CN102909039A - 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法 - Google Patents

一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法 Download PDF

Info

Publication number
CN102909039A
CN102909039A CN2012103639817A CN201210363981A CN102909039A CN 102909039 A CN102909039 A CN 102909039A CN 2012103639817 A CN2012103639817 A CN 2012103639817A CN 201210363981 A CN201210363981 A CN 201210363981A CN 102909039 A CN102909039 A CN 102909039A
Authority
CN
China
Prior art keywords
silver
titanium dioxide
silver bromide
preparation
bromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103639817A
Other languages
English (en)
Inventor
田宝柱
董荣芳
李艺茹
张金龙
王婷婷
杨钒
熊天庆
陈星�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN2012103639817A priority Critical patent/CN102909039A/zh
Publication of CN102909039A publication Critical patent/CN102909039A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法。所述催化剂核由均一的立方体溴化银及其表面原位形成的纳米银构成,壳由二氧化钛包覆层构成。其制备步骤如下:(1)在高分子保护剂存在下,采用双注沉淀法,制备立方体溴化银微晶;(2)在高分子保护剂存在下,通过水热法在溴化银表面包覆二氧化钛;(3)使用紫外灯对制备的二氧化钛/溴化银进行光还原处理,即可得到二氧化钛/银/溴化银核壳结构光催化剂。与现有方法相比,本发明具有制备过程简单、催化剂形貌可控、有效避免溴化银团聚和光腐蚀等优点。本发明所制备的催化剂通过溴化银及纳米银等离子共振效应吸收可见光,高效降解染料等有机污染物。

Description

一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法
技术领域
本发明涉及一种可应用于水中污染物降解以及光解水制氢的光催化材料及其制备方法,属于光催化技术领域。 
背景技术
进入21世纪,全球环境污染和能源危机问题日益突出,已严重威胁到人类的生存和发展,更成为制约世界各国可持续发展的瓶颈。如何解决日益严重的环境污染和能源短缺问题,已成各国政府普遍关注并亟待解决的头等大事。 
自20世纪70年代Fujishima和Honda发现在n型半导体二氧化钛(二氧化钛)电极上光解水制氢以来,半导体光催化技术引起了广大研究者的极大关注,并有望在解决日益严重的环境污染和能源危机中发挥关键作用。在环境污染物治理方面,半导体光催化材料可以利用太阳光将水体和大气中的绝大多数有机污染物降解为无毒无害的二氧化碳和水;在解决能源危机方面,半导体光催化材料可以利用太阳光光解水制备氢气,作为不产生污染的清洁能源,满足人类的能源需求。此外,半导体材料还可以用于太阳能电池材料,将光能转化为电能。 
纳米二氧化钛具有光化学性能稳定、无二次污染和价廉易得等优点,被认为是最具应用前景的光催化材料之一。然而,二氧化钛的禁带宽度(3.2eV)决定了其只能吸收400nm以下的紫外光,而到达地球表面的太阳光谱中紫外光仅占3~5%,这就造成了二氧化钛对太阳光的利用效率极低,并且其光量子效率低,存在严重复合,这都阻碍了其在实际中的应用。 
为了提高二氧化钛对太阳光的利用效率,一方面研究者应用金属掺杂、非金属掺杂、染料敏化、复合半导体等改性措施来拓展二氧化钛对可见光的响应范围;另一方面,也有一些研究工作围绕非二氧化钛的窄带隙光催化材料展开;近几年,利用贵金属的等离子共振效应来拓展光催化材料对可见光的光响应,又成为新的研究热点。据 J.Am.Chem.Soc.2008,130:1676报道,Awazu等将二氧化钛沉积在包裹银纳米粒子的氧化硅涂层上,制备了基于银纳米粒子等离子体共振的新型光催化薄膜,该催化薄膜在近紫外光下,降解亚甲基蓝的速度比单独二氧化钛提高了5倍。又据中国专利CN101279274报道,黄柏标等用浓氢溴酸置换钼酸银得到溴化银,再将得到的溴化银与硝酸银溶液混合在谷氨酸的协助下水热回流处理,制备了一种基于银纳米粒子等离子体共振效应的银/溴化银(银/溴化银)光催化材料,可以高效利用可见光降解有机物。但上述制备方法存在的缺陷是制备过程复杂,反应时间长,所制备的银/溴化银光催化材料没有规则的形貌。最近,Langmuir 2010,26(24),18723-18727报道,耿保友等人向含有CTAB的硝酸银溶液滴加氨水,然后混合物在120℃高温处理8小时,再通过光还原处理得到了微球形银/溴化银光催化材料。此方法也存在制备过程复杂,反应过程需要高温的缺陷。同时,此方法也难以制备出均一的银/溴化银光催化材料。另一方面,制备出的银/溴化银光催化材料存在团聚分散性差等问题,因而也有研究者将稳定性能高廉价易得的二氧化钛与具有高可见光吸收的等离子银/溴化银光催化材料结合起来,制备复合半导体。据J.Mater.Chem.,2011,21,18067报道,李新勇等通过电化学阳极氧化技术和光辅助浸渍法将银/溴化银纳米颗粒沉积到二氧化钛纳米管的内外层得到银/溴化银修饰的二氧化钛纳米管,提高了溴化银的分散性和稳定性,但通过沉积沉淀法得到的银/溴化银与二氧化钛的复合半导体,溴化银仍暴露在外,不可避免地存在光腐蚀、晶粒粗化和二次水解等问题。 
发明内容
本发明针对目前银/溴化银光催化材料的制备方法存在工艺复杂、制备周期长、反应过程需要高温、得到的银/溴化银无规则形貌且均一性差、易团聚的缺陷;二氧化钛与银/溴化银复合半导体的制备方法单一,基本采用沉积一沉淀法将溴化银沉积到二氧化钛材料上,此法得到的复合半导体中的溴化银一方面无规则形貌,另一方面其仍暴露在外存在光腐蚀、晶粒粗化等问题,提出一种低温、快速制备形貌规则均一核壳结构二氧化钛/银/溴化银光催化剂的方法。该方法制备的光催化剂可以利用光还原过程中原位形成的银纳米粒子响应可见光,实现有机污染物的高效降解。 
本发明所述的二氧化钛/银/溴化银核壳结构光催化剂核由立方体溴化银和其表面原位形成的银纳米粒子构成,壳由二氧化钛立方包覆层构成,纳米银粒子重量占催化 剂总重量的4~8%。所述催化剂的制备方法,包括以下步骤: 
(1)采用双注沉淀法制备立方体溴化银微晶。在高分子保护剂存在下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,并精确控制反应温度、反应过程的pBr值。硝酸银溶液和溴化钾溶液注入结束后,再进行一定时间的物理成熟。通过以上方法,可得到均一的立方体溴化银微晶。 
(2)采用水热法在溴化银表面包覆二氧化钛壳层。在高分子保护剂存在下,将硫酸钛加入到溴化银微晶乳剂中,控制硫酸钛的加入量和水热温度,即可得到核壳立方结构二氧化钛/溴化银复合半导体材料。 
(3)将核壳结构二氧化钛/溴化银分散于水溶液中,用紫外光对其进行光还原处理,使二氧化钛与溴化银界面间原位形成银纳米粒子。 
步骤(1)中,所述的高分子保护剂可选明胶、聚乙烯吡咯烷酮或聚乙烯醇,优选为明胶。反应过程的pBr值为2.5~4.8,优选为3.8;反应温度为40~90℃,优选为85℃;物理成熟时间为0.2~1小时,优选为0.5小时。 
步骤(2)中,水热法制备二氧化钛/溴化银复合半导体中,硫酸钛的加入量按二氧化钛包覆层厚度计算,一般为0.02~0.10μm,优选为0.06μm。硫酸钛的水解温度为大于30℃,优选为采用从30℃逐渐升温至80℃的方法,水热温度优选为120℃。 
步骤(3)中可采用高压汞灯、黑光灯或其它可产生紫外线的光源,优选高压汞灯(100~1000W)。 
本发明将双注沉淀制备技术、水热制备技术和光还原的方法相结合,可在温和的条件下,快速制备立方体溴化银微晶,然后水热法包覆二氧化钛,再经光还原得到核壳立方结构二氧化钛/银/溴化银光催化剂。与现有技术相比,本发明具有工艺简单、制备周期短、反应温度低等优点。本发明特别适合于制备均一的二氧化钛/银/溴化银核壳结构光催化剂。 
可见光光催化降解甲基橙反应: 
在20℃下,以500W的卤钨灯灯为可见光源(用滤光片滤去420nm以下的紫外线),在120mL玻璃反应管中加入100mL甲基橙溶液(20mg/L)和0.40g催化剂,光源与玻璃反应管的距离为10cm,暗反应吸附30分钟,使染料在催化剂表面达到吸附-脱附平衡后,开始进行光催化反应,每10分钟取样一次,离心分离后,用紫外-可见分光光度计测其吸光度,并计算残留甲基橙的浓度。 
附图说明
图1是实施例1得到产品的扫描电子显微镜图:(a)AgBr,(b)TiO2/AgBr,(c)TiO2/Ag/AgBr。 
图2是实施例1得到产品的X-射线衍射图。 
图3是实施例1得到产品光催化降解甲基橙的光催化活性图。 
具体实施方式
以下结合实例对本发明进行进一步的详述。 
实施例1 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例1所得产品的扫描电镜图如图1所示,从图1(a)中可以看出,所得溴化银微晶为均一的立方体形貌,从图1(b)中可以看出,立方溴化银颗粒外面均匀地包覆了二氧化钛,从图1(c)中可以看出,核壳结构光催化剂二氧化钛银/溴化银保存了二氧化钛/溴化银复合材料的形貌。实施例1所得产品的X-射线晶体衍射图如图2所示,从图中可以看出,所得产品的较强的衍射峰与立方相溴化银的标准衍射图谱(JCPDS:06-0438)完全一致。图2的插图中有两个衍射峰,25.3°处的衍射峰归属为锐钛矿二氧化钛的衍射峰,38.3°处的衍射峰归属为单质银的衍射峰,这两点分别说明了包覆二氧化钛的成功性和经紫外光还原处理后,在溴化银与二氧化钛界面处确实形成了单质银。 
图3为实施例1所得催化剂和银/溴化银,氮掺杂二氧化钛对甲基橙的可见光降解 曲线。光催化实验结果表明,实施例1制备的核壳结构二氧化钛/银/溴化银光催化降解甲基橙活性与银/溴化银相比有很大提高,且两者活性都远高于氮掺杂二氧化钛。 
实施例2 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有聚乙烯吡咯烷酮K30和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去聚乙烯吡咯烷酮K30保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例3 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为60℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例4 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为90℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛 包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例5 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行60分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例6 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.0。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例7 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在4.4。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面司原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例8 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.04μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例9 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.10μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分 散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例10 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为100℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例11 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为140℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 
实施例12 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在 此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从40℃恒温促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂,其形貌不佳,可见光下具有高效光催化降解甲基橙活性。 
实施例13 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从70℃恒温促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾、硫酸。将二氧化钛/溴化银复合材料分散于水溶液中,用300W高压汞灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂,其形貌不佳,可见光下具有高效光催化降解甲基橙活性。 
实施例14 
在剧烈搅拌下,用蠕动泵将硝酸银溶液和溴化钾溶液同时注入含有明胶和溴化钾水溶液的反应锅中,控制反应锅温度为85℃,通过控制硝酸银和溴化钾溶液的注入速度,使整个反应过程的pBr值恒定在3.8。硝酸银溶液和溴化钾溶液注入结束后,再在此温度下进行30分钟物理成熟。称取一定量的溴化银胶液,加入硫酸钛(按二氧化钛包覆层厚度为0.06μm),从30℃逐渐升温至80℃促进硫酸钛水解,水热温度为120℃。用45℃的温水对制备的二氧化钛/溴化银复合半导体进行离心洗涤6次,以除去明胶保护剂、过量的溴化钾和反应生成的硝酸钾。将二氧化钛/溴化银复合材料分散于水溶液中,用黑光灯对其进行光还原处理2小时,使二氧化钛与溴化银界面间原位形成银纳米粒子。得到二氧化钛/银/溴化银核壳结构催化剂呈均一的立方体形貌,可见光下具有高效光催化降解甲基橙活性。 

Claims (10)

1.一种二氧化钛/银/溴化银核壳结构光催化剂,其特征在于,所述催化剂核由立方体溴化银和其表面原位形成的银米粒子构成,壳由包覆层构成。
2.根据权利要求1所述的二氧化钛/银/溴化银核壳结构光催化剂,其特征在于,所述银粒子重量占催化剂总重量的4~8%,溴化银微晶粒径为0.6μm,二氧化钛包覆层厚度为0.02~0.10μm。
3.一种权利要求1所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,该制备方法包括以下步骤:
(1)采用双注沉淀法制备立方体溴化银微晶。在高分子保护剂存在下,将硝酸银溶液和溴化钾溶液同时注入反应锅中,控制反应温度,反应过程的pBr值、物理成熟时间等,即可制得均一的立方体溴化银微晶。
(2)采用水热法在溴化银表面包覆二氧化钛壳层。在高分子保护剂存在下,将硫酸钛加入到溴化银微晶胶液中,控制硫酸钛的加入量、水解温度和水热温度,即可得到二氧化钛/溴化银核壳结构复合半导体材料。
(3)将二氧化钛/溴化银复合材料分散于水溶液中,用紫外光对二氧化钛/溴化银悬浊液进行光还原处理,使二氧化钛与溴化银界面间原位形成银纳米粒子。
4.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,所使用的高分子保护剂可选明胶、聚乙烯吡咯烷酮或聚乙烯醇,优选为明胶。
5.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,制备立方体溴化银微晶反应过程的pBr值为2.5~4.8,优选为3.8。
6.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,制备立方体溴化银微晶反应温度为40~90℃,优选为85℃。
7.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,制备立方体溴化银微晶反应过程中硝酸银溶液和溴化钾溶液注入结束后,物理成熟时间为0.2~1小时,优选为0.5小时。
8.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,水热法制备二氧化钛/溴化银复合半导体中,硫酸钛的加入量按二氧化钛包覆层厚度计算,一般为0.02~0.10μm,优选为0.06μm。
9.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化剂的制备方法,其特征在于,水热法制备二氧化钛/溴化银复合材料中,硫酸钛的水解温度为大于30℃,优选为采用从30℃逐渐升温至80℃的方法,水热温度为100~150℃,优选为120℃。
10.根据权利要求3所述的二氧化钛/银/溴化银核壳结构光催化材料的制备方法,其特征在于,可采用高压汞灯、黑光灯及其它可产生紫外线的光源,优选高压汞灯。
CN2012103639817A 2012-09-25 2012-09-25 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法 Pending CN102909039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103639817A CN102909039A (zh) 2012-09-25 2012-09-25 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103639817A CN102909039A (zh) 2012-09-25 2012-09-25 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN102909039A true CN102909039A (zh) 2013-02-06

Family

ID=47607754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103639817A Pending CN102909039A (zh) 2012-09-25 2012-09-25 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN102909039A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304367A (zh) * 2013-05-23 2013-09-18 河北科技大学 烷烃叔氢选择性卤代新方法
CN104255797A (zh) * 2014-08-25 2015-01-07 中国海洋大学 聚多巴胺界面修饰银/氧化钛纳米管防污剂及其制备方法
CN105013516A (zh) * 2015-07-01 2015-11-04 杭州臣工环保科技有限公司 一种负载型多级结构银-卤化银-二氧化钛复合可见光催化材料及其制备方法
CN107008471A (zh) * 2017-04-26 2017-08-04 苏州聚康新材料科技有限公司 一种核壳结构二氧化钛/溴碘化银光催化材料及其制备方法
US20180008967A1 (en) * 2016-07-06 2018-01-11 University-Industry Cooperation Group Of Kyung Hee University Hybrid nanostructured photocatalysts and preparation method thereof
CN109046401A (zh) * 2018-07-06 2018-12-21 上海纳米技术及应用国家工程研究中心有限公司 3d形貌银/溴化银/二氧化钛光催化剂的制备及其产品和应用
CN111068722A (zh) * 2019-12-28 2020-04-28 合肥学院 一种溴化银/二氧化硅复合粉体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537350A (zh) * 2009-04-27 2009-09-23 武汉理工大学 可见光活性的Ag/AgCl/TiO2纳米管阵列等离子体光催化剂及其制备方法
CN102068999A (zh) * 2011-01-11 2011-05-25 中山大学 卤化银复合材料在可见光催化二氧化碳制备碳氢化合物中的应用
CN102208657A (zh) * 2011-03-31 2011-10-05 同济大学 一种Ag/AgBr@TiO2/CA电极的制备方法及其应用
CN102407150A (zh) * 2011-10-11 2012-04-11 华东理工大学 二氧化钛/银/氯化银核壳结构光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537350A (zh) * 2009-04-27 2009-09-23 武汉理工大学 可见光活性的Ag/AgCl/TiO2纳米管阵列等离子体光催化剂及其制备方法
CN102068999A (zh) * 2011-01-11 2011-05-25 中山大学 卤化银复合材料在可见光催化二氧化碳制备碳氢化合物中的应用
CN102208657A (zh) * 2011-03-31 2011-10-05 同济大学 一种Ag/AgBr@TiO2/CA电极的制备方法及其应用
CN102407150A (zh) * 2011-10-11 2012-04-11 华东理工大学 二氧化钛/银/氯化银核壳结构光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Journal of Hazardous Materials》 20100111 Bei Cheng et al. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires 第177卷, *
BEI CHENG ET AL.: "Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires", 《JOURNAL OF HAZARDOUS MATERIALS》, vol. 177, 11 January 2010 (2010-01-11) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304367A (zh) * 2013-05-23 2013-09-18 河北科技大学 烷烃叔氢选择性卤代新方法
CN103304367B (zh) * 2013-05-23 2014-09-10 河北科技大学 烷烃叔氢选择性卤代方法
CN104255797A (zh) * 2014-08-25 2015-01-07 中国海洋大学 聚多巴胺界面修饰银/氧化钛纳米管防污剂及其制备方法
CN105013516A (zh) * 2015-07-01 2015-11-04 杭州臣工环保科技有限公司 一种负载型多级结构银-卤化银-二氧化钛复合可见光催化材料及其制备方法
US20180008967A1 (en) * 2016-07-06 2018-01-11 University-Industry Cooperation Group Of Kyung Hee University Hybrid nanostructured photocatalysts and preparation method thereof
US9962686B2 (en) * 2016-07-06 2018-05-08 University-Industry Cooperation Group Of Kyung Hee University Hybrid nanostructured photocatalysts and preparation method thereof
CN107008471A (zh) * 2017-04-26 2017-08-04 苏州聚康新材料科技有限公司 一种核壳结构二氧化钛/溴碘化银光催化材料及其制备方法
CN109046401A (zh) * 2018-07-06 2018-12-21 上海纳米技术及应用国家工程研究中心有限公司 3d形貌银/溴化银/二氧化钛光催化剂的制备及其产品和应用
CN111068722A (zh) * 2019-12-28 2020-04-28 合肥学院 一种溴化银/二氧化硅复合粉体及其制备方法

Similar Documents

Publication Publication Date Title
CN102407150B (zh) 二氧化钛/银/氯化银核壳结构光催化剂及其制备方法
CN102909039A (zh) 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法
CN102380405B (zh) 一种纳米银/立方体氯化银光催化材料的制备方法
Li et al. Review on design and evaluation of environmental photocatalysts
Wang et al. Black TiO2 for solar hydrogen conversion
Fang et al. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
Guo et al. Mesocrystalline Ta3N5 superstructures with long-lived charges for improved visible light photocatalytic hydrogen production
CN103599800B (zh) 玻璃纤维负载银-溴化银-氧化钛复合材料的制备方法
CN103214032B (zh) 氢等离子体辅助氢化制备黑色二氧化钛的方法
CN102416335A (zh) 一种纳米银/立方体溴化银光催化材料及其制备方法
CN101956223B (zh) 一种氧化亚铜复合二氧化钛纳米管阵列的制备方法
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
CN103191707B (zh) 双温区还原法制备黑色二氧化钛的方法
CN104475133B (zh) 一种Bi/BiOCl光催化剂的制备方法
CN101116808A (zh) 一种具有负离子释放功能的光催化粉体及其制备方法
CN107469804A (zh) 一种纳米颗粒铋负载的二氧化钛基复合光催化材料及其制备方法和应用
CN105621349A (zh) 利用光还原法合成Au与Ag共修饰的TiO2纳米棒阵列的方法
CN102002746A (zh) 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
Zhang et al. Fixed Z-scheme TiO2| Ti| WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production
CN106179337A (zh) 一种TiO2/Au纳米棒海胆状异质结构光催化剂及其制备方法
CN105177671A (zh) 一种银纳米颗粒/二氧化钛纳米管阵列的制备方法
CN102671674A (zh) 一种磁载溴化银光催化材料及其制备方法
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity
CN106423223A (zh) 一种饼状多孔结构MoSe2@TiO2光催化剂及其制备方法
CN106622202A (zh) 石墨烯‑TiO2纳米管/FTO双层复合膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130206