重量%,最优选地,每种VIB族金属元素的含量为2.5-4.5重量%。
根据本发明,优选地,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中C的含量为50-95重量%,S的含量为1-25重量%;进一步优选地,以催化剂的总重量为基准,所述催化剂中C的含量为60-90重量%,S的含量为2-20重量%;最优选地,以催化剂的总重量为基准,所述催化剂中C的含量为65-90重量%,S的含量为5-16重量%。
根据本发明,优选地,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中还含有含量为0-10重量%的H,和/或含量为0-2重量%的N;进一步优选地,所述非金属元素还包括以催化剂的总重量为基准,含量为0-9重量%的H,和/或含量为0-1.2重量%的N。
根据本发明,所述金属源可以以任何适宜的形式提供,如以该金属源中金属元素的有机物和/或无机物的形式提供,优选地,如以金属元素的氧化物、无机盐、有机酸盐和有机螯合物中至少一种的形式提供,具体地,所述金属元素的无机盐可以为硝酸盐、硫酸盐、盐酸盐和碳酸盐中的至少一种,或者为该金属元素的含氧酸盐,如钨酸盐、钼酸盐,所述金属元素的有机酸盐可以为油酸盐、环烷酸盐以及更具体的,如二烷基二硫代磷酸钼、四羰基镍和六羰基钒等,所述有机螯合物例如可以为金属源中金属的多元配位化合物,其配位体包括六齿、八齿或十齿配体,这些配体包括但不限于以下化合物:EDTA、DTPA、EDPA。
根据本发明,所述非金属源可以以含碳元素的任何物质的形式提供,如所述非金属源可以以原油、重油、油砂沥青、沥青质、炭黑、石墨粉和活性炭中至少一种的形式提供。
本发明中,油砂沥青为本领域常规的概念,指一种高粘度沥青,具有密度高(常温常压下的密度为0.97-1.015克/立方厘米)、粘度大(室温下粘度一般为100000-1000000cSt)、硫含量高、沥青质含量高及金属Ni、V含量高的特点。
一般把石油中不溶于C原子数为5-7的正构烷烃,但能溶于热苯的物质称为沥青质。
炭黑是煤、石油、生物质燃料等不完全燃烧后所形成的细小颗粒。
本发明的发明人发现,当所述活性炭为经过酸处理的活性炭时,能够得到更好的催化效果的催化剂。优选地,所述处理活性炭的方法包括去离子水洗涤、盐酸洗涤和硝酸氧化等方法。具体包括(1)去离子水洗涤:室温下,称取一定量的活性炭载体(60-80目)加入到适量的蒸馏水中均匀搅拌5min,然后置于超声波清洗器中清洗30min,取出后用蒸馏水洗涤多次至洗液澄清无色,然后在温度为110℃的烘箱中干燥至恒重,置于干燥器中备用。(2)盐酸洗涤:室温下,称取一定质量的活性炭载体(60-80目)加入到适量的蒸馏水中均匀搅拌5min,然后置于超声波清洗器中清洗30min,然后将活性炭放入一定浓度的盐酸中充分混合30min后,静置12h,以除去活性炭中的ZnCl2等杂质,过滤后用蒸馏水洗涤至中性,放入110℃烘箱中干燥至恒重,置于干燥器中备用。(3)硝酸氧化:室温下,取一定质量的盐酸洗过的活性炭,在一定浓度的HNO3溶液中浸泡12h,用去离子水反复过滤和清洗直至滤液pH值不变,在110℃烘箱中烘至恒重,置于干燥器中备用。
根据本发明,所述溶剂的加入是为了使反应体系更均匀,当非金属源为液态时,可以同时兼具溶剂的功能,因此,优选地,所述非金属源可以与溶剂一起,共同以原油、馏分油、渣油和稠油中至少一种的形式提供。而当非金属源为固态时,所述溶剂的加入量也可以在很大范围内变化,例如,所述溶剂与金属源中金属元素的重量比可以为10-1000∶1,优选为20-200∶1,最优选为20-100∶1。
所述溶剂的种类也没有特别的限定,在不影响反应的前提下,可以为各种常规的溶剂,该溶剂可以为能够溶解金属源和/或非金属源的溶剂,也可以为不能够溶解金属源和/或非金属源的溶剂,优选地,所述溶剂为能够溶解金属源和非金属源中至少一种的溶剂,例如,所述溶剂包括但不限于能够溶解各种盐类的水、能够溶解部分或全部非金属源的溶剂油、馏分油和原油中的至少一种。
本发明中,原油即石油,是指从地下开采出来的天然石油。它是一种液态的,以碳氢化合物为主要成分的矿产品。
馏分油指原油蒸馏时分离出的具有一定馏程(沸点范围)的组分,如液化气、汽油、煤油、柴油等馏分。从减压蒸馏得到的称减压馏分。蒸馏塔底剩余的则称为渣油。
稠油是沥青质和胶质含量较高、粘度较大的原油。通常把地面密度大于0.943g/cm3、地下粘度大于50厘泊的原油叫稠油。因为稠油的密度大,也叫做重油。
使用本领域常规的硫化反应条件和硫化剂即可实现本发明,优选地,所述硫化剂为升华硫、二硫化碳、高硫重油、硫醇和二甲基二硫醚中的至少一种;所述硫化反应的条件包括,温度为250-400℃,压力为5.0-10.0MPa,时间为15-480分钟,进一步优选为,所述硫化反应的条件包括,温度为300-380℃,压力为6.0-8.0MPa,时间为30-240分钟,最优选为60-240分钟。其中,所述压力为氢初压。
优选情况下,本发明的方法还包括去除反应后的产物中的溶剂,当所述溶剂为水时,优选将反应后的产物进行过滤。当所述溶剂为溶剂油时,本发明的方法优选还包括用甲苯对反应后的产物进行抽提,抽提的目的是去除其中的溶剂油以及非金属源中部分未反应的有机物。
本发明还提供由上述方法制备得到的加氢改质催化剂。
此外,本发明还提供一种重油加氢改质方法,该方法包括,在重油加氢改质条件下,使重油原料、氢气与重油加氢改质催化剂一同在液相流动床反应器内进行改质反应,其特征在于,该重油加氢改质催化剂为上述的重油加氢改质催化剂中的至少一种,且以重油原料的重量为基准,所述加氢改质催化剂的加入量为0.1-25重量%。从理论上讲,本发明的催化剂的加入量越大越有利于反应的进行,但是,如果催化剂过多,会造成反应体系固含量过高,从而加速泵的磨损,因此,综合考虑催化性能和设备使用寿命,所述加氢裂化催化剂的加入量优选为0.2-15重量%。
由于上述加氢裂化方法主要涉及对加氢裂化催化剂的改进以及进而对加氢裂化催化剂用量的改进,因此,待裂化油品的种类、加氢裂化反应条件和具体操作可以为本领域公知的种类、条件和操作方法。例如,待裂化的油品可以为渣油、减压渣油等,加氢裂化反应条件包括,温度可以为350-500℃,优选为400-450℃;时间为0.5-10小时,优选为1-4小时;氢初压(反应压力)为5-20MPa,优选为5-10MPa;氢油体积比为500-1800。
下面,通过实施例对本发明做更详细的说明。
其中,催化剂中各种元素的含量由X射线荧光光谱方法测得,元素组成通过X射线能谱测定元素的价态和各种价态的含量,根据结果判断催化剂中金属元素的存在形式;催化剂的平均粒径及硫化物的平均粒径通过高分辨率的扫描和透射电镜分析得到。气体收率通过气相色谱法方法测得。生焦率定义为甲苯不溶物含量,通过将产品用甲苯溶解、离心分离得到甲苯不溶物含量。
实施例1
在高压釜中加入5.89g钼酸铵((NH4)6Mo7O24·4H2O)、7.40g硝酸镍(Ni(NO3)2·6H2O)、1.78g氧化钒(V2O5)和300mL水,搅拌均匀后加入先后经过浓度均为2mol/L的盐酸和硝酸处理的83g经过酸处理的活性炭,7.2g的硫化剂(升华硫),在300℃、7.0MPa(氢初压)、高速搅拌(300rpm)的条件下硫化60min,产物经过滤、干燥后得到催化剂A,催化剂的元素组成分析列于表1。
在电镜下观察,催化剂A的平均粒径为10μm,所述金属元素硫化物的平均粒径为15nm。
实施例2
将66.3g二烷基二硫代磷酸钼(Mo含量为5.73重量%)、21.8g油酸镍(Ni含量为7.8重量%)、30g环烷酸钒(V含量为4.0的%)、4.5g硫化剂(二硫化碳)、200mL的溶剂油(柴油)和70g天然沥青质(青川1#天然沥青,C含量64.6重量%,H含量6.3重量%,S含量4.2重量%,N含量0.9重量%)依次加入500mL的高压釜内,在370℃、8.0MPa(氢初压)、高速搅拌(500rpm)的条件下硫化240min,产物经离心分离、甲苯抽提、真空干燥得到催化剂B,催化剂的元素组成列于表1。
在电镜下观察,催化剂B的平均粒径为50μm,所述金属元素硫化物的平均粒径为25nm。
实施例3
将5.7g钨酸铵(H18N2O9W),3.6g碳酸镍(NiCO3)、2.9g硫酸氧钒(VOSO4)、300mL水、5.4g硫化剂(升华硫)和90g炭黑依次加入到500mL高压釜内,在320℃、6.0MPa(氢初压)、高速搅拌(500rpm)的条件下硫化120min,产物经过滤、真空干燥后得到催化剂C,催化剂C的元素组成列于表1。
在电镜下观察,催化剂C的平均粒径为100μm,所述金属元素硫化物的平均粒径为30nm。
实施例4
将30.4g环烷酸钨(W含量为8.78重量%)、30.4g四羰基镍(Ni含量为33.73重量%)、6.5g六羰基钒(V含量为23.29重量%)、4.5g硫化剂(升华硫)、200mL的溶剂油(加氢柴油)和60g稠油沥青质(青川3#天然沥青,C含量88.9重量%,H含量7.2重量%,S含量5.8重量%,N含量1.1重量%)依次加入500mL的高压釜内,在350℃、8.0MPa(氢初压)、高速搅拌(500rpm)的条件下硫化210min,产物经离心分离、甲苯抽提、真空干燥得到催化剂D,催化剂的元素组成列于表1。
在电镜下观察,催化剂D的平均粒径为1μm,所述金属元素硫化物的平均粒径为12nm。
实施例5
将43.7g环烷酸钼(Mo含量为10.3重量%)、30.8g环烷酸钨(W含量为8.78重量%)、6.2g四羰基镍(Ni含量为33.73重量%)、6.5g六羰基钒(V含量为23.29重量%)、17.1g硫化剂(DMDS)和300mL的渣油(科威特减压渣油)依次加入500mL的高压釜内,在370℃、6.0MPa(氢初压)、高速搅拌(800rpm)的条件下硫化180min,产物经离心分离、甲苯抽提、真空干燥得到催化剂E,催化剂的元素组成列于表1。
在电镜下观察,催化剂E的平均粒径为0.5μm,所述金属元素硫化物的平均粒径为10nm。
表1
  实施例1   实施例2   实施例3   实施例4   实施例5
  元素含量/%   催化剂A   催化剂B   催化剂C   催化剂D   催化剂E
  Mo   3.2   3.8   -   -   4.5
  W   -   -   2.8   3.2   2.7
  Ni   1.5   1.7   1.8   2.4   2.1
  V   1.0   1.2   0.9   1.8   1.5
  C   86.6   77.8   89.4   74.4   65.8
  H   0.5   6.3   0   8.7   7.3
  S   7.2   8.1   5.1   9.0   15.8
  N   0   1.1   0   0.5   0.3
表1中显示了各实施例制得的催化剂的元素组成。
实施例6-10
实施例6-10是在间歇反应器上应用本发明的催化剂A-E进行渣油加氢改质反应的实施例,所用待裂化油品为减压渣油A,其原料性质见表2。
将催化剂A-E按照表3中的比例加入到减压渣油A中,然后将油样高速剪切后放入2L带搅拌的高压釜中,密闭反应釜,通氢气置换后室温充氢压至10.0MPa,充气结束30min压力不变说明装置气密性好,然后开始搅拌升温,在420℃下反应1h,分别测定反应产物的气体收率、生焦率、小于200℃馏分、200-350℃馏分(AGO)和350-500℃馏分(VGO)收率,反应条件及反应结果见表3。
表2
  分析项目   渣油A
  密度(20℃)/(g/cm3)   1.029
  非金属元素含量(重量%)
  C   83.87
  H   9.98
  S   4.9
  N   0.34
  金属元素含量(μg/g)
  Ni   42
  V   96
  四组分含量(重量%)
  饱和分   9.3
  芳香分   53.6
  胶质   24.4
  沥青质   12.7
  馏程(℃)
  初馏点   470
  5%   515
  10%   547
  30%   600
  45%   623
对比例1
按照实施例10的方法进行减压渣油A的加氢裂化反应,不同的是,不加入催化剂E,反应结果列于表3。
对比例2
按照实施例6的方法进行减压渣油A的加氢裂化反应,不同的是,用等重量的催化剂A’代替催化剂A,催化剂A’是一种Fe系催化剂,也是一种常规用于重油加氢改质过程的催化剂。催化剂A’的制备过程如下:将100g柴油,50g环烷酸铁(Fe含量为12%),8.2g硫磺,依次加入到500mL高压釜内,在350℃、8.0MPa(氢初压)、500rpm搅拌转速的条件下硫化60min,产物经过滤、真空干燥后得到催化剂A’,催化剂的活性组分为含Fe的硫化物,其反应结果列于表3。
表3
由表3所列的不同的减压渣油A加氢裂化的反应条件和结果表明,本发明的催化剂具有提高渣油转化率、轻质油收率、并显著降低焦炭产率的优点。采用本发明的催化剂、对硫、氮、金属等杂质含量高和残炭高的劣质重、渣油进行液相流动床加氢裂化时,可以最大限度的抑制反应缩合生焦,当加入15重量%的催化剂E时,渣油转化率(<500℃收率)可达85%,而生焦率仅为0.95%,较对比例1转化率提高了70%,生焦率下降了88%,;轻质油收率(汽油和柴油收率之和)为34%,较对比例1增加了58%。
加入10重量%的催化剂A的实施例6中,渣油转化率为75.62重量%,生焦率仅为2.98重量%,轻质油收率为27.92重量%,而使用同样重量的现有催化剂的对比例2中,生焦率高达为16.45重量%,轻质油收率为26.49重量%。这说明,本发明的重油加氢改质催化剂具有较好的加氢改质功能。

Claims (21)

1.一种重油加氢改质催化剂,其特征在于,以催化剂的总重量为基准,该催化剂由2-18重量%的金属元素和82-98重量%的非金属元素组成,其中,以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第ⅥB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S,且至少部分所述S与所述金属元素以该金属元素的硫化物形式存在;所述第ⅥB族金属元素为Mo和/或W;
所述重油加氢改质催化剂的制备方法包括将金属源和非金属源在溶剂存在下以及硫化反应条件下与硫化剂接触,所述金属源为含有V、Ni以及第ⅥB族金属元素的物质,所述非金属源为含有碳元素的物质,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有2-18重量%的金属元素和82-98重量%的非金属元素,且以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第ⅥB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S;所述第ⅥB族金属元素为Mo和/或W;所述非金属源以原油、重油、油砂沥青、沥青质、炭黑、石墨粉和活性炭中至少一种的形式提供。
2.根据权利要求1所述的催化剂,其中,以催化剂的总重量为基准,该催化剂由5-11重量%的金属元素和89-95重量%的非金属元素组成。
3.根据权利要求1所述的催化剂,其中,所述催化剂的平均粒径为0.01-200微米。
4.根据权利要求1所述的催化剂,其中,所述金属元素的硫化物为大小为5-50纳米的颗粒。
5.根据权利要求1-4中任意一项所述的催化剂,其中,以催化剂的总重量为基准,所述催化剂中V的含量为0.1-5.0重量%,Ni的含量为0.05-4.0重量%,第ⅥB族金属元素的含量为0.1-15重量%。
6.根据权利要求1-4中任意一项所述的催化剂,其中,以催化剂的总重量为基准,所述催化剂中C的含量为50-95重量%,S的含量为1-25重量%。
7.根据权利要求6所述的催化剂,其中,所述非金属元素还包括以催化剂的总重量为基准,含量为0-10重量%的H,和/或含量为0-2重量%的N。
8.一种重油加氢改质催化剂的制备方法,其特征在于,该方法包括将金属源和非金属源在溶剂存在下以及硫化反应条件下与硫化剂接触,所述金属源为含有V、Ni以及第ⅥB族金属元素的物质,所述非金属源为含有碳元素的物质,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有2-18重量%的金属元素和82-98重量%的非金属元素,且以金属元素的重量为基准,95重量%以上的所述金属元素为V、Ni以及第ⅥB族金属元素;以非金属元素的重量为基准,95重量%以上的所述非金属元素为C和S;
所述第ⅥB族金属元素为Mo和/或W;
所述非金属源以原油、重油、油砂沥青、沥青质、炭黑、石墨粉和活性炭中至少一种的形式提供。
9.根据权利要求8所述的方法,其中,所述接触后所得固体产物的平均粒径为0.01-200微米。
10.根据权利要求8所述的方法,其中,所述接触在搅拌条件下进行,且所述接触的条件使得接触后所得固体产物中金属元素的硫化物形成为大小为5-50纳米的颗粒。
11.根据权利要求8所述的方法,其中,所述金属源、非金属源和硫化剂的用量使得接触后所得固体产物中含有5-11重量%的金属元素和89-95重量%的非金属元素。
12.根据权利要求8-11中任意一项所述的方法,其中,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中V的含量为0.1-5.0重量%,Ni的含量为0.05-4.0重量%,第ⅥB族金属元素的总含量为0.1-15重量%。
13.根据权利要求8-11中任意一项所述的方法,其中,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中C的含量为50-95重量%,S的含量为1-25重量%。
14.根据权利要求13所述的方法,其中,所述金属源、非金属源和硫化剂的用量使得:以接触后所得固体产物的重量为基准,所述接触后所得固体产物中还含有含量为0-10重量%的H,和/或含量为0-2重量%的N。
15.根据权利要求8-11中任意一项所述的方法,其中,所述金属源以该金属源中金属元素的氧化物、无机盐、有机酸盐和有机螯合物中至少一种的形式提供。
16.根据权利要求8所述的方法,其中,所述活性炭为经过酸处理的活性炭。
17.根据权利要求8-11中任意一项所述的方法,其中,所述溶剂与金属源中金属元素的重量比为10-1000:1。
18.根据权利要求17所述的方法,其中,所述溶剂为水、溶剂油、馏分油和原油中的至少一种。
19.根据权利要求8-11、14、16和18中任意一项所述的方法,其中,所述硫化剂为升华硫、二硫化碳、高硫重油、硫醇和二甲基二硫醚中的至少一种;所述硫化反应的条件包括,温度为250-400℃,压力为5.0-10.0MPa,时间为15-480分钟。
20.权利要求8-19中任意一项所述的方法制备得到的重油加氢改质催化剂。
21.一种重油加氢改质方法,该方法包括,在重油加氢改质条件下,使重油原料、氢气与重油加氢改质催化剂一同通过液相流动床反应器进行加氢改质反应,其特征在于,该重油加氢改质催化剂为权利要求1-7和权利要求20中任意一项所述的重油加氢改质催化剂中的至少一种,且以重油原料的重量为基准,所述重油加氢改质催化剂的加入量为0.1-25重量%。
CN201110271961.2A 2011-09-14 2011-09-14 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法 Active CN102989495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110271961.2A CN102989495B (zh) 2011-09-14 2011-09-14 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110271961.2A CN102989495B (zh) 2011-09-14 2011-09-14 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法

Publications (2)

Publication Number Publication Date
CN102989495A CN102989495A (zh) 2013-03-27
CN102989495B true CN102989495B (zh) 2015-10-28

Family

ID=47918900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110271961.2A Active CN102989495B (zh) 2011-09-14 2011-09-14 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法

Country Status (1)

Country Link
CN (1) CN102989495B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104998693B (zh) * 2015-05-26 2017-11-07 福州大学 一种载体、基于该载体的劣质油加氢催化剂及其制备方法
CN104888860B (zh) * 2015-05-26 2018-03-13 中国石油大学(华东) 一种环烷酸盐催化剂、制备方法及其用途
CN115532309B (zh) * 2021-06-30 2023-10-13 中国石油化工股份有限公司 一种用于浆态床加氢的油溶性催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607238A (zh) * 2003-10-16 2005-04-20 中国石油化工股份有限公司 一种烃油裂化方法
US20050279670A1 (en) * 2003-09-28 2005-12-22 China Petroleum & Chemical Corporation Process for cracking hydrocarbon oils
CN1729275A (zh) * 2002-12-20 2006-02-01 艾尼股份公司 重质原料例如重质原油和蒸馏渣油转化的方法
CN101147871A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司上海石油化工研究院 用于选择性加氢的镍催化剂
WO2010142350A1 (en) * 2009-06-12 2010-12-16 Aggregate Energy, Llc. Catalyst comprising a metal and a supplemental component and process for hydrogenating oxygen containing organic products

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105348A (ja) * 2001-09-27 2003-04-09 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理および接触分解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729275A (zh) * 2002-12-20 2006-02-01 艾尼股份公司 重质原料例如重质原油和蒸馏渣油转化的方法
US20050279670A1 (en) * 2003-09-28 2005-12-22 China Petroleum & Chemical Corporation Process for cracking hydrocarbon oils
CN1607238A (zh) * 2003-10-16 2005-04-20 中国石油化工股份有限公司 一种烃油裂化方法
CN101147871A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司上海石油化工研究院 用于选择性加氢的镍催化剂
WO2010142350A1 (en) * 2009-06-12 2010-12-16 Aggregate Energy, Llc. Catalyst comprising a metal and a supplemental component and process for hydrogenating oxygen containing organic products

Also Published As

Publication number Publication date
CN102989495A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN100589878C (zh) 一种加氢催化剂的制备方法
Del Bianco et al. Thermocatalytic hydroconversion of heavy petroleum cuts with dispersed catalyst
CN108745385B (zh) 一种自硫化油溶性钼基双金属催化剂及其制备方法和应用
CN107866278A (zh) 一种重油加氢裂化催化剂及其制备方法
CN102989486B (zh) 重油加氢改质催化剂及其制备方法和重油加氢改质方法
CN103769196B (zh) 一种渣油加氢催化剂、其制备方法及其应用
CN102309972B (zh) 一种油煤加氢共炼催化剂及其共炼方法
CN110237851A (zh) 一种油溶性催化剂及其制备方法与应用
CN102989495B (zh) 一种重油加氢改质催化剂及其制备方法和重油加氢改质方法
CN103059915B (zh) 一种劣质重油的加氢改质方法
Quitian et al. Partial upgrading of heavy crude oil by slurry-phase hydrocracking with analytical grade and ore catalysts
CN104560177B (zh) 一种重质烃油加氢转化方法
CN106311341A (zh) 一种重油浆态床加氢催化剂的制备方法及催化剂和其应用
CN107649182B (zh) 油溶性钨基浆态床加氢裂化催化剂的循环利用方法
CN104560173B (zh) 一种重油加氢转化方法
CN104513674B (zh) 一种重油临氢转化方法
CN103789027B (zh) 一种重油加氢改质方法
CN104560176B (zh) 一种重油加氢转化方法
CN101468309B (zh) 一种非负载型加氢催化剂的制备方法
CN104560174B (zh) 一种重油加氢转化方法
CA2788201A1 (en) Ultra-dispersed catalyst and method for preparing same
CN103571516B (zh) 一种延迟焦化方法
CN106513049A (zh) 一种具有超高抑焦性能的重油加氢纳米催化剂及其制备方法和应用
CN104560183B (zh) 一种重油临氢转化方法
CN106732800B (zh) 一种亲油性纳米二硫化钼催化剂的原位制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant