CN102963906B - 一种纳米沸石束的制备方法 - Google Patents

一种纳米沸石束的制备方法 Download PDF

Info

Publication number
CN102963906B
CN102963906B CN201210458218.2A CN201210458218A CN102963906B CN 102963906 B CN102963906 B CN 102963906B CN 201210458218 A CN201210458218 A CN 201210458218A CN 102963906 B CN102963906 B CN 102963906B
Authority
CN
China
Prior art keywords
zeolite
bundle
nanozeolite
nano
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210458218.2A
Other languages
English (en)
Other versions
CN102963906A (zh
Inventor
郑家军
李瑞丰
马静红
潘梦
张球
赵强强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201210458218.2A priority Critical patent/CN102963906B/zh
Publication of CN102963906A publication Critical patent/CN102963906A/zh
Application granted granted Critical
Publication of CN102963906B publication Critical patent/CN102963906B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种纳米沸石束的制备方法,属于精细化工和无机材料领域。具体而言涉及一种由多个半径为25~50纳米,长度为0.5~2微米的纳米晶粒组成的ZSM-5或MOR沸石的高度规则排列的束状多晶聚集体的制备方法,其特征在于以常规水热法,在不预先添加任何沸石晶种的情况下,利用合成体系自生的数以千计的单个纳米沸石晶粒通过无底物自组装得到的具有高度规整排列的聚集态纳米沸石束。该制备方法成功解决了纳米沸石在工业化生产中面临的固/液相分离的难题,该材料由于其扩散路径大大缩短及酸位可及性的提高,在精细化工、石油化工的催化、吸附和分离方面具有很重要的实用价值。

Description

一种纳米沸石束的制备方法
技术领域
本发明一种纳米沸石束的制备方法属于精细化工和无机材料领域,具体而言,是一种在无预先添加任何沸石晶种的情况下,利用沸石合成的传统的廉价模板剂来获得小晶粒的纳米沸石颗粒,并进行自组装形成高度规整排列的纳米沸石束的多晶体聚集态的方法的技术方案。
背景技术
近二十来年,研究人员花费相当多的精力来合成具有纳米尺寸的沸石晶体,以便提高沸石的扩散效果和酸位可及性,改善催化剂的催化性能。较小的晶粒会导致单位重量的沸石催化剂具有更多的孔道入口,提高沸石催化剂的酸位可及性,因此会导致催化剂活性整体的提高;小晶粒纳米沸石具有很高的外表面,因而其酸位可及性得以大大提高,同时由于晶粒尺寸很小,所以其微孔孔道被有效缩短,反应分子在材料孔道内的扩散限制被大大减轻了,有效地提高了反应物分子和产物分子在材料内部孔道的扩散速率,这样反应产物在沸石材料的孔道中释放速率更快,大大降低二次反应发生的几率,减少反应过程中的积碳和二次裂解的发生。
有关纳米Beta沸石的合成很早就受到了人们的关注。例如,Camblor等以白炭黑为硅源,金属铝为铝源,四乙基氢氧化铵为模板剂,在无碱金属离子的条件下水热晶化合成出粒子大小在10~200nm的Beta沸石(Micropor. Mesopor. Mater.199825(13), 59-74)。Landau等则以硅溶胶为硅源,异丙醇铝为铝源、在低钠离子含量、高浓度下合成出粒径分布为60~100nm的Beta沸石聚集体,这些聚集体由更小的初级粒子(10~20nm)聚集构成(Chem. mater.199911(8), 2030-2037)。Schoeman等在低纳离子含量、高四乙基氢氧化铵含量下合成出晶粒尺寸小于150nm的Beta沸石(J. Porous Mater.20018(1), 13-22)。
虽然纳米沸石在提高酸位可及性,改善扩散性能方面表现出色,但是,由于纳米沸石的晶粒太过于细微,合成与制备这种具有纳米尺寸的沸石在实际研究工作中遇到了不少困难,其中最为显著的一个问题就是合成后的固/液混合物很难进行分离,因而大大限制了这种细微晶粒沸石在实际中的应用(Chem. Soc. Rev., 200837, 2530.)。
关于ZSM-5和丝光MOR沸石的小晶粒多晶聚集体的制备方法一般都是利用昂贵的硅烷偶联剂或者具有纳米孔道结构的高分子模板剂来阻断或限制沸石晶体的生长,得到无序的多晶沸石聚集体。最近徐龙伢等人(专利号:200910219972)报道了一种纳米纤维状丝光沸石的合成方法,该方法以硅源、铝源、无机酸和去离子水为反应原料,通过添加适量分子筛晶种,在自生压力和晶化温度130-200℃的水热条件下晶化30-160小时,合成出高结晶度的丝光沸石,所合成的丝光沸石具有规整的c轴加长纤维状形貌,其宽度为20-100nm,其长度为1-8μm。但是这种方法需要预先在合成体系中添加沸石晶种,且得到的纳米纤维状丝光沸石是一种无规则的多晶聚集体,即具有纳米尺寸的纤维状的丝光沸石之间通过无序排列方式结合在一起形成无序簇状聚集体;肖丰收等人(J. Mater. Chem.201222, 6564)通过在合成体系中预先添加MOR沸石的晶种情况下,利用无模板法合成出了具有规则排列的纳米棒状丝光沸石聚集体。尽管肖丰收等人制备了具有高度规整排列的纳米棒状丝光沸石聚集体,但是他们的制备方法中仍然要求在合成体系中预先添加沸石晶种;而利用沸石合成的传统模板剂如四乙基氢氧化铵TEAOH、四丙基氢氧化铵TPAOH、四乙基溴化铵TEABr或乙二胺EDA,且在不预先添加任何沸石晶种的情况下,来合成具有高度规整性排列的纳米沸石束状材料的制备方法目前还未有见报道。
发明内容
本发明一种纳米沸石束的制备方法目的在于,为解决上述现有技术中存在的问题,从而提供一种在无预先添加任何沸石晶种的情况下,利用沸石合成的传统的廉价模板剂来获得小晶粒的纳米沸石颗粒,并进行自组装形成高度规整排列的纳米沸石束的多晶体聚集态的方法,尤其是较大聚集态颗粒的形成的方法,解决了目前纳米沸石在工业化生产中遇到的固/液相分离存在的难题。
本发明一种纳米沸石束的制备方法,其特征在于是一种在无预先添加任何沸石晶种的情况下,利用沸石合成的传统的廉价模板剂来获得小晶粒的纳米沸石颗粒,并进行自组装形成高度规整排列的纳米沸石束的多晶体聚集态的聚集体的方法,具体按下列步骤进行:
在室温下,将模板剂、氢氧化钠和铝酸钠依次加入去离子水中,搅拌形成透明溶液后,在搅拌条件下缓慢的加入质量百分比为40%的硅溶胶,其中氢氧化钠、铝酸钠、硅溶胶、模板剂和去离子水的质量配比为氢氧化钠2~10份,铝酸钠5~15份,硅溶胶80~170份,模板剂30~150份,水400~1200份,混合均匀后,移入不锈钢反应釜中,在140~180℃下,晶化12~144h,然后用自来水冷却,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,即得到纳米束沸石产品。
上述一种纳米沸石束的制备方法,其特征在于所述的模板剂是四乙基氢氧化铵TEAOH、四丙基氢氧化铵TPAOH、四乙基溴化铵TEABr和乙二胺EDA中的任意一种。
上述一种纳米沸石束的制备方法所制的的产品,其特征在于是一种由多个半径为25~50纳米,长度为0.5~2 微米的纳米晶粒组成的ZSM-5或MOR沸石的高度规则排列的束状多晶聚集态的聚集体。
本发明一种纳米沸石束的制备方法的优点在于:通过加速沸石成核并抑制沸石晶体生长来获得小晶粒的纳米沸石颗粒,然后利用沸石小晶粒之间的静电吸附作用进行无底物自组装形成纳米沸石束状多晶聚集体,解决了现存的纳米沸石在工业化生产中遇到的难题;传统的纳米束材料在文献报道中大多集中在金、银等金属和金属氧化物如氧化锌纳米束的合成,在这些报道中通常都是纳米束在某种底物上进行取向生长而得直径在纳米级别且长度在微米级别的金属或金属氧化物的纳米束。本发明首次报道了无预先添加任何沸石晶种的方法实现了沸石纳米束的合成,通过合成体系自生的纳米沸石进行无底基物自组装得到;本发明合成的纳米束沸石与大晶粒沸石相比,其扩散速率和酸位可及性都得以大大提高,可以用作多种催化剂、催化剂助剂和吸附剂;经离子交换后有较强的酸性,良好的热和水热稳定性,在石油化工的催化裂化、加氢裂化等方面有着潜在的应用价值。
附图说明
图1为纳米沸石束MOR的电镜图片。
图2为纳米沸石束ZSM-5的电镜图片。
具体实施方式
实施方式1
在室温下,将3g乙二胺、0.2g氢氧化钠和0.5g铝酸钠依次加入40g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入8g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在140℃下,晶化12h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为25~30纳米,长度约为0.5~1 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式2
在室温下,将15g四乙基溴化铵、1g氢氧化钠和0.5g铝酸钠依次加入40g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入8g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化24h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为35~40纳米,长度约为0.5~1.5 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式3
在室温下,将10g四乙基氢氧化铵、0.8g氢氧化钠和1.5g铝酸钠依次加入55g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入17g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在170℃下,晶化144h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为45~50纳米,长度约为1~1.5 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式4
在室温下,将12g四丙基氢氧化铵、1g氢氧化钠和1g铝酸钠依次加入80g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入17g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化96h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为35~40纳米,长度约为1~1.5 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式5
在室温下,将12g四丙基氢氧化铵、1g氢氧化钠和1g铝酸钠依次加入80g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入15g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化96h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为35~40纳米,长度约为0.8~1 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式6
在室温下,将4g乙二胺、0.6g氢氧化钠和1.1g铝酸钠依次加入80g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入14g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在170℃下,晶化24h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为30~50纳米,长度约为1~2 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体,如图1所示。
实施方式7
在室温下,将9g乙二胺、0.6g氢氧化钠和1.1g铝酸钠依次加入80g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入14g质质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在170℃下,晶化144h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为35~40纳米,长度约为0.8~1.3 微米的单个纳米沸石晶体组成的多晶ZSM-5沸石聚集体。
实施方式8
在室温下,将4g乙二胺、0.6g氢氧化钠和1.1g铝酸钠依次加入80g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入14g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在170℃下,晶化72h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为35~50纳米,长度约为0.8~1.8 微米的单个纳米沸石晶体组成的多晶ZSM-5沸石聚集体,如图2所示。
实施方式9
在室温下,将7g乙二胺、1g氢氧化钠和1.3g铝酸钠依次加入120g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入9g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化24h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为40~45纳米,长度约为0.8~2 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式10
在室温下,将15g四乙基溴化铵、1g氢氧化钠和1.3g铝酸钠依次加入120g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入9g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化24h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为30~40纳米,长度约为0.5~1.5 微米的单个纳米沸石晶体组成的多晶MOR沸石聚集体。
实施方式11
在室温下,将15g四丙基氢氧化铵、1g氢氧化钠和1.3g铝酸钠依次加入120g去离子水中,搅拌形成透明溶液后、在剧烈搅拌条件下缓慢滴加入10g质量百分比为40%的硅溶胶混合均匀后,移入不锈钢反应釜中,在180℃下,晶化24h,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,结合XRD和SEM分析表明所得到样品为半径约为30~40纳米,长度约为0.5~1.5 微米的单个纳米沸石晶体组成的多晶ZSM-5沸石聚集体。

Claims (3)

1. 一种纳米沸石束的制备方法,其特征在于是一种在无预先添加任何沸石晶种的情况下,利用沸石合成的传统的廉价模板剂来获得小晶粒的纳米沸石颗粒,并进行自组装形成高度规整排列的纳米沸石束的多晶体聚集态的聚集体的方法,具体按下列步骤进行:
在室温下,将模板剂、氢氧化钠和铝酸钠依次加入去离子水中,搅拌形成透明溶液后,在搅拌条件下缓慢的加入质量百分比为40%的硅溶胶,其中氢氧化钠、铝酸钠、硅溶胶、模板剂和去离子水的质量配比为氢氧化钠2~10份,铝酸钠5~15份,硅溶胶80~170份,模板剂30~150份,水400~1200份,混合均匀后,移入不锈钢反应釜中,在140~180℃下,晶化12~144h,然后用自来水冷却,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,即得到纳米束沸石产品。
2.按照权利要求1所述一种纳米沸石束的制备方法,其特征在于所述的模板剂是四乙基氢氧化铵TEAOH、四丙基氢氧化铵TPAOH、四乙基溴化铵TEABr和乙二胺EDA中的任意一种。
3.权利要求1所述一种纳米沸石束的制备方法所制的的产品,其特征在于是一种由多个半径为25~50纳米,长度为0.5~2 微米的纳米晶粒组成的ZSM-5或MOR沸石的高度规则排列的束状多晶聚集态的聚集体。
CN201210458218.2A 2012-11-15 2012-11-15 一种纳米沸石束的制备方法 Expired - Fee Related CN102963906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210458218.2A CN102963906B (zh) 2012-11-15 2012-11-15 一种纳米沸石束的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210458218.2A CN102963906B (zh) 2012-11-15 2012-11-15 一种纳米沸石束的制备方法

Publications (2)

Publication Number Publication Date
CN102963906A CN102963906A (zh) 2013-03-13
CN102963906B true CN102963906B (zh) 2014-10-22

Family

ID=47794383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210458218.2A Expired - Fee Related CN102963906B (zh) 2012-11-15 2012-11-15 一种纳米沸石束的制备方法

Country Status (1)

Country Link
CN (1) CN102963906B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106219569B (zh) * 2016-07-16 2019-03-08 太原理工大学 一种无二次模板一步制备多级孔沸石的方法
CN106185981B (zh) * 2016-07-16 2018-11-06 太原理工大学 一种空心zsm-5沸石微球的制备方法
CN106185976A (zh) * 2016-07-22 2016-12-07 太原理工大学 一种多级孔丝光沸石分子筛及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054836B1 (en) * 1998-01-12 2004-04-21 Exxonmobil Oil Corporation Synthesis of zsm-48
CN101117730A (zh) * 2007-06-28 2008-02-06 复旦大学 一种多级有序排列的zsm-5纳米棒束及其制备方法
CN102060308A (zh) * 2009-11-18 2011-05-18 中国科学院大连化学物理研究所 一种纳米纤维状丝光沸石的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555643B2 (ja) * 1987-10-20 1996-11-20 東ソー株式会社 特異な結晶形態を有するモルデナイト型ゼオライト及びその製造方法
JP2012115768A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd ゼオライト濾過膜モジュールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054836B1 (en) * 1998-01-12 2004-04-21 Exxonmobil Oil Corporation Synthesis of zsm-48
CN101117730A (zh) * 2007-06-28 2008-02-06 复旦大学 一种多级有序排列的zsm-5纳米棒束及其制备方法
CN102060308A (zh) * 2009-11-18 2011-05-18 中国科学院大连化学物理研究所 一种纳米纤维状丝光沸石的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP平1-208314A 1989.08.22
JP特开2012-115768A 2012.06.21

Also Published As

Publication number Publication date
CN102963906A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
CN102173436B (zh) 一种稀土y分子筛的制备方法
Loiola et al. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener
CN100567152C (zh) Magadiite/ZSM-5共生材料及其合成方法
KR101950552B1 (ko) 개선된 모폴로지를 갖는 zsm-5 결정의 합성
CN105000573B (zh) 一种由纳米晶粒组成的大块状多孔沸石及其制备方法
CN104229824B (zh) 一种酸碱耦合制备等级孔zsm-5分子筛的方法
CN102464329B (zh) 一种微孔-介孔复合zsm-5/mcm-41分子筛的合成方法
CN102674392A (zh) 一种中空胶囊状纳米zsm-5分子筛及其制备方法
CN101519217A (zh) 一种小晶粒丝光沸石的制备方法
CN101164882A (zh) 毛沸石及高毛沸石含量的t型沸石的制备方法
Yin et al. Hydrothermal synthesis of hierarchical zeolite T aggregates using tetramethylammonium hydroxide as single template
CN103214006A (zh) 一种核壳结构复合沸石的制备方法
CN104229818A (zh) 一种β分子筛的合成方法
CN104043477A (zh) 一种zsm-5/mcm-48复合分子筛及其制备方法和应用
CN102963906B (zh) 一种纳米沸石束的制备方法
Zhou et al. One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin
EP3397383A1 (de) Zeolithische partikel mit nanometerdimensionen und verfahren zu deren herstellung
CN109569715B (zh) 一种纳米线复合分子筛催化剂以及其制备方法
CN103073019B (zh) 一种多级孔沸石分子筛的制备方法
JP5810967B2 (ja) 微結晶チャバザイト型ゼオライト及びその製造方法並びにその用途
CN101774533A (zh) 一种优先暴露{111}面的γ-氧化铝纳米管的制法
CN101172244A (zh) 蒙脱土/y分子筛复合材料及其制备方法
CN103232043A (zh) 晶化介孔硅酸锌/氧化硅复合粉体及其制备方法
CN104445251B (zh) 合成纳米晶mfi沸石团簇的方法
CN102259890A (zh) Zsm-5/ecr-1/丝光沸石三相共生材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141022

Termination date: 20151115

EXPY Termination of patent right or utility model