CN102943231A - 铝及铝合金表面三段气体氮化方法 - Google Patents

铝及铝合金表面三段气体氮化方法 Download PDF

Info

Publication number
CN102943231A
CN102943231A CN2012104235651A CN201210423565A CN102943231A CN 102943231 A CN102943231 A CN 102943231A CN 2012104235651 A CN2012104235651 A CN 2012104235651A CN 201210423565 A CN201210423565 A CN 201210423565A CN 102943231 A CN102943231 A CN 102943231A
Authority
CN
China
Prior art keywords
zinc
time
nitriding
ammonia
furnace temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104235651A
Other languages
English (en)
Other versions
CN102943231B (zh
Inventor
卢章平
纪嘉明
吴晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201210423565.1A priority Critical patent/CN102943231B/zh
Publication of CN102943231A publication Critical patent/CN102943231A/zh
Application granted granted Critical
Publication of CN102943231B publication Critical patent/CN102943231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明涉及铝及铝合金表面三段气体氮化方法。包括1.去除表面氧化膜;2.表面氮化处理两步骤,步骤1依次包含下述分步骤:预处理;第一次浸锌;水洗;退锌;第二次浸锌;水洗吹干。步骤2依次包含下述分步骤:排除氧气,炉温升至300℃,氨分解率控制在10%以下;第一次升温至560~590℃;第一次渗氮,炉温560~590℃;第二次升温至620~640℃;第二段渗氮,炉温620~640℃;降温,炉温降至570~600℃;第三段渗氮,炉温570~600℃;退氮,炉温570~600℃。优点是:可有效消除铝及铝合金表面致密氧化膜,有利于氮原子渗入,并可采用普通气体渗氮炉进行渗氮处理,成本低,操作简单,适应性广,渗层质量好。

Description

铝及铝合金表面三段气体氮化方法
 
技术领域
    本发明涉及一种铝合金的热处理工艺,尤其涉及一种铝及铝合金的表面二段气体氮化方法。
背景技术
铝及铝合金在工程结构和机器制造特别是汽车行业的应用十分广泛,因为他们具有比强度高, 比重小,在不降低安全性和稳定性的前提下,可以减轻工程结构和机器整机的重量,同时铝及铝合金还具有良好的机械加工性。但随着工业技术的发展,铝及铝合金较低的硬度、较低的耐磨性以及耐蚀性使它已经不能胜任构件之间高的相对运动、高质流和高腐蚀等苛刻服役条件的要求。
目前常用的铝及铝合金表面强化手段有:阳极氧化(硬质阳极氧化、微弧氧化)、激光和电子束合金化,离子溅射,表面镀硬铬和一些复合处理等方法。但是阳极氧化(硬质阳极氧化)形成的氧化膜易产生热裂纹,降低了防腐蚀效果,同时铝及铝合金氧化层之间硬度差较大,在高应力负荷工作有条件,会出现氧化层脱落现象。而其他强化方法均较昂贵,不适应批量生产。
近年来通过对铝及铝合金进行氮化处理,在铝表面形成高硬度铝氮化物层来提高铝及其合金的硬度和耐磨性已经越来越引起人们的兴趣。
但是由于铝的化学性质很活泼, 纯铝及铝合金表面都存在稳定性很好的自然氧化膜。根据环境中水分含量, 氧化膜的厚度最厚可达0.1μm 左右, 严重阻碍了氮原子向铝基体中的扩散,这也是铝及铝合金实现表面渗氮的难点,所以一般认为传统的渗氮工艺很难在铝及铝合金表面实现渗氮。
目前主要研究和采用的铝及铝合金渗氮工艺为辉光放电等离子体渗氮。
常规的直流辉光放电等离子体渗氮工艺一般采用双极系统,工件为阴极,真空容器为阳极,在阴、阳极间加上直流电压,使气体辉光放电产生等离子体,正离子在外加偏压的作用下向阴极工件加速运动,与工件表面碰撞并渗入表面,完成渗氮的过程。
但是这种方法常常需要在渗氮前进行预溅射以消除氧化膜。同时温度较高,有的甚至达到650℃,引起铝合金局部熔化以及由于AlN的电阻很高,在普通的直流辉光放电渗氮时,随AlN层的增厚,为维持放电过程,必须改变工艺参数,因而增加了渗氮难度等。
为了获得更好氮化效果,很多研究工作者对工艺和装置进行了改进,先后提出了增强等离子体离子渗氮、激光诱导等离子体渗氮、ECR(electron cyclotron resonance)微波等离子体渗氮、射频(高频)等离子体渗氮等,但上述铝及其铝合金的氮化工艺的共同点是:设备要求及生产成本高、操作复杂难控制,对于大尺寸和结构复杂的工件很难得到理想均匀的氮化层。
发明内容
本发明的目的在于克服现有技术之不足,提供一种氮化层均匀可控,成本低,且工艺简单易行的铝及铝合金氮化方法。所述铝及铝合金表面二段气体氮化方法具体步骤如下:
  1)去除表面氧化膜
    a.预处理并清洗铝及铝合金工件;
b.第一次浸锌,在室温环境下将经清洗的所述工件浸入浸锌溶液中进行第一次浸锌,时间50~70s;
c.水洗,用水清洗经第一次浸锌后的所述工件;
d.退锌,将经水洗后的所述工件在室温下浸入硝酸HNO3 水溶液中退锌;
e.第二次浸锌,在室温环境下将经退锌的所述工件浸入浸锌溶液中进行第二次浸锌,时时间25~35s;
f.水洗吹干,用水清洗经第二次浸锌后的所述工件并吹干或晾干;
  2)表面氮化
    a.排除氧气:将经上述去除表面氧化膜的所述工件置于渗氮炉内后,使炉温升至300℃并保持该温度,通入氨气以排除炉内氧气,直到氨分解率小于10%;
b.第一次升温:使炉温升至560~590℃,在升温过程中逐渐减少氨气流量,直到氨分解率达到15~25%;
c.第一段渗氮:保持炉温560~590℃,5~10小时,此过程保持氨分解率在10~25%; 
d.第二次升温,一段渗氮完成后,使炉温升至620~640℃,同时减少氨气流量,使此温度下的氨分解率达到35~55%;
e. 第二段渗氮:保持炉温620~640℃,8~20小时,此过程保持氨分解率在35~55%;
f.降温:将炉温降至570~600℃,并保持氨分解率在25~45%;
g.第三段渗氮:保持炉温570~600℃,10~20小时,保持氨分解率为25~45%;
h.退氮,保持炉温570~600℃,减少氨气流量,致使氨分解率至70~80%,此状态保持1.5~2小时。
所述浸锌溶液是按1升水溶解下列质量化合物的配比关系所得溶液,
氧化锌ZnO               10~30 g ,
         氢氧化钠NaOH            50~70g ,
         酒石酸钾钠KNaC4 H4O6    50 ~90g。
所述去除表面氧化膜步骤中的退锌过程所用硝酸HNO3 水溶液为1∶0.8~1∶1.1容积比 的水与硝酸HNO3 的混合溶液,所述工件浸入该溶液中的时间为6~12s。
所述去除表面氧化膜步骤中的预处理并清洗工件表面包含依次进行的化学除油、热水洗、冷水洗、酸浸蚀和水洗的分步骤。
所述表面氮化的排气步骤中,在所述工件置于渗氮炉内后,将炉子升温,在炉温升至300℃时开始通入氨气。
上述本发明技术方案产生如下有益效果:
1)经过浸锌处理后,可以有效去除铝及铝合金表面致密氧化物并阻止其再度形成,有利于氮原子的渗入;
2)采用普通气体渗氮炉或可进行渗氮处理的气体渗碳炉就可实现铝及铝合金渗氮,渗氮设备要求不高,生产成本低,操作简单易行;
3)适应性广,可以处理各种形状和尺寸的工件;
4)渗层质量好,工件所有表面能得到厚度均匀的氮化铝化合物层,且渗层厚度可控。
具体实施方式
    下面结合具体实施例对本发明的作进一步说明。
下述实施例都是在RQ3-35-9气体渗碳炉进行的。
实施例1
    工件材料为1050纯铝,其化学成分为铝Al 99.50%、 Si0.25%、 Cu0.05%、 Mg0.05%, 另有极少量Zn、Mn等。首先对该纯铝工件进行去除表面氧化膜处理,具体由下述步骤完成:
1)预处理,对纯铝工件表面依次进行化学除油、热水洗、冷水洗、酸浸蚀和水洗,其中化学除油、酸浸蚀按照现有一般工业纯铝表面处理方法进行处理,不再赘述。
2)第一次浸锌,先配制浸锌溶液,按1升水溶解下列质量化合物的配比关系进行配制:
氧化锌ZnO               10 g,
         氢氧化钠NaOH            50g,
酒石酸钾钠KNaC4 H4O6     50g,
在室温环境下(指5~35℃,下述相同)将上述经清洗的工件浸入配制好的浸锌溶液中进行第一次浸锌,浸入时间55s。
3)水洗,用水清洗经第一次浸锌后的所述工件。
4)退锌,先配制退锌溶液,按水与硝酸HNO3的容积比1:1进行配制,在室温状态下将上述经水洗后的工件浸入退锌溶液中,进行退锌,浸入时间为6s。
5)第二次浸锌,在室温环境下将经退锌的工件浸入浸锌溶液中进行第二次浸锌,时间25s;第二次浸锌溶液与第一次浸锌溶液相同,并且本实施例共用同一槽溶液。 
6)水洗吹干,用水清洗经第二次浸锌后的工件并吹干。
上述步骤完成后使工件表面致密的氧化层被去除,在铝金属表面得到一层极薄的锌覆盖层,以防止铝的氧化膜产生。接着对工件表面进行氮化处理,具体由下述步骤完成:
   1)排除氧气:先打开炉盖,将经上述去除表面氧化膜的工件置于所述的渗氮炉内后盖好炉盖,将炉子升温,在炉温升至300℃并保持该温度,通入氨气,通过氨气来排除炉内氧气,炉内空气排除状况可通过监控氨分解率获得,炉内空气越少氨分解率越小,反之氨分解率越大。本实施例的氨分解率控制在10%以下,对氨分解率控制是通过控制氨气流量来实现的。
2)第一次升温:使炉温升至560℃,在升温过程中逐渐减少氨气流量,将氨分解率控制在15%。
3)第一段渗氮:保持炉温560℃,5小时,此过程保持氨分解率在15%。
4)第二次升温:一段渗氮完成后,使炉温升至620℃,同时减少氨气流量,使此温度下的氨分解率达到35%;
5)第二段渗氮:保持炉温620℃,8小时,此过程保持氨分解率在35%;
6)降温:当二段渗氮完成后,将炉子温度降至570℃,并增加氨气流量,使炉子570℃时的氨分解率降低至25%;
7)第三段渗氮:保持炉温为570℃,渗氮时间为10小时,保持氨分解率为25%; 
10)退氮:保持炉子温度为570℃;减少氨气流量,使氨分解率提高至70%,在此状况下保持时间1.5小时;
8)退氮,保持炉温570℃,减少氨气流量,致使氨分解率至70%,此状态保持1小时。
上述步骤使工件的表面氮化处理完成,关掉炉子电源,使工件随炉冷却,在此过程中应保持炉内压力为正压,当炉子温度降为150℃时,打开炉门并取出工件,测得渗层深度为11μm,工件表面显微硬度为70.5HV0.1。
实施例2
工件材料为5050铝合金,其化学成分及含量(wt%)为:Si0.4、Fe0.7、Cu0.2、Mn1.1、Mg1.4、Zn0.25、其它0.15、余量为铝。首先对该铝合金工件进行去除表面氧化膜处理,具体由下述步骤完成:
1)预处理,对铝合金工件表面依次进行化学除油、热水洗、冷水洗、酸浸蚀和水洗,其中化学除油、酸浸蚀按照现有一般工业纯铝表面处理方法进行处理,不再赘述。
2)第一次浸锌,先配制浸锌溶液,按1升水溶解下列质量化合物的配比关系进行配制:
氧化锌ZnO               20 g ,
         氢氧化钠NaOH           60g ,
酒石酸钾钠KNaC4 H4O6    70g,
在室温环境下将上述经清洗的工件浸入配制好的浸锌溶液中进行第一次浸锌,浸入时间60s。
3)水洗,用水清洗经第一次浸锌后的所述工件。
4)退锌,先配制退锌溶液,按水与硝酸HNO3的容积比1:1.1进行配制,将上述经水洗后的工件浸入退锌溶液中,进行退锌,温度为室温,浸入时间为10s。
5)第二次浸锌,在室温环境下将经退锌的工件浸入浸锌溶液中进行第二次浸锌,时间30s;第二次浸锌溶液与第一次浸锌溶液相同,并且本实施例共用同一槽溶液。 
6)水洗吹干,用水清洗经第二次浸锌后的工件并烘干。
上述步骤完成后使工件表面致密的氧化层被去除,在铝金属表面得到一层极薄的锌覆盖层,以防止铝的氧化膜产生。接着对工件进行表面进行氮化处理,具体由下述步骤完成:
   1)排除氧气:先打开炉盖,将经上述去除表面氧化膜的工件置于所述的渗氮炉内后盖好炉盖,将炉子升温,在炉温升至300℃并保持该温度,通入氨气,通过氨气与炉内空气中的氧气作用来排除炉内氧气,炉内空气排除状况可通过监控氨分解率获得,炉内空气越少氨分解率越小,反之氨分解率越大。本实施例的氨分解率控制在10%以下,对氨分解率控制是通过控制氨气流量来实现的。
2)第一次升温:使炉温升至580℃,在升温过程中逐渐减少氨气流量,将氨分解率控制在20%。
3)第一段渗氮:保持炉温580℃,7小时,此过程保持氨分解率在20%。
4)第二次升温:一段渗氮完成后,使炉温升至630℃,同时减少氨气流量,使此温度下的氨分解率达到40%;
5)第二段渗氮:保持炉温630℃,12小时,此过程保持氨分解率在40%;
6)降温:当二段渗氮完成后,将炉子温度降至580℃,并增加氨气流量,使炉子580℃时的氨分解率降低至30%;
7)第三段渗氮:保持炉温为580℃,渗氮时间为15小时,保持氨分解率为30%; 
10)退氮:保持炉子温度为580℃;减少氨气流量,使氨分解率提高至75%,在此状况下保持时间1.7小时;
6)退氮,保持炉温630℃,减少氨气流量,致使氨分解率至75%,此状态保持1.5小时。
上述步骤使工件的表面氮化处理完成,关掉炉子电源,工件随炉冷却,在此过程中应保持炉内压力为正压,当炉子温度降为150℃时,打开炉门并取出工件,测得渗层深度为27μm,工件表面显微硬度为247HV0.1。
实施例3
工件材料为2A12铝合金,其化学成分及含量(wt%)为:Cu4.3、Mg1.6、Mn0.6、Si0.4、余量为铝。首先对该铝合金工件进行去除表面氧化膜处理,具体由下述步骤完成:
1)预处理,对铝合金工件表面依次进行化学除油、热水洗、冷水洗、酸浸蚀和水洗,其中化学除油、酸浸蚀按照现有一般工业纯铝表面处理方法进行处理,不再赘述。
2)第一次浸锌,先配制浸锌溶液,按1升水溶解下列质量化合物的配比关系进行配制:
氧化锌ZnO               30 g ,
         氢氧化钠NaOH           70g ,
酒石酸钾钠KNaC4 H4O6    90g,
在室温环境下将上述经清洗的工件浸入配制好的浸锌溶液中进行第一次浸锌,浸入时间70s。
3)水洗,用水清洗经第一次浸锌后的所述工件。
4)退锌,先配制退锌溶液,按水与硝酸HNO3的容积比1:0.8进行配制,将上述经水洗后的工件浸入退锌溶液中,进行退锌,温度为室温,浸入时间为12s。
5)第二次浸锌,在室温环境下将经退锌的工件浸入浸锌溶液中进行第二次浸锌,时间35s;第二次浸锌溶液与第一次浸锌溶液相同,并且本实施例共用同一槽溶液。 
6)水洗吹干,用水清洗经第二次浸锌后的工件并吹干。
上述步骤完成后使工件表面致密的氧化层被去除,在铝金属表面得到一层极薄的锌覆盖层,以防止铝的氧化膜产生。接着对工件进行表面进行氮化处理,具体由下述步骤完成:
   1)排除氧气:先打开炉盖,将经上述去除表面氧化膜的工件置于所述的渗氮炉内后盖好炉盖,将炉子升温,在炉温升至300℃并保持该温度,通入氨气,通过氨气与炉内空气中的氧气作用来排除炉内氧气,炉内空气排除状况可通过监控氨分解率获得,炉内空气越少氨分解率越小,反之氨分解率越大。本实施例的氨分解率控制在10%以下,对氨分解率控制是通过控制氨气流量来实现的。
2)第一次升温:使炉温升至590℃,在升温过程中逐渐减少氨气流量,将氨分解率控制在25%。
3)第一段渗氮:保持炉温590℃,10小时,此过程保持氨分解率在25%。
4)第二次升温:一段渗氮完成后,使炉温升至640℃,同时减少氨气流量,使此温度下的氨分解率达到55%;
5)第二段渗氮:保持炉温640℃,20小时,此过程保持氨分解率在55%;
6)降温:当二段渗氮完成后,将炉子温度降至600℃,并增加氨气流量,使炉子600℃时的氨分解率降低至45%;
7)第三段渗氮:保持炉温为600℃,渗氮时间为20小时,保持氨分解率为45%; 
10)退氮:保持炉子温度为600℃;减少氨气流量,使氨分解率提高至80%,在此状况下保持时间2小时;
4)退氮,保持炉温600℃,减少氨气流量,致使氨分解率至80%,此状态保持2小时。
上述步骤使工件的表面氮化处理完成,关掉炉子电源,使工件随炉冷却,在此过程中应保持炉内压力为正压,当炉子温度降为150℃时,打开炉门并取出工件,测得渗层深度为43.5μm,工件表面显微硬度为353HV0.1。
本发明绝不局限于上述实施例,依据本发明所述技术方案结合本领域现有技术手段可组合出更多的实施方案,这些均落入本发明所要保护技术方案的范围。此外本发明所用渗碳炉也不限于上述实施例所述的RQ3-35-9气体渗碳炉,其它类型气体渗氮炉或气体渗碳炉同样可按上述本发明所述步骤及工艺条件进行实施。

Claims (5)

1.铝及铝合金表面三段气体氮化方法,包括如下步骤:
  1)去除表面氧化膜
    a.预处理并清洗工件表面;
b.第一次浸锌,在室温环境下将经清洗的所述工件浸入浸锌溶液中进行第一次浸锌,时间50~70s;
c.水洗,用水清洗经第一次浸锌后的所述工件;
d.退锌,将经水洗后的所述工件在室温下浸入硝酸HNO3 水溶液中退锌;
e.第二次浸锌,在室温环境下将经退锌的所述工件浸入浸锌溶液中进行第二次浸锌,时间时间25~35s;
f.水洗吹干,用水清洗经第二次浸锌后的所述工件并吹干或晾干;
  2)表面氮化
    a.排除氧气:将经上述去除表面氧化膜的所述工件置于渗氮炉内后,使炉温升至300℃并保持该温度,通入氨气以排除炉内氧气,直到氨分解率小于10%;
b.第一次升温:使炉温升至560~590℃,在升温过程中逐渐减少氨气流量,直到氨分解率达到15~25%;
c.第一段渗氮:保持炉温560~590℃,5~10小时,此过程保持氨分解率在10~25%; 
d.第二次升温,一段渗氮完成后,使炉温升至620~640℃,同时减少氨气流量,使此温度下的氨分解率达到35~55%;
e. 第二段渗氮:保持炉温620~640℃,8~20小时,此过程保持氨分解率在35~55%;
f.降温:将炉温降至570~600℃,并保持氨分解率在25~45%;
g.第三段渗氮:保持炉温570~600℃,10~20小时,保持氨分解率为25~45%;
h.退氮,保持炉温570~600℃,减少氨气流量,致使氨分解率至70~80%,此状态保持1.5~2小时。
2.根据权利要求1所述的铝及铝合金表面二段气体氮化方法,其特征在于所述浸锌溶液是按1升水溶解下列质量化合物的配比关系所得溶液,
氧化锌ZnO               10~30 g ,
         氢氧化钠NaOH            50~70g ,
         酒石酸钾钠KNaC4 H4O6    50 ~90g。
3.根据权利要求1所述的铝及铝合金表面二段气体氮化方法,其特征在于所述去除表面氧化膜步骤中的退锌过程所用硝酸HNO3 水溶液为1∶0.8~1∶1.1容积比 的水与硝酸HNO3 的混合溶液,所述工件浸入该溶液中的时间为6~12s。
4.根据权利要求1所述的铝及铝合金表面二段气体氮化方法,其特征在于所述去除表面氧化膜步骤中的预处理过程包含依次进行的化学除油、热水洗、冷水洗、酸浸蚀和水洗的分步骤。
5.根据权利要求1所述的铝及铝合金表面的氮化方法,其特征在于所述表面氮化的排气步骤中,在所述工件置于渗氮炉内后,将炉子升温,在炉温升至300℃时开始通入氨气。
CN201210423565.1A 2012-10-30 2012-10-30 铝及铝合金表面三段气体氮化方法 Expired - Fee Related CN102943231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210423565.1A CN102943231B (zh) 2012-10-30 2012-10-30 铝及铝合金表面三段气体氮化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210423565.1A CN102943231B (zh) 2012-10-30 2012-10-30 铝及铝合金表面三段气体氮化方法

Publications (2)

Publication Number Publication Date
CN102943231A true CN102943231A (zh) 2013-02-27
CN102943231B CN102943231B (zh) 2015-07-08

Family

ID=47726213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210423565.1A Expired - Fee Related CN102943231B (zh) 2012-10-30 2012-10-30 铝及铝合金表面三段气体氮化方法

Country Status (1)

Country Link
CN (1) CN102943231B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887000A (zh) * 2016-06-08 2016-08-24 连云港江南精工机械有限公司 一种压铸机配件氮化热处理方法
CN112159951A (zh) * 2020-10-26 2021-01-01 杭州汽轮机股份有限公司 一种汽轮机钛合金叶片的防水蚀层的制备工艺
CN112992457A (zh) * 2021-02-09 2021-06-18 横店集团东磁股份有限公司 一种永磁材料及其制备方法
CN114875353A (zh) * 2022-04-27 2022-08-09 宁波同创强磁材料有限公司 一种高耐腐蚀烧结钕铁硼磁体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195193A (ja) * 1992-01-14 1993-08-03 Daido Sanso Kk ニッケル合金の窒化方法
CN1329181A (zh) * 2001-06-14 2002-01-02 上海交通大学 TiAl基合金的快速高温气体渗氮工艺
CN1706982A (zh) * 2005-05-03 2005-12-14 山东科技大学 一种钢铁工件低温气体渗氮方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195193A (ja) * 1992-01-14 1993-08-03 Daido Sanso Kk ニッケル合金の窒化方法
CN1329181A (zh) * 2001-06-14 2002-01-02 上海交通大学 TiAl基合金的快速高温气体渗氮工艺
CN1706982A (zh) * 2005-05-03 2005-12-14 山东科技大学 一种钢铁工件低温气体渗氮方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘生发: "《材料组织结构控制与性能测试》", 30 June 2011, 武汉理工大学出版社 *
苏静康: "铝及其合金压铸件装饰性镀金工艺", 《材料保护》 *
贺秀英等: "细长轴渗氮变形的控制", 《机械工人》 *
雷廷权: "《热处理工艺方法300种》", 31 December 1982, 中国农业机械出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887000A (zh) * 2016-06-08 2016-08-24 连云港江南精工机械有限公司 一种压铸机配件氮化热处理方法
CN112159951A (zh) * 2020-10-26 2021-01-01 杭州汽轮机股份有限公司 一种汽轮机钛合金叶片的防水蚀层的制备工艺
CN112992457A (zh) * 2021-02-09 2021-06-18 横店集团东磁股份有限公司 一种永磁材料及其制备方法
CN114875353A (zh) * 2022-04-27 2022-08-09 宁波同创强磁材料有限公司 一种高耐腐蚀烧结钕铁硼磁体的制备方法
CN114875353B (zh) * 2022-04-27 2024-03-19 宁波同创强磁材料有限公司 一种高耐腐蚀烧结钕铁硼磁体的制备方法

Also Published As

Publication number Publication date
CN102943231B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
CN102808210B (zh) 一种微弧氧化的表面处理方法及其制品
CN102925851B (zh) 铝及铝合金表面二段气体氮化方法
JP6806151B2 (ja) Snめっき鋼板
CN102943231B (zh) 铝及铝合金表面三段气体氮化方法
CN102234800A (zh) 促进剂为氯盐的铝合金稀土钝化液及其使用方法
JP6806152B2 (ja) Sn系合金めっき鋼板
CN103088384A (zh) 阀金属等离子体电解氧化表面处理方法
CN103993271B (zh) 一种提高马氏体耐热钢耐液态金属腐蚀的方法
CN100519840C (zh) 镁合金表面磷化处理方法
CN103160832A (zh) 铸铝件化学镀镍镀层退镀溶液及其退镀方法
CN102943230B (zh) 铝及铝合金表面的氮化方法
CN113122833B (zh) 一种铝合金钝化方法
TWI689633B (zh) Sn鍍敷鋼板及Sn鍍敷鋼板的製造方法
CN103789722B (zh) 一种显著提高齿轮耐蚀性的化学热处理方法
US20150197870A1 (en) Method for Plating Fine Grain Copper Deposit on Metal Substrate
JP2018135570A (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
CN102912286B (zh) 铝及铝合金液体氮化方法
CN102912285B (zh) 铝及铝合金二段液体氮化方法
CN111910146A (zh) 一种不降低防锈性能的奥氏体不锈钢硬化方法
WO2019144491A1 (zh) 一种压铸铝零件表面处理工艺
CN101892449B (zh) 纳米氧化铁诱导碳钢表面氮合金化的方法
JP4322726B2 (ja) 表面光沢に優れるステンレス鋼板の製造方法
CN101962791B (zh) 微弧氧化挂具的处理方法
JP2010209457A (ja) 半導体液晶製造装置用表面処理部材の製造方法
JPH09287098A (ja) 無機系塗膜との密着性に優れたオーステナイト系ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20161030