CN102292169A - 用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻 - Google Patents

用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻 Download PDF

Info

Publication number
CN102292169A
CN102292169A CN2009801559551A CN200980155955A CN102292169A CN 102292169 A CN102292169 A CN 102292169A CN 2009801559551 A CN2009801559551 A CN 2009801559551A CN 200980155955 A CN200980155955 A CN 200980155955A CN 102292169 A CN102292169 A CN 102292169A
Authority
CN
China
Prior art keywords
etching
molecular fluorine
silicon thin
thin film
dividing potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801559551A
Other languages
English (en)
Inventor
P·A·斯托克曼
R·A·霍格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of CN102292169A publication Critical patent/CN102292169A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B11/00Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
    • B08B11/04Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto specially adapted for plate glass, e.g. prior to manufacture of windshields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

清除用于光伏用途的无定形和微晶硅薄膜的改进技术。更详细地,描述了使用分子氟清除用于光伏用途的薄膜的方法和用该方法形成的器件。

Description

用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻
技术领域
本发明涉及清除用于光伏用途的无定形和微晶硅薄膜的新方法及用该方法形成的器件。
背景技术
清除用于光伏制造的无定形和微晶硅薄膜的方法主要由用于液晶显示器(LCD)和半导体器件的方法修改得到。制造后两种器件要求反应室温度高于280℃并通常包括使几种不同种类薄膜形成层;例如,除了硅膜,还可能形成SiO2、Si3N4、SiOxNy、金属及金属氧化物薄膜。在制造条件的范围内,分子氟不会与非硅薄膜快速反应。因此,不适宜用分子氟清除这些非硅薄膜。升高反应室温度至高于制造温度有利于反应,但在使用的时间和能量上是不经济的。
为了克服与使用分子氟有关的温度问题,人们使用氟自由基来除去薄膜。氟自由基可如下形成:由分子氟或含氟气体例如NF3或SF6通过原位活化或外部遥控等离子源(RPS)活化以产生氟自由基。使用氟自由基时,可完成反应室清除的速率由含氟气体的速率及活化效率决定。因此,清除步骤会占据整个制造周期的大部分,导致制造能力下降且需要过多的加工。另外,含氟气体活化所需的设备(特别是RPS单元)会明显增加制造工艺的费用,并且被认为是麻烦的故障点,这会降低制造工艺的有效的可工作时间。
另外,由原位活化或RPS活化生成的氟自由基活性高且不是非常有选择性的,因此会对密封部件、射频(RF)发生器及其它制造室内部或相关的重要设备造成损坏。并且,RPS活化和原位活化必需在有限制的(1imited)氟自由基源,在氟自由基的分布是高度各向异性的条件下进行。为了清除反应室内更难以到达的地方,这导致所谓的“过蚀刻(overetch)”的要求,即一段时间产生的氟自由基大大超过清除所需的化学计量。
美国专利6,880,591(Goto等)认为分子氟可用于硅工艺中的反应室清除,但其针对高温情况且用于LCD显示器工艺。特别是,Goto等提出分子氟的使用温度应远高于LCD生产所用的温度;即在280℃到400℃之间,较好为约450℃。据信选用这些高温以补偿用Goto等工艺所提供的低分压(例如低于1mbar)。应注意到Goto等发现用分子氟清除并不是完全有效的,且需要与原位活化和/或RPS活化联用。
还注意到,除了分子氟之外的含氟气体如NF3、SF6和CxFy化合物在低于500℃和工业应用中的低于900℃的温度并不是硅薄膜的有效清除剂。
MEMS器件的制造也为硅薄膜光伏工业提供了指导。通常,在MEMS制造中,使用分子氟的目的是为了使器件不必用来自硅基体的化合物(如SiO2和Si3N4)制造。特别是,通过在低温(如室温)和相对的高压(如250mbar)下用分子氟蚀刻,可完全除去组成基体的硅薄膜,而分子氟不会与器件部件发生任何有害反应。然而在更高温度下,相比其它化合物,分子氟对硅的选择性下降,因此,在提高的温度下分子氟的效果降低。(见Arana等“用于MEMS微型机械的硅在氟气体中的各向同性蚀刻(Isotropic etching of silicon in fluorine gas for MEMSmicromachine)”,J.Micromech.Microeng.,第17卷,第384-392页,2007年)。
本领域仍有改进用于光伏用途的无定形和微晶硅薄膜的清除的设备和方法的需要。
发明内容
本发明提供了清除用于光伏用途的无定形和微晶硅薄膜的改进技术和设备。更详细地,本发明提供了克服了上述缺点的使用分子氟清除薄膜的方法和设备。
具体实施方式
本发明涉及使用分子氟蚀刻用于光伏用途的硅薄膜。以上所述的关于LCD和MEMS工艺的缺点可以避免。特别是,生产薄膜光伏器件的方法是在低于生产薄膜晶体管LCD器件的方法的温度下进行的。例如,光伏工艺通常在50℃到300℃下进行。在此温度范围内分子氟可与硅很好反应。依照本发明,在沉积温度和1毫巴至1000毫巴的分压的条件下使用分子氟加快了清除,因此提高了生产率。可有效使用低于MEMS生产所用的压力。
因为光伏工艺只涉及沉积稍微掺杂的硅薄膜且不需要沉积在较低温度用分子氟蚀刻不良的薄膜,因此清除和蚀刻工艺可有效进行。特别是,因为没有非硅薄膜,无需活化形成氟自由基。这意味着不需要产生氟自由基的活化设备,这样降低固定设备的成本,因此降低光伏板的生产成本。
本发明的方法可以多种方式进行。在一个实施方式中,氟在初始静态分压下以待清除的薄膜中硅的化学计量过量的量被引入反应室内。过量的氟使得在有限和工业所需的时间内清除到完成。在另一个实施方式中,氟在初始静态分压下以约等于完全清除薄膜所需的化学计量的量被引入反应室内。在该实施方式中,薄膜的厚度可大大降低,该厚度经常是可接受的,可供另一个沉积周期之用。以重复周期使用此实施方式时,在对周期时间仍是工业上可行的最小的氟用量条件下形成稳态(steady state)清除。在另一个实施方式中,氟在初始分压下引入反应室内并且额外的氟以稳定的或变化的速率加入。可用真空泵来保持室内压力稳定或变化。在该实施方式中,反应速率可依照用户特定的方法(recipe)而不同,因为在固定温度下反应速率随有效分子氟的分压的变化而变化。或者,该实施方式使相对高且稳定的分压得以保持,同时进行清除,从而可达到恒定的清除速率。
依照本发明进行了实验。采集数据且结果示于下图中。实验包括在200℃用分子氟清除2μm硅样品。2μm硅膜沉积在铝下层上,该铝下层在200℃、低于1000毫巴的条件下未被分子氟明显蚀刻。硅薄膜样品的一部分用蓝宝石圆片覆盖,该圆片也在200℃、低于1000毫巴的条件下未被分子氟明显蚀刻。实验由以下步骤组成:将硅膜在200℃、不同分压条件下暴露于分子氟中,随后从反应室内移除硅膜样品。移走蓝宝石圆片,用表面光度法测量蚀刻表面及未蚀刻表面的高度差,以计算蚀刻速率(rate)。
收集的数据见下图,图中清楚地表明在200℃下反应室内压力的升高对应于清除或蚀刻速率的提高。将本发明的结果与已知的清除方法比较证明本方法的优越性。例如,一些商用硅基薄膜光伏工艺的操作温度为200℃或接近200℃,且使用平均器件厚度为2μm的方法(recipe)。在这些工艺中,每次基片沉积后清除该工艺室,清除时间为5至20分钟以完全清除。本发明方法的数据表明蚀刻速率可达
Figure BPA00001409047300031
这表示2μm的薄膜可用分子氟在200℃、39毫巴的恒定分压的条件下在60秒内被成功地清除干净。因此,本发明的清除速率比目前所用的依靠原位活化或RPS活化的清除方法快5到20倍。
在另一个实例中,某些工业薄膜工艺仅每日在沉积硅膜后以与上述实例类似的速率进行清除。该清除阶段需用100到240分钟来完成。本发明的实验结果表明可用分子氟和保持在100毫巴的恒定分压以及200℃条件下将100μm厚度的薄膜在20分钟内成功地清除干净。该蚀刻速率比目前所用的依靠原位活化或RPS活化的清除方法快5到12倍。
Figure BPA00001409047300041
本发明的方法相比现有技术具有许多优点。特别是,因在任何设定温度下分子氟与硅薄膜的反应速率只取决于反应室内氟的分压,可调节分压来获得数量级高于使用含氟气体的原位活化或RPS活化清除的清除速率。此外,与氟自由基相比,分子氟活性低、对硅薄膜蚀刻的选择性高,因此对密封部件、射频发生器及其它与制造室相关的重要设备造成的损害较小。另外,分子氟在反应室内的分布是完全各向同性的,因此可按化学计量反应。
可以预期,从前面的描述来看,本发明的其他实施方式和改变对于本领域技术人员来说是显而易见的,并且这些实施方式和改变同样包含在所附权利要求书所陈述的本发明的范围内。

Claims (16)

1.一种蚀刻用于光伏器件的硅薄膜的方法,所述方法包括使用分子氟作为蚀刻剂。
2.如权利要求1所述的方法,其特征在于,蚀刻在50℃至300℃的温度和1毫巴至1000毫巴的分压的条件下进行。
3.如权利要求1所述的方法,其特征在于,所述分子氟在初始静态分压下以蚀刻所述硅薄膜所需的化学计量过量的量引入蚀刻室内。
4.如权利要求1所述的方法,其特征在于,所述分子氟在初始静态分压下以等于蚀刻所述硅薄膜所需的化学计量的量引入蚀刻室内。
5.如权利要求4所述的方法,其特征在于,进行重复的蚀刻周期以达到稳态清除,并且使用工业上可行的最小量的分子氟。
6.如权利要求1所述的方法,其特征在于,分子氟在初始静态分压下以低于蚀刻硅薄膜所需的化学计量的量引入蚀刻室内,并且额外的分子氟以稳定或变化的速率加入。
7.如权利要求1所述的方法,其特征在于,蚀刻在200℃的温度和1毫巴至1000毫巴的分压的条件下进行。
8.如权利要求7所述的方法,其特征在于,蚀刻分压为1毫巴至350毫巴。
9.如权利要求8所述的方法,其特征在于,蚀刻分压为39毫巴。
10.如权利要求8所述的方法,其特征在于,蚀刻分压为100毫巴。
11.如权利要求1所述的方法,其特征在于,所述蚀刻速率高于
Figure FPA00001409047200011
12.如权利要求1所述的方法,其特征在于,硅薄膜在不到60秒内有2μm被完全除去。
13.如权利要求1所述的方法,其特征在于,硅薄膜在不到20分钟内有100μm被完全除去。
14.如权利要求1所述的方法,其特征在于,在蚀刻过程中调节分子氟的分压以控制硅薄膜的蚀刻速率。
15.一种硅薄膜,所述硅薄膜已使用分子氟作为蚀刻剂蚀刻。
16.一种含硅薄膜的光伏器件,所述硅薄膜已使用分子氟作为蚀刻剂蚀刻。
CN2009801559551A 2009-01-27 2009-12-28 用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻 Pending CN102292169A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14750009P 2009-01-27 2009-01-27
US61/147,500 2009-01-27
PCT/US2009/069581 WO2010087930A1 (en) 2009-01-27 2009-12-28 Molecular fluorine etching of silicon thin films for photovoltaic and other lower-temperature chemical vapor deposition processes

Publications (1)

Publication Number Publication Date
CN102292169A true CN102292169A (zh) 2011-12-21

Family

ID=42395933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801559551A Pending CN102292169A (zh) 2009-01-27 2009-12-28 用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻

Country Status (4)

Country Link
KR (1) KR20110139201A (zh)
CN (1) CN102292169A (zh)
TW (1) TW201034232A (zh)
WO (1) WO2010087930A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201123293A (en) * 2009-10-26 2011-07-01 Solvay Fluor Gmbh Etching process for producing a TFT matrix
WO2012027104A1 (en) * 2010-08-25 2012-03-01 Linde Aktiengesellschaft Chemical vapor deposition chamber cleaning with molecular fluorine
US10134988B2 (en) * 2013-12-13 2018-11-20 E I Du Pont De Nemours And Company System for forming an electroactive layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124211A (en) * 1994-06-14 2000-09-26 Fsi International, Inc. Cleaning method
US6620256B1 (en) * 1998-04-28 2003-09-16 Advanced Technology Materials, Inc. Non-plasma in-situ cleaning of processing chambers using static flow methods
AU6954300A (en) * 1999-07-12 2001-01-30 Asml Us, Inc. Method and system for in situ cleaning of semiconductor manufacturing equipment using combination chemistries
EP3269843A1 (en) * 2006-04-10 2018-01-17 Solvay Fluor GmbH Etching process

Also Published As

Publication number Publication date
TW201034232A (en) 2010-09-16
KR20110139201A (ko) 2011-12-28
WO2010087930A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
Lee et al. Dry release for surface micromachining with HF vapor-phase etching
Jansen et al. Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment
Gao et al. Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology
TW200426108A (en) A method for fabricating an interference display cell
CN1675126A (zh) 用于mems应用的低温等离子体硅或硅锗
Sammak et al. Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching
Xu et al. Isotropic silicon etching with $\hbox {XeF} _ {2} $ gas for wafer-level micromachining applications
CN102292169A (zh) 用于光伏和其它低温化学气相沉积工艺的硅薄膜的分子氟蚀刻
CN101847570B (zh) 选择性蚀刻和二氟化氙的形成
CN104332392A (zh) 一种各向异性干法刻蚀vo2的方法
Jiang et al. Characterization of low-temperature bulk micromachining of silicon using an SF6/O2 inductively coupled plasma
US20110117747A1 (en) Method of fabricating single chip for integrating field-effect transistor into mems structure
Bliznetsov et al. Improving aluminum nitride plasma etch process for MEMS applications
Fu et al. Improving sidewall roughness by combined RIE-Bosch process
CN101850944B (zh) 采用13.56MHz射频功率源淀积氮化硅薄膜的方法
CN100570828C (zh) 刻蚀氮化铝薄膜微图形的方法
CN104261345B (zh) 干法刻蚀微电机系统牺牲层的方法
Hammond Vapor-phase etch processes for silicon MEMS
Aydemir et al. Prevention of sidewall redeposition of etched byproducts in the dry Au etch process
Pournia et al. Fabrication of ultra-high-aspect-ratio nano-walls and nano-structures on silicon substrates
Tajima et al. Room-Temperature Si Etching in NO/F2 Gases and the Investigation of Surface Reaction Mechanisms
Kazmi et al. Deep reactive ion etching of in situ boron doped LPCVD Ge0. 7Si0. 3 using SF6 and O2 plasma
Golishnikov et al. Research and development of deep anisotropic plasma silicon etching process to form MEMS structures
Wu et al. Reactive ion etching and deep reactive ion etching processes
CN106865489B (zh) Mems器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111221