CN102958622A - 使用分子氟的化学气相沉积腔室清洁 - Google Patents

使用分子氟的化学气相沉积腔室清洁 Download PDF

Info

Publication number
CN102958622A
CN102958622A CN2011800287843A CN201180028784A CN102958622A CN 102958622 A CN102958622 A CN 102958622A CN 2011800287843 A CN2011800287843 A CN 2011800287843A CN 201180028784 A CN201180028784 A CN 201180028784A CN 102958622 A CN102958622 A CN 102958622A
Authority
CN
China
Prior art keywords
chamber
cleaning
molecular fluorine
pressure
clean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800287843A
Other languages
English (en)
Inventor
J-C·西高
黄应享
P·A·斯托克曼
R·霍格尔
S·彼得里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of CN102958622A publication Critical patent/CN102958622A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明涉及使用分子氟作为清洁物质清洁PECVD腔室的方法和设备。

Description

使用分子氟的化学气相沉积腔室清洁
技术领域
本发明涉及清洁化学气相沉积(CVD)腔室,特别是等离子体增强化学气相沉积(PECVD)腔室的新方法及其设备。
技术背景
无定形薄膜和微晶薄膜用于制造光伏器件,并通常使用化学气相沉积技术来沉积。具体而言,PECVD方法从气态物质出发,通过以下步骤在基材的表面沉积上固态薄膜:将前体反应气体注入PECVD腔室,然后利用由射频(RF)或DC放电形成的等离子体将所述气体裂解成活性离子或自由基(即解离的中性反应性元素)。使用PECVD法制造器件包括沉积硅、氧化硅、氮化硅、金属氧化物和其它材料的薄膜。这些沉积过程在腔室中留下沉积物,必须定期清洁该沉积物。
已知几种清洁PECVD腔室的方法。一种此类方法是原位激活清洁,其中将清洁气体注入腔室中并且激发等离子体。由等离子体形成的离子和自由基与硅沉积物在腔室的侧壁和莲蓬头上发生反应。然而,原位等离子体激活可导致等离子体引发的损坏及设备和部件寿命的减少。另外,由于电弧的风险,需要避免高压。
另一种腔室清洁方法是使用远程等离子体源激活清洁气体。清洁气体首先通过位于腔室外部的等离子体源,在该等离子体源中清洁气体发生解离,自由基进入腔室以进行清洁。与原位激活相比,以这种方式可实现更高的气体解离,因此可改进清洁效率。然而,使用远程等离子体源需要附加的设备,这会增加相当大的设备和操作成本。另外,气流通常受到远程等离子体源参数的限制,从而增加了清洁时间和成本。
另一种腔室清洁方法包括在高温条件下热清洁腔室,所述高温通常为600-900℃或更高,当使用诸如NF3或SF6的气体时,需要约900℃的温度。这些高温通常远高于沉积过程需要的温度,所需温度调节增加了清洁时间和成本。
另一种腔室清洁方法是在高压条件下热清洁,例如大于50毫巴,使用与氩气或氮气混合的分子氟。该清洁方法需要的高温和高压与在沉积过程中采用的温度和压力明显不同,因此也增加了由于所需温度和压力调节而造成的清洁时间和成本。另外,该清洁方法可能需要附加的泵系统,从而增加了设备和操作成本。
所有上述清洁方法都出现了到达腔室屏蔽区域的困难,因为腔室的体积与维持射频场的功率和能力直接相关。因此,不能到达或有效清洁腔室的所有区域,特别是受到屏蔽,免受射频场影响的那些区域。
本领域仍然需要改进清洁PECVD腔室的设备和方法。
发明内容
本发明提供用于清洁PECVD腔室的改进的方法和设备,其克服了现有技术方法和设备的缺点。具体而言,本发明使用分子氟清洁所述腔室。
附图简要说明
图1是显示本发明有效性的质谱测量图。
图2是显示在使用氟自由基清洁腔室的操作中预期压力增加的图。
图3是显示在根据本发明使用分子氟清洁腔室的操作中压力增加的图。
图4是显示在根据本发明清洁腔室的操作中压力变化的图。
图5是显示在根据本发明清洁腔室的操作中压力变化的特写图。
发明详述
本发明使用分子氟进行PECVD腔室清洁。这些PECVD腔室用于沉积光伏器件的硅(无定形和微晶)。通常,该沉积过程在低至160℃的温度下进行,并且不需要原位或远程等离子体激活。
根据本发明,为了清洁PECVD腔室,在预定的压力下将氟引入所述腔室中。腔室的清洁仅由分子氟与在PECVD腔室的内壁和设备上沉积的硅反应来完成。清洁所需的时间取决于预定的压力和表面温度。
根据本发明,我们发现可以在基础压力下清洁PECVD腔室,所述基础压力通过完全打开从腔室至泵前级管道的阀门获得。获得低至350毫托(0.47毫巴)的压力。进一步实验显示,在适于工业应用并与目前可用清洁技术有竞争力的时间内,5-9托的清洁过程压力提供了有效、彻底的腔室清洁。
根据本发明使用分子氟清洁腔室还可通过与其它方法结合来促进。例如,可用原位等离子体或远程等离子体源至少部分地激发分子氟。另外,可进行腔室的动态和静态处理。当进行动态清洁时,腔室中的压力保持不变,将所述清洁气体(分子氟)连续进料至腔室中,并从腔室中连续被排除。在该方式中,分子氟气体在腔室中连续地再生,并且通过清洁形成的SiFx被排除。在静态清洁处理中,用清洁气体填充腔室达某一压力,并且不进行气体排除。在预定的时间段后,打开腔室阀门,并将清洁产物气体排除。静态清洁的原理是填充腔室,等待清洁气体反应完全,然后排除产物气体。在静态清洁操作中,气体利用达到最大,但必须使用足够的清洁气体以清洁所有的硅沉积物。动态和静态清洁过程的结合可提供优异的结果且最有益。
如图1所示,本发明清洁PECVD腔室的能力由质谱测量证实。具体而言,根据本发明使用直接分子氟作为清洁剂进行腔室清洁,随后使用本领域现有远程等离子体源进行标准清洁步骤,以激活所述清洁剂。图1的质谱结果显示,在本发明的直接分子氟清洁后有极少量的硅残留,从而证明了本发明清洁方法的效率。
如上所述,已知可使用解离的氟化分子从反应腔室除去硅膜,所述解离的氟化分子可通过使用原位发生器(即腔室中的射频或微波发生器)或通过使用远程等离子体源将含氟气体解离而获得。根据以下一般反应,使氟自由基或离子与硅反应以形成SiF4
2F2(g)+Si(s)→SiF4(g)。
在常规清洁操作中,腔室的压力不是固定的,而是在清洁步骤中经历压力变化。具体而言,在主要清洁过程中,所有的氟自由基与硅反应形成稳定状态或接近平衡,仅有轻微的压力增加。然而,当硅已从腔室的一些区域除去时,并非所有的氟自由基可与硅反应,并且腔室的压力经历突然增加。该突然增加后,在几乎所有的硅已反应的点稳定化。压力变化的顺序如图2所示。
本发明使用分子氟的清洁过程通常在设置用来优化清洁速率的固定压力下进行。我们发现设置的腔室压力越高,腔室清洁越快。我们预期,在本发明的清洁过程中产生的腔室压力顺序将类似于图2所示的氟自由基清洁中的情况。具体而言,想要保持固定的腔室压力,肯定需要使用一个补偿装置消除随着硅被消耗而产生的增加的压力。因此,本发明在带有压力调节系统(例如改变连接腔室与泵管线的阀门的孔大小(aperture))的情况下运行。然而,在根据本发明运行实验的过程中,未观察到所述压力调节系统的移动。
本发明使用分子氟的清洁过程也在基础压力(即没有设置固定的腔室压力)下进行测试运行。对于这些实验,清洁时间是延长的。在这些测试运行中,腔室内也未观察到明显的压力增加。该过程的该压力曲线如图3所示。由质谱测量证实了腔室的清洁,并且验证了在延长的清洁时间后无残留的硅膜存在。
这些结果产生了使用分子氟的清洁过程的新机理解释。具体而言,我们现在认为硅与分子氟(F2)反应形成SiF2,在可组合形成SiF4之前被从腔室中排除。
在一些情况下,例如根据用于制造腔室或其部件的材料,甚至在进行清洁步骤之后,一些残留硅(即非常薄的硅层)仍可保留在腔室表面上。这通常可归因于腔室材料的孔隙率,或硅原子和腔室材料表面原子之间的特异性强结合。为了除去该残留硅,本发明采用了如上所述的直接分子氟清洁与短时氟等离子体处理的组合。具体而言,当初始直接氟清洁完成后,可立即在腔室中激发等离子体,以产生高能氟离子或自由基,它们可在极短的处理时间内除去所述薄的残留硅膜。
各清洁阶段的这种组合如图4和5所示。首先在固定的腔室压力下进行一段设定时间的直接分子清洁。然后停止F2源供应,用泵将所述腔室抽空至低压值,例如几百毫托。然后再次用F2填充所述腔室,在腔室中激发等离子体。当压力自身达到稳定时,所述清洁过程结束。如图4和5中可见,因为在所述等离子体清洁中没有较低的平台,例如没有硅被消耗的证据,证实了在所述直接分子清洁阶段后腔室基本是清洁的。
与现有技术中已知的腔室清洁操作相比,使用分子氟进行PECVD腔室清洁具有几个优点。具体而言,与清洁气体的等离子体激活(原位和远程)相比,本发明不需要等离子体激活。因此,本发明消除了与使用等离子体激活时需要的气流和腔室压力有关的问题。另外,本发明消除了等离子体引发的对腔室和设备的损坏的风险。再者,本发明提供了对腔室所有区域的更好的清洁。这是因为在现有技术中使用的高压下等离子体倾向于收缩,从而导致腔室的远程部分的清洁较差。另外,由于在本发明中不需要等离子体激活,不需要远程等离子体源,因此消除了额外成本以及现有技术系统中需要的空间。
在本发明的清洁操作中,如果在分子氟清洁后进行短暂的等离子体清洁,它仍然具有几个优点。具体而言,所述等离子体清洁阶段可非常短暂,因此避免了等离子体引发的对腔室和设备的损坏的显著风险。所述清洁过程的等离子体处理部分可原位进行,意味着不需要远程等离子体源,从而降低了成本和空间需求。
本发明也比已知的高温热清洁操作具有更多优点。具体而言,因为本发明可在低至180℃的温度下进行,PECVD腔室可在与所述沉积过程中使用的温度相同的温度下进行清洁。由于不需要在沉积过程和清洁过程之间调节腔室的温度,本发明可在较少的时间内进行,从而降低了操作成本。
关于在高压下的热清洁,本发明也具有优势。具体而言,本发明在低压下提供了有效的清洁,因而可在沉积过程中通常使用的压力下进行。通过消除高温和高压的需求,清洁时间减少,操作成本降低。另外,不需要附加的泵系统。
本发明对PECVD腔室的所有区域提供了有效的清洁。因为不需要等离子体激活,因此不需要射频源。因此,PECVD腔室的任何部分都不用因为射频场或设备而受到屏蔽。这使得当根据本发明使用分子氟时,PECVD腔室的清洁更加彻底和均匀。
本发明的上述讨论集中在使用分子氟进行PECVD腔室清洁。然而,本发明还可用于硅的选择性蚀刻。具体而言,分子氟不能与氧化硅或氮化硅有效反应。因此,当存在氧化硅或氮化硅时,可对硅进行选择性蚀刻。另外,本发明可用于清洁硅涂覆的材料。
预期本领域技术人员通过阅读以上内容,可以显而易见地想到本发明的其它实施方式以及变化,这些实施方式和变化也都包括在所附权利要求限定的本发明保护范围以内。

Claims (9)

1.一种清洁化学气相沉积腔室的方法,该方法包括:
将分子氟引入所述腔室中;
使所述分子氟与所述腔室中不希望有的沉积物反应;以及
排除所述腔室中的气体。
2.如权利要求1所述的方法,其特征在于,所述腔室是等离子体增强化学气相沉积腔室。
3.如权利要求1所述的方法,其特征在于,在所述清洁过程中所述腔室保持在固定的压力下。
4.如权利要求3所述的方法,其特征在于,所述固定的压力为5-9托。
5.一种清洁化学气相沉积腔室的方法,该方法包括:
将分子氟引入所述腔室中;
使所述分子氟与所述腔室中不希望有的沉积物反应;
排除所述腔室中的气体;
将氟引入所述腔室中;
在所述腔室中激发等离子体,以形成氟自由基;
使所述氟自由基与所述腔室中任何残留的不希望有的沉积物反应;以及
排除所述腔室中的气体。
6.如权利要求5所述的方法,其特征在于,所述腔室是等离子体增强化学气相沉积腔室。
7.一种清洁化学气相沉积腔室的设备,该设备包括:
沉积腔室;以及
与所述沉积腔室连接的分子氟源。
8.如权利要求7所述的设备,其特征在于,所述腔室是等离子体增强化学气相沉积腔室。
9.如权利要求7所述的设备,还包括在所述腔室中保持固定压力的装置。
CN2011800287843A 2010-08-25 2011-08-10 使用分子氟的化学气相沉积腔室清洁 Pending CN102958622A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37677510P 2010-08-25 2010-08-25
US61/376,775 2010-08-25
PCT/US2011/047206 WO2012027104A1 (en) 2010-08-25 2011-08-10 Chemical vapor deposition chamber cleaning with molecular fluorine

Publications (1)

Publication Number Publication Date
CN102958622A true CN102958622A (zh) 2013-03-06

Family

ID=45723732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800287843A Pending CN102958622A (zh) 2010-08-25 2011-08-10 使用分子氟的化学气相沉积腔室清洁

Country Status (8)

Country Link
US (1) US20130276820A1 (zh)
EP (1) EP2608900A4 (zh)
JP (1) JP2013541187A (zh)
KR (1) KR20140022717A (zh)
CN (1) CN102958622A (zh)
SG (1) SG186162A1 (zh)
TW (1) TW201229292A (zh)
WO (1) WO2012027104A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575598A (zh) * 2014-08-01 2017-04-19 安捷伦科技有限公司 质谱仪的等离子体清洁
CN109585332A (zh) * 2017-09-28 2019-04-05 台湾积体电路制造股份有限公司 清洁腔室的方法、干式清洁系统及非暂态电脑可读取媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102620219B1 (ko) * 2018-11-02 2024-01-02 삼성전자주식회사 기판 처리 방법 및 기판 처리 장치
US20240035154A1 (en) * 2022-07-27 2024-02-01 Applied Materials, Inc. Fluorine based cleaning for plasma doping applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644251A (zh) * 2004-01-20 2005-07-27 台湾积体电路制造股份有限公司 清洁反应室的方法
US20050252529A1 (en) * 2004-05-12 2005-11-17 Ridgeway Robert G Low temperature CVD chamber cleaning using dilute NF3
CN1769518A (zh) * 2004-10-12 2006-05-10 应用材料股份有限公司 终点检测器及颗粒监测器
US20060228473A1 (en) * 2005-03-31 2006-10-12 Asm Japan K.K. Semiconductor-processing apparatus provided with self-cleaning device
US20060225767A1 (en) * 2003-01-27 2006-10-12 Maosheng Zhao Method and apparatus for cleaning a cvd chamber
US20080035169A1 (en) * 2005-10-17 2008-02-14 Oc Oerlikon Balzers Ag Cleaning means for large area pecvd devices using a remote plasma source
US7479191B1 (en) * 2005-04-22 2009-01-20 Novellus Systems, Inc. Method for endpointing CVD chamber cleans following ultra low-k film treatments

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072672A (ja) * 1996-07-09 1998-03-17 Applied Materials Inc 非プラズマ式チャンバクリーニング法
US6079426A (en) * 1997-07-02 2000-06-27 Applied Materials, Inc. Method and apparatus for determining the endpoint in a plasma cleaning process
US20030010354A1 (en) * 2000-03-27 2003-01-16 Applied Materials, Inc. Fluorine process for cleaning semiconductor process chamber
JP2003158123A (ja) * 2001-08-30 2003-05-30 Research Institute Of Innovative Technology For The Earth プラズマクリーニングガス及びプラズマクリーニング方法
DE60237380D1 (de) * 2001-08-30 2010-09-30 Anelva Corp Plasmareinigungsverfahren
JP3985899B2 (ja) * 2002-03-28 2007-10-03 株式会社日立国際電気 基板処理装置
US20060016459A1 (en) * 2004-05-12 2006-01-26 Mcfarlane Graham High rate etching using high pressure F2 plasma with argon dilution
US7569111B2 (en) * 2006-04-19 2009-08-04 United Microelectronics Corp. Method of cleaning deposition chamber
CN101473073B (zh) * 2006-04-26 2012-08-08 高级技术材料公司 半导体加工系统的清洁
WO2008012665A1 (en) * 2006-07-27 2008-01-31 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of cleaning film forming apparatus and film forming apparatus
US20090004877A1 (en) * 2007-06-28 2009-01-01 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device manufacturing method
JP2009033121A (ja) * 2007-06-28 2009-02-12 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
US8262800B1 (en) * 2008-02-12 2012-09-11 Novellus Systems, Inc. Methods and apparatus for cleaning deposition reactors
EP2257392A2 (en) * 2008-02-21 2010-12-08 Linde North America, INC. Rapid supply of fluorine source gas to remote plasma for chamber cleaning
CN102292169A (zh) * 2009-01-27 2011-12-21 琳德股份公司 用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060225767A1 (en) * 2003-01-27 2006-10-12 Maosheng Zhao Method and apparatus for cleaning a cvd chamber
CN1644251A (zh) * 2004-01-20 2005-07-27 台湾积体电路制造股份有限公司 清洁反应室的方法
US20050252529A1 (en) * 2004-05-12 2005-11-17 Ridgeway Robert G Low temperature CVD chamber cleaning using dilute NF3
CN1769518A (zh) * 2004-10-12 2006-05-10 应用材料股份有限公司 终点检测器及颗粒监测器
US20060228473A1 (en) * 2005-03-31 2006-10-12 Asm Japan K.K. Semiconductor-processing apparatus provided with self-cleaning device
US7479191B1 (en) * 2005-04-22 2009-01-20 Novellus Systems, Inc. Method for endpointing CVD chamber cleans following ultra low-k film treatments
US20080035169A1 (en) * 2005-10-17 2008-02-14 Oc Oerlikon Balzers Ag Cleaning means for large area pecvd devices using a remote plasma source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575598A (zh) * 2014-08-01 2017-04-19 安捷伦科技有限公司 质谱仪的等离子体清洁
CN106575598B (zh) * 2014-08-01 2020-04-28 安捷伦科技有限公司 质谱仪的等离子体清洁
CN109585332A (zh) * 2017-09-28 2019-04-05 台湾积体电路制造股份有限公司 清洁腔室的方法、干式清洁系统及非暂态电脑可读取媒体
CN109585332B (zh) * 2017-09-28 2021-06-01 台湾积体电路制造股份有限公司 清洁腔室的方法、干式清洁系统及非暂态电脑可读取媒体

Also Published As

Publication number Publication date
TW201229292A (en) 2012-07-16
WO2012027104A1 (en) 2012-03-01
KR20140022717A (ko) 2014-02-25
US20130276820A1 (en) 2013-10-24
SG186162A1 (en) 2013-01-30
EP2608900A1 (en) 2013-07-03
JP2013541187A (ja) 2013-11-07
EP2608900A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US10192717B2 (en) Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates
US7435684B1 (en) Resolving of fluorine loading effect in the vacuum chamber
TWI493622B (zh) 改善電漿輔助化學氣相沈積(pecvd)膜的程序控制及膜保形性之方法
JP5269093B2 (ja) 低ウェットエッチング速度の窒化シリコン膜
US8323521B2 (en) Plasma generation controlled by gravity-induced gas-diffusion separation (GIGDS) techniques
US20100209624A1 (en) Film-forming apparatus and film-forming method
JP2004343017A (ja) プラズマ処理装置
EP2362003A2 (en) Methods of depositing SiO2 films
KR101678512B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 기록 매체
KR20110134323A (ko) 반도체 장치의 제조 방법, 클리닝 방법 및 기판 처리 장치
KR101403389B1 (ko) 반도체 장치의 제조 방법, 클리닝 방법, 기판 처리 장치 및 기록 매체
KR20050076678A (ko) 박막 제조 장치 및 그 방법
US11060189B2 (en) Method to enable high temperature processing without chamber drifting
CN102958622A (zh) 使用分子氟的化学气相沉积腔室清洁
JP4545107B2 (ja) 膜質の安定な低誘電率膜の形成方法
JP2005085917A (ja) プラズマプロセス装置
US20130239988A1 (en) Deposition chamber cleaning using in situ activation of molecular fluorine
WO2007088692A1 (ja) プラズマエッチング方法
JP3649650B2 (ja) 基板エッチング方法、半導体装置製造方法
KR20190102275A (ko) 질화막 성막 방법
US8940650B2 (en) Methods for fabricating integrated circuits utilizing silicon nitride layers
KR100755116B1 (ko) Pecvd 실리콘 나이트라이드막 형성 방법
JP4471887B2 (ja) プラズマプロセス装置
WO2012177716A2 (en) N-metal film deposition with initiation layer
KR20240063186A (ko) 질화막의 성막 방법 및 플라스마 처리 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130306