CN102956433B - 质量分析装置及质量分析方法 - Google Patents

质量分析装置及质量分析方法 Download PDF

Info

Publication number
CN102956433B
CN102956433B CN201210273399.1A CN201210273399A CN102956433B CN 102956433 B CN102956433 B CN 102956433B CN 201210273399 A CN201210273399 A CN 201210273399A CN 102956433 B CN102956433 B CN 102956433B
Authority
CN
China
Prior art keywords
sample
sample container
pressure
mentioned
quality analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210273399.1A
Other languages
English (en)
Other versions
CN102956433A (zh
Inventor
熊野峻
杉山益之
桥本雄一郎
长谷川英树
山田益义
西村和茂
诸熊秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN102956433A publication Critical patent/CN102956433A/zh
Application granted granted Critical
Publication of CN102956433B publication Critical patent/CN102956433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/168Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission field ionisation, e.g. corona discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

本发明提供一种质量分析装置及质量分析方法。实现高效地对试样进行离子化并且残留少的质量分析装置。通过对保持样本的试样容器的内部进行减压,来使顶空气体中的样本密度上升,高效地对样本进行离子化。

Description

质量分析装置及质量分析方法
技术领域
本发明涉及质量分析装置及其动作方法。
背景技术
土壤或大气的污染的测定、食品的农药检查、基于血中代谢物(circulatingmetabolite)的诊断、尿中药物检查(urinedrugscreening)等,要求在现场简便并且高灵敏度地测定混合试样(mixedsample)中的微量物质(tracesubstances)的装置。作为能够高灵敏度地测定微量物质的方法之一,使用了质量分析(massspectrometry)。
在质量分析装置中,在离子源(ionizationsource)中将物质作为气相(gasphase)的离子,将其导入真空部(vacuumedpart)进行质量分析(massanalysis)。为了使质量分析装置高灵敏度化,除了改进离子源、质量分析部(massanalyzer)、检测器(detector)以外,对用于高效地向离子源输送样本的样本导入部(sampleintroductionpart)进行改进是重要的一点。
在气体状态下将样本导入到气相色谱仪、质量分析装置(massspectrometer)的方法中一般使用顶空法(headspacemethod)。在顶空法中存在静态顶空法(staticheadspacemethod)、动态顶空法(dynamicheadspacemethod)(非专利文件1)。
静态顶空法是以下的方法,即以剩余一定空间的方式将样本注入到管形瓶等中并密闭,在一定温度下放置直到达到气液平衡(gas-liquidequilibrium)后,用注射器(syringe)取得存在于气相中的气体、即顶空气体(headspacegas)来进行分析。是一种样本溶液的溶剂的影响小、能够对样本溶液中的微量的挥发性物质(volatilesubstance)进行定量的方法。通过使样本溶液高温过热的方法、或向试样液体添加盐而通过盐析效应(salting-outeffect)促进气化等,能够提高顶空气体中的样本气体浓度。
在动态顶空法中,是一种向注入了样本的管形瓶导入氦气、氮气等惰性气体并挤出样本气体的方法。惰性气体有导入到管形瓶的气相中的情况、和导入到液相中来清洗(purge)样本的情况。如果向液相导入气体则产生气泡,由此气液界面的表面积增加,进一步促进了气化。
除了静态顶空法、动态顶空法以外,还提出了通过用吸附剂(adsorbent)收集顶空气体来进行浓缩的方法。
还提出了从管形瓶内的顶空部分高效地抽出气体的方法(专利文件1)。通过文丘里效应(Venturieffect)对将管形瓶和离子源连接起来的配管的离子源侧末端进行减压,由此吸取顶空气体,然后通过大气压化学离子化(atmosphericpressurechemicalionization)进行离子化。
为了促进样本的气化,还提出了使样本溶液成为微小液滴的设备(专利文件2)。通过使样本溶液成为0.4nL左右的微小液滴并喷出到容器中,来增加气液界面的表面积,实现迅速的气液平衡。
不只是非专利文件1所记载的现有的顶空法,在专利文件1、2所记载的特殊的顶空法中也存在以下的问题,即顶空气体中的样本气体密度依存于样本的饱和蒸汽压(saturatedvaporpressure)。即使将样本溶液放入管形瓶,长时间放置或者导入惰性气体,顶空气体中的样本气体量也无法增加到饱和蒸汽压以上。在水的情况下,饱和蒸汽压在25℃时是约3000Pa。在上述顶空法中,顶空部的压力被加压到大气压附近或大气压以上。例如如果考虑大气压约为100,000Pa下的分压比,则气中的水分子(watermolecules)的存在量约为3%。如果对溶液进行加热,则能够使水和样本分子的饱和蒸汽压上升,但会产生加热所需要的电力的问题、加热后的气体在配管的冷点(coldspot)结露等问题。
通过使用吸附剂来收集样本气体,能够使样本浓缩,但需要进行再次使样本从吸附剂中脱离的工序等,操作烦杂并且吞吐率差。
专利文件1:US5869344
专利文件2:日本特开2011-27557
非专利文件1:TrACTrendsinAnalyticalChemistry,21(2002)608-617
发明内容
通过对保持了样本的试样容器的内部进行减压,使顶空气体中的样本密度上升,高效地使样本离子化。
如果列举质量分析装置的一个例子,则其中包括:封入试样的试样容器;离子化室(ionizationhousing),其与试样容器连接,并且具备取入存在于试样容器内的试样气体并使其离子化的离子源,该离子化室的压力为试样容器内压以下;真空室(vacuumedchamber),其与离子化室连接,并且具有对离子化后的试样进行分析的质量分析部;以及对试样容器内进行减压的单元。
另外,如果列举质量分析方法的一个例子,则其使用了封入试样的试样容器、与试样容器连接并且具备对试样进行离子化的离子源的离子化室、与离子化室连接并且具备对离子化后的试样进行分析的质量分析部的真空室,包括以下工序:对真空室的压力进行减压的工序;对试样容器的压力进行减压的工序;将存在于试样容器内的试样气体取入到离子化室内来使其离子化的工序;在质量分析部中对离子化了的试样进行分析的工序。
根据本发明,能够高效地使样本离子化,并且实现了残留(carry-over)少的质量分析装置和方法。
附图说明
图1是实施例1的装置结构图。
图2是实施例1的放电电极的结构。
图3是实施例1的测定流程。
图4是实施例1的系统结构图。
图5是实施例1的装置结构图2。
图6是实施例2的装置结构图。
图7是实施例2的装置结构图2。
图8是质量谱。
图9是实施例3的装置结构图。
图10是实施例4的装置结构图。
图11是实施例4的测定流程。
图12是实施例5的装置结构图。
图13是实施例6的装置结构图。
图14是实施例7的装置结构图。
图15是实施例8的装置结构图。
符号说明
1:管形瓶;2:管形瓶用泵;3:离子化室;4:真空室用泵;5:真空室;7:样本;8:第一放电电极;9:第二放电电极;10:放电等离子体;11:细孔;12:质量分析部;13:管;14:加热器;20:真空室用压力计;21:管形瓶用压力计;30:脉冲阀;40:相对电极;50:限制电阻;51:电源;52:高压电源;53:EI用电源;54:引出电极用电源;55:离子加速透镜用电源;60:电喷射用探针;70:送液用泵;74:EI用金属丝;75:引出电极(extractionelectrode);76:离子加速透镜;101:激光光源;102:激光
具体实施方式
图1是表示本发明的质量分析装置的一个实施例的结构图。本装置主要由以下部分构成:用于保持样本7的管形瓶1、对管形瓶进行减压的泵2、由玻璃、塑料、陶瓷、树脂等电介体(dielectricsubstance)形成的离子化室3和通过真空泵4被维持为0.1Pa以下的真空室5。典型的离子化室3是外径为4mm左右、内径为1~4mm左右的管。在图1中用配管将管形瓶1和离子化室3连接起来,但如果能够保持后述那样的压力条件,则也可以不用配管而经由小孔进行连接。
样本7可以是液体也可以是固体。管形瓶1的内部被泵2减压。真空室5被维持在0.1Pa以下,离子化室3的压力由泵4的排气速度(exhaustvelocity)、细孔(orifice)11的传导率、将管形瓶1和离子化室3连接起来的管13的传导率和管形瓶1内的压力所决定。其中,离子化室3的压力为管形瓶1的压力以下,顶空气体从管形瓶1流入到离子化室3。离子化室3的压力越接近真空室5的压力,则离子从离子化室3导入到真空室5时的损失越少。因此,与在大气压下进行离子化相比,如果在减压下进行离子化,则能够提高装置的灵敏度。在本实施例中,在离子化室3内通过势垒放电(barrierdischarge)而产生等离子体10。通过由等离子体10产生的带电粒子(chargedmolecules)与水分子的反应对样本分子(samplemolecule)进行离子化。存在稳定地产生等离子体10的压力范围,典型的值是100~5000Pa。另外,能够高效地进行离子化的压力范围是500~3000Pa,如果是其以下的压力,则离子的裂解加强。另外,在1Pa以下的情况下不产生等离子体10。在3000Pa以上也难以产生等离子体10,离子化效率降低。
样本的饱和蒸汽压不依存于周围的压力,因此,越减小管形瓶1内的压力,则样本的分压变得越高。例如假设样本的蒸汽压(vaporpressure)固定为10Pa。在管形瓶1的内压是大气压100,000Pa时,样本在顶空气体中所占的比例是0.01%。如果将管形瓶1的内压减压到50,000Pa,则样本比例为0.02%,如果减压到5,000Pa,则为0.2%。这样,理论上如果使管形瓶1的内压为20分之1,则顶空气体中的样本气体比例为20倍。在使离子化室3的压力和真空室5的压力固定的情况下,与管形瓶1的内压无关地,导入到真空室5内的顶空气体的流量不变化。因此,如上所述,越减小管形瓶1的内压则顶空气体中的样本气体比例越上升意味着导入到真空室5的样本气体量的增大,装置灵敏度上升。
如果将管形瓶1内的压力减压到50,000、30,000、10,000Pa,则导入的样本气体量增大为约2倍、3.5倍、10倍,用相同浓度的样本测量的质量谱(massspectrum)的峰值强度变大,但减压的程度越大,则管形瓶1所要求的密闭度越严。这引起管形瓶1的成本上升。进而,为了大幅度地减压,需要连接排气量大的泵,引起成本提高和重量的上升。需要考虑到上述问题与灵敏度提高的平衡来设计装置。
另外,蒸发速度与气体的扩散速度成正比,气体的扩散速度与压力成反比。因此,越是减小压力,则蒸发速度越是上升,样本达到饱和蒸汽压的时间缩短。但是,在样本是液体的情况下会产生突沸,因此,无法将顶空部分减压到该液体的饱和蒸汽压以下。
在离子化室内配置第一放电电极8和第二放电电极9,通过向它们之间施加电压来产生电介体势垒放电(dielectricbarrierdischarge),生成等离子体10。通过等离子体10产生带电粒子,基于它产生水簇离子(waterclusterion),然后,通过水簇离子与试样气体的离子分子反应(ionmoleculeinteraction),对试样7进行离子化。与裂解(fragmentation)多的EI离子源(electronimpactionization)相比,本方法是利用了放电等离子体的软离子化(softionization),试样离子的裂解少。在希望有意地造成裂解的情况下,如后所述,增大对放电电极施加的电力即可。通过放电等离子体10产生的试样离子通过细孔11而被导入到真空室5。在真空室5内设置有质量分析部12和检测器6。导入的离子与每个m/z对应地通过4极质量过滤器(quadrupolemassfilter)、离子阱(iontrap)、飞行时间型质量分析仪(time-of-flightmassspectrometer)等质量分析部12被分离,由电子倍增管(electronmultiplier)等检测器6进行检测。
典型的第一放电电极8与第二放电电极9的距离是5mm左右,放电电极之间的距离越长,则放电所需要的功率越高。例如从电源51向放电电极的一方施加交流电压,向另一方的放电电极施加DC电压。所施加的交流电压可以是矩形波,也可以是正弦波。典型的例子是施加电压是0.5~10kV,频率是1~100kHz左右。如果是相同的电压振幅,则使用了矩形波的情况下的等离子体10的密度高。另一方面,在使用正弦波时,在频率高的情况下能够通过线圈使电压升压,因此与使用矩形波的情况相比有电源51廉价的优点。电压和频率越高,则投入功率越高,因此,等离子体10的密度容易变高,但如果投入功率过高,则等离子体温度变高,容易造成裂解。也可以针对每种试样或测量对象离子而改变交流电压的频率、电压。例如,在如无机物离子那样难以裂解的分子进行测定的情况、或有意地使对象离子裂解来测定裂解离子的情况下,提高投入功率,在测定容易裂解的分子的情况下,降低投入功率等。另外,如果进行开关使得只在必要时向放电电极施加电压,则可以降低电源51的消耗功率。
如果是经由电介体进行放电,则能够对放电电极的配置进行各种变更。图2表示从横向看到筒的图和截面图。图2(A)是图1所示的放电电极的配置,使用了2个圆筒电极。也可以如图2(B)那样使用平面形状的电极。也可以如图2(C)那样向电介体内部插入电极的一方。电极的个数也不限于2个,也可以增加到3个、4个。
在电介体势垒放电中,通过与水簇离子的离子分子反应,样本被离子化。因此,水簇离子的增加引起样本离子的增加。在此,考虑样本是水溶液的情况。水的饱和蒸汽压在25℃下是约3000Pa。通常大气的约80%是氮气。但是,例如在用泵将管形瓶1的压力减压到5000Pa的情况下,顶空部分的约60%是水分子。通过使水分子的比例上升,离子化室3内的水簇离子的产生量增加,这使样本的离子化效率上升。
在使用顶空法的质量分析中经常成为问题的是样本的残留。如果在每次更换样本时进行配管(sampletransferline)的清洗或更换,则吞吐率恶化。通过对管形瓶1的压力进行减压,来减少将离子化室3、真空室5的压力维持为最佳值所需要的配管传导率,能够增大配管的内径。由此,能够降低样本的吸附,抑制残留。如上所述,通过减压来提高蒸发速度。这意味着吸附到配管上的分子被尽早地去除,降低了残留。
图3表示典型的测量工作流程。首先,接通装置的电源,然后,通过泵对真空室进行减压。在该阶段,离子化室与大气压下的外部连接。将样本放入管形瓶并密闭。可以在通过泵对管形瓶内的压力进行减压后,设置在装置中。通过设置减压后的管形瓶,离子化室3和真空室5被进一步减压。如上所述,在测量时需要使真空室为0.1Pa以下,离子化室3为500~3000Pa,需要为了在设置了减压后的管形瓶1的状态下达到这些压力而设计真空系统。在设置了管形瓶1之后,接通势垒放电的电源,对样本进行离子化和质量分析。在测量后卸下装入了样本的管形瓶1,为了确认没有残留而设置没有装入样本的管形瓶1。如果没有残留则转移到下一个样本的计量。在存在残留的情况下需要对离子化室3进行清洗。
在室温下样本的蒸汽压过低的情况下,如图5所示,向管形瓶1安装加热器14来加热,使蒸汽压上升。在该情况下,与不加热的情况相比,能够减压的管形瓶1的内压的下限上升。例如在加热到60℃的情况下,水的饱和蒸汽压是约20,000Pa,因此,无法将管形瓶的压力减压到20,000Pa以下。
图4是装置的系统结构图。系统被计算机100控制。一边通过安装在管形瓶和真空室中的压力计20、21对压力进行测量,一边通过泵2、4对压力进行控制。依照图3所示的测量流程将操作步骤输出在监视器画面102上。在将管形瓶1设置到装置中后,接通离子源的电源,开始进行离子化和测量。质量分析的结果被计算机100取入,将必要的分析结果显示在监视器画面102上。
实施例2
图6是表示本发明的质量分析装置的一个实施例的结构图。等离子体10的压力条件和电源51的输出电压都与实施例1一样。与实施例1不同,在离子化室3与管形瓶1之间导入脉冲阀30,间歇(discontinuous)地向离子化室导入气体。在导入气体时离子化室3的压力暂时增加,如果脉冲阀30关闭,则离子化室3的压力降低。因此,与实施例1的气体连续导入系统相比,即使增大细孔11的内径来增加导入到真空室5的流量,在脉冲阀30关闭后,也能够将真空室5内的压力维持在0.1Pa以下。在脉冲阀30关闭的期间,顶空气体不流入离子化室3,因此气体在离子化室3内的滞留时间缩短,降低了吸附。如果向真空室5的气体导入量与连续导入系统相同,则能够使用排气速度低的更小型的泵。可以根据配管的传导率和阀打开时间来控制离子源的压力和室压。另外,通过在质量分析部12中捕获离子的状态下再次打开脉冲阀30,能够使真空室5的内压上升到有效地发生碰撞诱导解离(collisioninduceddissociation)的压力。即,由于脉冲阀30的存在,能够简便地调节真空室5内的压力。与实施例1相比,虽然是暂时的,通过阀的开闭使真空室5内的压力上升,因此对泵4产生了负担,提高了泵4的更换频度。另外,还需要对脉冲阀30进行控制的电路、电源,与实施例1相比结构变得复杂。
测量流程与实施例1大致相同。在将减压了的管形瓶1设置到装置中后,接通势垒放电的电源,通过使脉冲阀30开闭来将顶空气体导入到离子化室。
图8表示在实施例2的结构中,将甲氧非那明(MP)(methoxyphenamine)以1ppm的浓度溶解于60%K2CO3水溶液中进行测量的结果。图8(A)是将管形瓶减压到25000Pa左右的情况的结果,(B)是没有对管形瓶进行减压的情况的结果。在任意的情况下都在m/z180的位置确认了MP的[M+H]+,但在对管形瓶进行了减压的情况下,峰值强度约为4倍大。
如图7所示,也可以将泵2与离子化室3连接,将脉冲阀30设置在离子化室3与真空室5之间。在该情况下,在脉冲阀30为闭状态期间,顶空气体始终从管形瓶1流入到离子化室3。在将脉冲阀30设为开状态时,对样本进行离子化,将所生成的离子导入到真空室5内。也可以没有管13而直接将管形瓶1与离子化室3连接起来。
在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14。
实施例3
图9是表示本发明的质量分析装置的一个实施例的结构图。等离子体10的压力条件和电源51的输出电压都与实施例1一样。与实施例1、2不同,将管形瓶用泵2不连接到管形瓶1,而连接到管13。与实施例1、2同样地,管形瓶1被减压,样本在顶空气体中的比例提高。由于将与管形瓶1连接的配管减少到一个,所以管形瓶1的结构被简化,能够期待降低成本。另一方面,由于在管13内始终持续流过新鲜的气体,所以有吸附变得激烈的缺点。
在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14。
实施例4
图10是表示本发明的质量分析装置的一个实施例的结构图。等离子体10的压力条件和电源51的输出电压都与实施例1一样。与实施例1、2不同,不将泵与管形瓶1连接。图11表示实施例4的测量流程。直到向管形瓶1注入样本并密闭为止都与实施例1、2相同。在实施例4中不用泵对管形瓶1进行减压,而是直接使内压为大气压地设置到装置中。然后,持续打开脉冲阀30一定时间或者脉冲地多次进行开闭,由此,从真空室5侧对管形瓶1进行减压。能够根据安装在真空室5上的压力计的数值来推测管形瓶1的压力。在从样本溶液产生的流量与泵的排气量均衡时,压力成为恒定。由于从样本溶液产生的流量依存于溶液的温度,所以按照溶液的温度对成为恒定的压力进行调整。在压力恒定后,接通势垒放电的电源,开始进行质量分析。
与实施例1、2相比,不需要用于对管形瓶1进行减压的泵、配管,因此,装置小型化。另外,也不需要对管形瓶1减压后设置到装置中的工序,由测量者自身进行的测量流程变得简单。但是,在管形瓶1内成为大气压的状态下设置到装置中来使脉冲阀30进行开闭,因此,大流量的顶空气体被导入到真空室5内,有可能对泵产生损害。另外,还有可能由于大量的气体而污染离子化室3。
实施例5
图12是表示本发明的质量分析装置的一个实施例的结构图。等离子体10的压力条件也与实施例1一样。与实施例1~3不同,在离子化室3内配置2个放电电极,向电极之间施加DC电压,由此不经由电介体而发生辉光放电(glowdischarge),由此产生等离子体10。另外,通过在电极与电源51之间加入限制电阻50(currentlimitingresister),限制电流使放电平缓。在经由电介体进行放电的情况下需要施加交流电压,但在不经由电介体的辉光放电的情况下只要施加DC电压即可,电源的设计简单。另一方面,由于电极处于离子化室3内部,所以有可能被污染,实施例1的鲁棒性高。在本实施例中也可以加入实施例2所示那样的脉冲阀30。另外,也可以如实施例4那样不使用泵而从真空室5侧对管形瓶进行减压。在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14。
实施例6
图13是表示本发明的质量分析装置的一个实施例的结构图。在离子化室3中插入电喷射离子化用探针60(probeforelectrosprayionization)。在连接有高压电源52的电喷射离子化用探针60与设置在离子化室3内的相对电极40之间产生1~10kV的电位差。通过从连接有用于输送溶液的泵70的电喷射离子化用探针60喷出溶液来产生带电液滴(chargeddroplet)。通过管13喷雾的顶空气体中的分子与带电液滴碰撞并产生离子。离子通过离子化室3与真空室5的压力差而被导入到真空室5。在电喷射离子化法(electrosprayionization)中,与势垒放电、辉光放电离子化法相比,容易产生多价离子(multiply-chargedion)。因此,容易对高质量离子进行质量分析。在本方法中,如果离子化室3的压力变得过低,则带电液滴不从周围的气体获得热能量,带电液滴无法分裂、气化,离子化效率降低。因此,设为能够将离子化效率和离子向真空室5的导入效率都维持高水平的离子化室3的压力。具体地说,100~5000Pa是良好的。
需要将用于产生带电液滴的溶液送入电喷射离子化用探针60的泵70,构造变得复杂。另外,为了稳定地产生带电液滴,也可以将氮气那样的惰性气体作为辅助气体导入到电喷射离子化用探针60的同心圆形状的喷出口。在图13中,电喷射离子化用探针60处于相对于管13垂直的位置,但也可以对位置关系进行调节使得灵敏度变得最大。
在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14、实施例2所示的脉冲阀30。
实施例7
图14是表示本发明的质量分析装置的一个实施例的结构图。在本实施例中,从离子化室3的外部照射激光102,通过激光离子化法(laserionization)使样本离子化。如果使用与样本的吸收波长接近的波长的激光,则离子化效率提高。另一方面,需要激光用的光源101和光学系统,装置整体的结构变得复杂。另外,需要精密地对激光102的照射位置等进行调整。
在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14、实施例2所示的脉冲阀30。
实施例8
图15是表示本发明的质量分析装置的一个实施例的结构图。在本实施例中,使用以下这样的电子离子化法(Electronionization:EI),即通过金属丝74产生热电子(thermalelectron),通过在用与电源54连接的引出电极75使电子加速到50~100eV的状态下与试样气体碰撞来对试样进行离子化。所生成的离子通过因与电源55连接的离子加速透镜76而产生的电场被输送到质量分析部。在EI中,由于只用小型的EI用的DC电源53就能够实现,所以容易对装置进行小型化。另一方面,在离子化时,容易使分子裂解,谱(spectrum)变得复杂,难以进行分析。
在本实施例中,也可以应用实施例1所示的用于对管形瓶1进行加热的加热器14、实施例2所示的脉冲阀30。

Claims (14)

1.一种质量分析装置,其特征在于,包括:
封入试样水溶液的试样容器;
离子化室,其与上述试样容器连接,并且具备取入包括由存在于上述试样容器内的试样水溶液气化而产生的试样分子和水分子的试样气体并使其离子化的离子源,所述离子源为通过放电而产生等离子体的离子源,该离子化室的压力为上述试样容器内压以下;
真空室,其与上述离子化室连接,并且具有对离子化后的试样进行分析的质量分析部;以及
对上述试样容器内进行减压的单元,
上述质量分析装置对封入了试样的试样容器的内部进行减压,并且利用放电等离子体通过离子分子反应使在试样容器内产生的试样气体软离子化。
2.根据权利要求1所述的质量分析装置,其特征在于,
对上述试样容器内进行减压的单元是与上述试样容器连接的泵。
3.根据权利要求1所述的质量分析装置,其特征在于,
对上述试样容器内进行减压的单元是与上述真空室连接的泵。
4.根据权利要求1所述的质量分析装置,其特征在于,
对上述试样容器内进行减压的单元将上述试样容器减压到50,000Pa以下。
5.根据权利要求1所述的质量分析装置,其特征在于,
对上述试样容器内进行减压的单元将上述试样容器减压到30,000Pa以下。
6.根据权利要求1所述的质量分析装置,其特征在于,
对上述试样容器内进行减压的单元将上述试样容器减压到10,000Pa以下。
7.根据权利要求1所述的质量分析装置,其特征在于,
还具备对上述试样容器进行加热的单元。
8.根据权利要求1所述的质量分析装置,其特征在于,
在上述试样容器与上述真空室之间具备对试样气体的导入进行控制的开闭机构。
9.根据权利要求1所述的质量分析装置,其特征在于,
上述试样容器与上述离子化室通过配管连接,对上述试样容器内进行减压的单元是与上述配管连接的泵。
10.根据权利要求1所述的质量分析装置,其特征在于,
上述离子源由隔着由电介体形成的上述离子化室的一部分而设置的电极对和电源形成,基于通过向上述电极对施加电压而产生的电介体势垒放电,产生放电等离子体,由此来生成离子。
11.根据权利要求1所述的质量分析装置,其特征在于,
上述离子源由设置在上述离子化室的内部的电极对和电源形成,基于通过向上述电极对施加电压而产生的辉光放电,产生放电等离子体,由此来生成离子。
12.一种质量分析方法,使用了封入试样水溶液的试样容器、与上述试样容器连接并且具备利用通过放电而产生的等离子体对由上述试样水溶液气化而来的试样分子进行离子化的离子源的离子化室、与上述离子化室连接并且具备对离子化后的试样进行分析的质量分析部的真空室,所述质量分析方法的特征在于,
包括以下工序:
对上述真空室的压力进行减压的工序;
对上述试样容器的压力进行减压的工序;
将存在于上述试样容器内的试样气体取入到上述离子化室内来使其离子化的工序;以及
在上述质量分析部中对上述离子化了的试样进行分析的工序,
对封入了试样的试样容器的内部进行减压,并且利用放电等离子体通过离子分子反应使在试样容器内产生的试样气体软离子化。
13.根据权利要求12所述的质量分析方法,其特征在于,
对上述试样容器的压力进行减压的工序通过与上述试样容器连接的泵进行减压。
14.根据权利要求12所述的质量分析方法,其特征在于,
还使用了设置在上述试样容器与上述真空室之间的对上述试样的导入进行控制的开闭机构,
在上述开闭机构为闭的状态下,进行对上述真空室的压力减压的工序,使上述开闭结构从闭的状态成为开的状态,然后进行对上述试样容器的压力减压的工序。
CN201210273399.1A 2011-08-26 2012-08-02 质量分析装置及质量分析方法 Active CN102956433B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011184266A JP5764433B2 (ja) 2011-08-26 2011-08-26 質量分析装置及び質量分析方法
JP2011-184266 2011-08-26

Publications (2)

Publication Number Publication Date
CN102956433A CN102956433A (zh) 2013-03-06
CN102956433B true CN102956433B (zh) 2016-01-27

Family

ID=46679153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210273399.1A Active CN102956433B (zh) 2011-08-26 2012-08-02 质量分析装置及质量分析方法

Country Status (4)

Country Link
US (1) US9543135B2 (zh)
EP (1) EP2562787B1 (zh)
JP (1) JP5764433B2 (zh)
CN (1) CN102956433B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497615B2 (ja) * 2010-11-08 2014-05-21 株式会社日立ハイテクノロジーズ 質量分析装置
DE102013201499A1 (de) * 2013-01-30 2014-07-31 Carl Zeiss Microscopy Gmbh Verfahren zur massenspektrometrischen Untersuchung von Gasgemischen sowie Massenspektrometer hierzu
JP5858106B2 (ja) * 2013-08-09 2016-02-10 ダイキン工業株式会社 含フッ素表面処理剤を含有する物品の分析方法
CN104465296B (zh) * 2013-09-13 2017-10-31 岛津分析技术研发(上海)有限公司 离子传输装置以及离子传输方法
CN106687807B (zh) * 2014-09-04 2018-09-04 莱克公司 用于定量分析的基于受调节的辉光放电的软电离
TW201634219A (zh) 2015-01-15 2016-10-01 Mks儀器公司 聚合物複合物真空組件
CN106158573B (zh) * 2015-03-31 2017-11-14 合肥美亚光电技术股份有限公司 一种用于质谱仪器的进样离子化系统
DE102015208250A1 (de) * 2015-05-05 2016-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. On-line Massenspektrometer zur Echtzeiterfassung flüchtiger Komponenten aus der Gas- und Flüssigphase zur Prozessanalyse
WO2017154153A1 (ja) * 2016-03-09 2017-09-14 株式会社島津製作所 質量分析装置及び該装置を用いた生体試料の分析方法
EP3526811A4 (en) * 2016-10-14 2020-06-17 DH Technologies Development Pte. Ltd. METHODS AND SYSTEMS FOR INCREASING THE SENSITIVITY OF DIRECT SCAN INTERFACES FOR MASS SPECTROMETRIC ANALYSIS
US10468236B2 (en) * 2017-06-02 2019-11-05 XEI Scienctific, Inc. Plasma device with an external RF hollow cathode for plasma cleaning of high vacuum systems
EP3692563A4 (en) * 2017-10-01 2021-07-07 Space Foundry Inc. MODULAR PRINT HEAD ASSEMBLY FOR PLASMA JET PRINTING
DE102018216623A1 (de) 2018-09-27 2020-04-02 Carl Zeiss Smt Gmbh Massenspektrometer und Verfahren zur massenspektrometrischen Analyse eines Gases
CN109243964B (zh) * 2018-10-18 2021-02-09 株式会社岛津制作所 介质阻挡放电离子源、分析仪器及电离方法
TWI838493B (zh) * 2019-03-25 2024-04-11 日商亞多納富有限公司 氣體分析裝置
DE102020209157A1 (de) * 2020-07-21 2022-01-27 Carl Zeiss Smt Gmbh Restgasanalysator und EUV-Lithographiesystem mit einem Restgasanalysator
US11430643B2 (en) 2020-09-29 2022-08-30 Tokyo Electron Limited Quantification of processing chamber species by electron energy sweep

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454862B1 (en) * 1998-11-05 2002-09-24 Matsushita Electric Industrial Co., Ltd. Fine-particle classification apparatus and functional material production apparatus
WO2007042746A2 (en) * 2005-10-11 2007-04-19 Gv Instruments Ion source preparation system
EP2254142A2 (en) * 2009-05-19 2010-11-24 Battelle Memorial Institute Low pressure electrospray ionization system and process for effective transmission of ions
CN101937822A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 掺杂气发生装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008388A (en) * 1974-05-16 1977-02-15 Universal Monitor Corporation Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds
JPS5290094U (zh) * 1975-12-27 1977-07-05
JPS6041737B2 (ja) * 1977-02-03 1985-09-18 電気化学工業株式会社 ホウ素の同位体比測定方法
JPS583592B2 (ja) * 1978-09-08 1983-01-21 日本分光工業株式会社 質量分析計への試料導入方法及び装置
US4551624A (en) * 1983-09-23 1985-11-05 Allied Corporation Ion mobility spectrometer system with improved specificity
DE3887922T2 (de) 1987-05-29 1994-05-26 Martin Marietta Energy Systems Entladungsionisierungsquelle zum Analysieren der Atmosphäre.
IL90970A (en) 1989-07-13 1993-07-08 Univ Ramot Mass spectrometer method and apparatus for analyzing materials
GB9000547D0 (en) * 1990-01-10 1990-03-14 Vg Instr Group Glow discharge spectrometry
JPH0753250Y2 (ja) * 1990-03-05 1995-12-06 雅夫 井上 共鳴セル内への試料導入装置
US5175431A (en) * 1991-03-22 1992-12-29 Georgia Tech Research Corporation High pressure selected ion chemical ionization interface for connecting a sample source to an analysis device
JPH05251038A (ja) * 1992-03-04 1993-09-28 Hitachi Ltd プラズマイオン質量分析装置
US5191211A (en) * 1992-03-23 1993-03-02 Bridgestone/Firestone, Inc. Thermal desorption method for separating volatile additives from vulcanizable rubber
KR930021034A (ko) * 1992-03-31 1993-10-20 다니이 아끼오 플라즈마발생방법 및 그 발생장치
JP2852838B2 (ja) * 1992-09-10 1999-02-03 セイコーインスツルメンツ株式会社 誘導結合プラズマ質量分析装置
US5426300A (en) * 1993-09-17 1995-06-20 Leybold Inficon, Inc. Portable GCMS system using getter pump
US5457316A (en) * 1994-12-23 1995-10-10 Pcp, Inc. Method and apparatus for the detection and identification of trace gases
US6002127A (en) * 1995-05-19 1999-12-14 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
JPH08329881A (ja) * 1995-05-30 1996-12-13 Shimadzu Corp 試料導入装置
CA2210766C (en) * 1996-07-19 2001-02-06 The University Of Nottingham Apparatus and methods for the analysis of trace constituents in gases
DE19713194C2 (de) * 1997-03-27 1999-04-01 Hkr Sensorsysteme Gmbh Verfahren und Anordnung zum Erkennen von Eigenschaften einer Probe auf der Basis der Massenspektroskopie
US5917185A (en) * 1997-06-26 1999-06-29 Iowa State University Research Foundation, Inc. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry
US5896196A (en) * 1997-08-15 1999-04-20 Lockheed Martin Energy Research Corporation Plasma mixing glow discharge device for analytical applications
DE69829398T2 (de) * 1997-09-12 2006-04-13 Analytica of Branford, Inc., Branford Mehrprobeneinführungs-massenspektrometrie
JP3904322B2 (ja) * 1998-04-20 2007-04-11 株式会社日立製作所 分析装置
US6265717B1 (en) * 1998-07-15 2001-07-24 Agilent Technologies Inductively coupled plasma mass spectrometer and method
US6257835B1 (en) * 1999-03-22 2001-07-10 Quantachrome Corporation Dry vacuum pump system for gas sorption analyzer
US6649907B2 (en) * 2001-03-08 2003-11-18 Wisconsin Alumni Research Foundation Charge reduction electrospray ionization ion source
US6627875B2 (en) * 2001-04-23 2003-09-30 Beyond Genomics, Inc. Tailored waveform/charge reduction mass spectrometry
US6747274B2 (en) * 2001-07-31 2004-06-08 Agilent Technologies, Inc. High throughput mass spectrometer with laser desorption ionization ion source
AU2003242985A1 (en) 2002-08-14 2004-03-03 Dr. Y. S. Parmar University Of Horticulture And Forestry A process for the estimation of volatile substances
US7256396B2 (en) * 2005-06-30 2007-08-14 Ut-Battelle, Llc Sensitive glow discharge ion source for aerosol and gas analysis
CN103954698B (zh) 2005-10-06 2017-01-18 Sgs瑞士通用公证行股份有限公司 利用气相色谱仪分析分离的汽相和液相的组成
US8003936B2 (en) * 2007-10-10 2011-08-23 Mks Instruments, Inc. Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
EP2253009B1 (en) * 2008-02-12 2019-08-28 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
JP2011027557A (ja) 2009-07-27 2011-02-10 Tokyo Metropolitan Univ 試料の気液平衡化装置
US20140190245A1 (en) 2011-06-22 2014-07-10 1St Detect Corporation Reduced pressure liquid sampling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454862B1 (en) * 1998-11-05 2002-09-24 Matsushita Electric Industrial Co., Ltd. Fine-particle classification apparatus and functional material production apparatus
WO2007042746A2 (en) * 2005-10-11 2007-04-19 Gv Instruments Ion source preparation system
EP2254142A2 (en) * 2009-05-19 2010-11-24 Battelle Memorial Institute Low pressure electrospray ionization system and process for effective transmission of ions
CN101937822A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 掺杂气发生装置

Also Published As

Publication number Publication date
JP5764433B2 (ja) 2015-08-19
EP2562787A3 (en) 2013-05-22
JP2013045730A (ja) 2013-03-04
EP2562787B1 (en) 2018-03-28
US9543135B2 (en) 2017-01-10
EP2562787A2 (en) 2013-02-27
US20130048851A1 (en) 2013-02-28
CN102956433A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
CN102956433B (zh) 质量分析装置及质量分析方法
JP6588118B2 (ja) イオン生成と、不連続の大気インターフェースの周期との同期
JP5771458B2 (ja) 質量分析装置及び質量分析方法
JP5497615B2 (ja) 質量分析装置
US8003935B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole mass spectrometer
US8003936B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
JPWO2015033663A1 (ja) ハイブリッドイオン源及び質量分析装置
CN103776818A (zh) 基于辉光放电的等离子体发生装置及构成的光谱检测系统
US10854440B2 (en) Ion source
US9595429B2 (en) Method and system for atomizing sample liquid using ultrasonic transducer to be analyzed by mass spectrometry
US20190006163A1 (en) Ionization mass spectrometry method and mass spectrometry device using same
CN102683152B (zh) 一种质子转移质谱离子源
JP6470852B2 (ja) イオン化装置
US8835838B2 (en) Method and apparatus for analysis and ion source
Yan et al. Ion transmission in an electrospray ionization‐mass spectrometry interface using an S‐lens
CN111929290A (zh) 钨丝电热蒸发-大气压辉光放电原子发射光谱装置
JP2015031650A (ja) 質量分析方法、イオン生成装置及び質量分析システム
JP5759036B2 (ja) 質量分析装置
CN108091546A (zh) 一种放电气体辅助的无窗射频灯质谱电离源
Chui Metastable fragment production following electron impact on small molecules and atomic oxygen
CN104201084A (zh) 一种封闭型分子加合同位素离子发生器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant