CN102903739B - 具有稀土氧化物的半导体结构 - Google Patents

具有稀土氧化物的半导体结构 Download PDF

Info

Publication number
CN102903739B
CN102903739B CN201210401766.1A CN201210401766A CN102903739B CN 102903739 B CN102903739 B CN 102903739B CN 201210401766 A CN201210401766 A CN 201210401766A CN 102903739 B CN102903739 B CN 102903739B
Authority
CN
China
Prior art keywords
layer
crystal
semiconductor
crystal semiconductor
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210401766.1A
Other languages
English (en)
Other versions
CN102903739A (zh
Inventor
王敬
梁仁荣
郭磊
许军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xinli Technology Innovation Center Co ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210401766.1A priority Critical patent/CN102903739B/zh
Priority to US13/816,173 priority patent/US9105464B2/en
Priority to PCT/CN2012/086872 priority patent/WO2014059732A1/zh
Publication of CN102903739A publication Critical patent/CN102903739A/zh
Application granted granted Critical
Publication of CN102903739B publication Critical patent/CN102903739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28255Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor belonging to Group IV and not being elemental silicon, e.g. Ge, SiGe, SiGeC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提出一种具有稀土氧化物的半导体结构,包括:半导体衬底;和形成在半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与半导体衬底接触的绝缘氧化物层的材料为稀土氧化物或者二氧化硅,其余的绝缘氧化物层的材料为单晶稀土氧化物。根据本发明实施例的半导体结构,通过绝缘氧化物层和单晶半导体层之间的晶格匹配,可以显著降低半导体结构的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能、高密度的三维半导体器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成。

Description

具有稀土氧化物的半导体结构
技术领域
本发明涉及半导体领域,特别涉及一种具有稀土氧化物的半导体结构。
背景技术
在半导体领域,为了获得高集成度的芯片,采用三维结构是发展方向之一。例如,具有多层堆叠结构的存储器芯片是目前高密度存储技术的重要技术趋势。为了制备多层堆叠的器件结构,方法之一是首先制备多层绝缘介质层和多层单晶半导体层交替堆叠的半导体结构,再在其中的单晶半导体层制备器件。然而,具有多层绝缘介质层和多层单晶半导体层交替堆叠结构的半导体结构的制备技术多年来一直没有明显进展。这主要是因为常见的单晶半导体材料与常见的绝缘介质材料之间难以形成合适的晶格匹配。形成单晶半导体薄膜的常用方法是外延,为了在绝缘介质材料上通过外延生长高质量的单晶半导体薄膜,绝缘介质材料不但要具有单晶结构,还要与半导体薄膜之间具有良好的晶格匹配。以目前最常用的单晶硅半导体材料为例,目前熟知的绝缘介质材料大多具有无定形结构或者其晶体的晶格常数与硅差异很大。例如,常见的绝缘介质材料如SiO2、Si3N4、HfO2、ZrO2、Al2O3等可以形成为单晶,但与硅单晶的晶格常数相差巨大,在这类单晶介质层上外延生长硅薄膜将会产生非常多的缺陷,甚至无法外延生长出单晶硅薄膜,从而导致在这样的半导体薄膜上制备出来的器件无法使用。另一方面,随着半导体器件的集成密度的提高,散热将会是一个严峻问题,尤其是三维逻辑器件对散热的要求非常高,要求填充在器件之间的隔离介质的热导率越大越好,从而可以改善器件尤其是逻辑器件的性能。但是传统的二氧化硅或者氮氧化硅等绝缘介质的导热性能很差,不能满足高密度半导体逻辑器件的散热要求。
发明内容
本发明的目的旨在至少解决上述技术缺陷之一,特别是提供一种具有多层绝缘介质层和多层单晶半导体层交替堆叠的半导体材料结构,具有较低的晶体缺陷密度和较大的隔离介质热导率,用于制备高性能、高密度的三维半导体器件,同时充分满足高密度半导体器件的散热要求。
为达到上述目的,本发明提供一种具有稀土氧化物的半导体结构,包括:半导体衬底;和形成在所述半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与所述半导体衬底接触的所述绝缘氧化物层的材料为稀土氧化物或者二氧化硅,其余的所述绝缘氧化物层的材料为单晶稀土氧化物。
在本发明的一个实施例中,所述半导体衬底的材料包括单晶Si、单晶SiGe、单晶Ge。
在本发明的一个实施例中,每层所述绝缘氧化物层的厚度不小于50nm。
在本发明的一个实施例中,所述绝缘氧化物层的材料包括:(Gd1-xErx)2O3、(Gd1-xNdx)2O3、(Er1-xNdx)2O3、(Pr1-xLax)2O3、(Pr1-xNdx)2O3、(Pr1-xGdx)2O3、(Er1-xLax)2O3中的一种或多种的组合,其中x的取值范围为0-1。稀土元素中,锕(Ac)系元素大部分具有放射性,因此,常用的稀土氧化物以镧(La)系稀土的氧化物为主。稀土氧化物晶体与常见的半导体材料如Si、Ge、SiGe、GaAs等同为立方晶系,同时,镧(La)系稀土的氧化物晶体如La2O3、Pr2O3、Nd2O3、Er2O3、Gd2O3等的晶格常数相差不大,其晶格常数大约为Si和Ge晶体的两倍,即一个稀土氧化物晶体单胞正好与两个Si和Ge晶体的单胞相匹配,即其晶格常数是基本匹配的,有利于在稀土氧化物上外延形成半导体薄膜,也有利于在半导体薄膜上外延形成稀土氧化物单晶薄膜。
在本发明的一个实施例中,所述单晶半导体层的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。
在本发明的一个实施例中,每层所述单晶半导体层包括一层或多层结构。
在本发明的一个实施例中,每层所述绝缘氧化物层包括一层或多层结构。
在本发明的一个实施例中,至少一层所述单晶半导体层的材料与其他所述单晶半导体层不同。
在本发明的一个实施例中,至少一层所述绝缘氧化物层的材料与其他所述绝缘氧化物层不同。
在本发明的一个实施例中,所述单晶半导体层具有应变。
在本发明的一个实施例中,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变度。
在本发明的一个实施例中,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变类型。
在本发明的一个实施例中,所述半导体衬底的晶面指数包括(100)、(110)、(111)。
在本发明的一个实施例中,所述半导体衬底的晶面指数为(100),所述单晶半导体层的晶面指数为(110)。
在本发明的一个实施例中,所述绝缘氧化物层和所述单晶半导体层均通过外延生长形成。
根据本发明实施例的具有稀土氧化物的半导体结构,至少具有以下优点:
(1)本发明提供一种交替堆叠的多层绝缘氧化物层和多层单晶半导体层结构,可以用于制备高密度的三维器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成;
(2)通过半导体薄膜和稀土氧化物交替外延,形成交替堆叠的多层绝缘氧化物层和多层单晶半导体层,由于单晶稀土氧化物与单晶半导体的晶格常数相匹配,故可以显著降低半导体结构中的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能的半导体器件;
(3)可通过控制稀土氧化物的组分来控制其晶格常数。例如,La2O3的晶格常数比Ge的两倍略大,而Er2O3、Gd2O3比Si的两倍略小,Pr2O3、Nd2O3介于Si和Ge的两倍之间,通过调整稀土氧化物中La、Er等稀土元素的含量,可以使其晶格常数比Si、Ge、SiGe、GaAs等半导体晶体的晶格常数的两倍略大、略小或者相等,从而可以控制在单晶稀土氧化物上外延的单晶半导体薄膜的应变类型和应变度,即可以在稀土氧化物上外延生长形成具有张应变或压应变的,且具有不同应变度的单晶半导体薄膜;
(4)单晶稀土氧化物的热导率较之传统的二氧化硅或者氮氧化硅等氧化物高,单晶稀土氧化物的热导率为热生长SiO2介质的3倍以上,从而可以显著地改善器件之间的散热问题,改善器件的性能;
(5)尽管稀土氧化物的介电常数比二氧化硅高,单晶稀土氧化物具有良好的绝缘性能,可以作为两层半导体器件之间的绝缘介质。当作为器件层之间的绝缘介质时,可以采用较厚的稀土氧化物层,来消除其高介电常数的影响;
(6)该半导体结构的制备工艺可以采用常见的外延工艺,如金属有机化学气相沉积(MOCVD)、固相源外延(SSE)、超高真空化学气相淀积(UHVCVD)、分子束外延(MBE)等,这些制备工艺与传统的半导体制备工艺相兼容,简单易实现,成本低。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明一个实施例的具有稀土氧化物的半导体结构的示意图;
图2为本发明另一个实施例的具有稀土氧化物的半导体结构的示意图;和
图3为本发明另一个实施例的具有稀土氧化物的半导体结构的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。进一步地,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,“多层”的含义是两层或两层以上。
图1所示为本发明实施例的具有稀土氧化物的半导体结构的示意图。如图1所示,该半导体结构包括:半导体衬底100;和形成在半导体衬底100上的交替堆叠的多层绝缘氧化物层201、202……20x和多层单晶半导体层301、302……30x。其中,与半导体衬底100接触的绝缘氧化物层201的材料为稀土氧化物或者二氧化硅,其余的绝缘氧化物层202至20x的材料为单晶稀土氧化物。为了后续形成三维器件结构,提高器件密度器件的集成密度,单晶半导体层为两层或两层以上。通过在单晶半导体层上形成单晶稀土氧化物层,由于单晶稀土氧化物与单晶半导体的晶格常数相匹配,故可以显著降低该半导体结构的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能的半导体器件。
在本发明实施例中,半导体衬底100的材料包括单晶Si、单晶SiGe、单晶Ge。
与半导体衬底100接触的绝缘氧化物层201的材料可以为单晶或者无定形结构的稀土氧化物或者二氧化硅,从而使半导体衬底100、绝缘氧化物层201和单晶半导体层301形成SOI(绝缘体上半导体)结构。绝缘氧化物层202……20x的材料为单晶稀土氧化物。具体地,稀土氧化物包括:(Gd1-xErx)2O3、(Gd1-xNdx)2O3、(Er1-xNdx)2O3、(Pr1-xLax)2O3、(Pr1-xNdx)2O3、(Pr1-xGdx)2O3、(Er1-xLax)2O3中的一种或多种的组合,其中x的取值范围为0-1。稀土元素中,锕(Ac)系元素大部分具有放射性,因此,常用的稀土氧化物以镧(La)系稀土的氧化物为主。稀土氧化物晶体与常见的半导体材料如Si、Ge、SiGe、GaAs等同为立方晶系,同时,镧(La)系稀土的氧化物晶体如La2O3、Pr2O3、Nd2O3、Er2O3、Gd2O3等的晶格常数相差不大,其晶格常数大约为Si和Ge晶体的两倍,即一个稀土氧化物晶体单胞正好与两个Si和Ge晶体的单胞相匹配,即其晶格常数是基本匹配的,有利于在稀土氧化物上外延形成半导体薄膜,也有利于在半导体薄膜上外延形成稀土氧化物单晶薄膜。需要说明的是,为保证稀土氧化物层的绝缘性能,消除稀土氧化物层具有较高介电常数的影响,每层绝缘氧化物层厚度不小于50nm,优选地,每层绝缘氧化物层厚度不小于500nm。另外,每层绝缘氧化物层可以为单层,也可以为多层结构。各层绝缘氧化物层的材料可以相同,也可以至少其中一层绝缘氧化物层的材料与其他绝缘氧化物层不同。
单晶半导体层301、302……30x的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。需要说明的是,每层单晶半导体层可以为单层,也可以为多层结构,例如Si/SiGe/Si、AlGaAs/InGaAs/AlGaAs量子阱结构。各层单晶半导体层的材料可以相同,也可以至少其中一层单晶半导体层的材料与其他单晶半导体层不同。
在本发明的优选实施例中,绝缘氧化物层201、202……20x和单晶半导体层301、302……30x均可以通过外延生长形成,从而可以得到高质量低缺陷的氧化物薄膜和半导体薄膜。例如,采用固相外延技术,以稀土金属元素和氧气为反应前驱物,在10-5至10-12Torr的真空度中,在反应温度为600-1200°C下,生长60分钟,可以得到500nm厚的单晶稀土氧化物薄膜。可选地,绝缘氧化物层201、202……20x和单晶半导体层301、302……30x可以通过常规的淀积方式形成,例如超高真空化学气相淀积(UHVCVD)、金属有机化学气相淀积(MOCVD)、物理气相淀积(PVD)以及分子束外延(MBE)等其他生长方法。
半导体衬底100的晶面指数可以是(100)、(110)或者(111)。当绝缘氧化物层具有与半导体衬底100相同的晶面指数时,例如,半导体衬底100的晶面指数为(100),绝缘氧化物层的晶面指数可以是与之对应的(100),相应地,单晶半导体层的晶面指数也可以是(100),即单晶半导体层的晶面指数与半导体衬底100一致。在本发明的一个实施例中,以(100)晶面的Si为半导体衬底,在其上交替外延具有(100)晶面的稀土氧化物晶体(Gd1-xNdx)2O3和具有(100)晶面的Si单晶半导体层,通过调整(Gd1-xNdx)2O3中Nd的含量使其晶格常数是Si的两倍,以形成高质量的绝缘氧化物层和Si单晶半导体层的交替结构,非常适合用于制作三维NAND闪存器件。
在本发明实施例的半导体结构中,由于单晶半导体层与半导体衬底100之间具有绝缘氧化物层作中间过渡,故单晶半导体层的晶面指数可以与半导体衬底100相同,也可以不同。稀土氧化物中存在有氧键,氧键可以作为中间键,协调半导体衬底100与稀土氧化物层的晶面指数,使得晶面指数发生转换。例如,当半导体衬底100的晶面指数为(100)时,通过氧键作为中间键的调整作用,可以发生晶面再构,生长出晶面指数为(110)的稀土氧化物层,再在(110)晶面的稀土氧化物层外延生长形成(110)晶面的单晶半导体层,由此实现了晶面指数的转换。例如图2所示的本发明实施例的半导体结构从下至上依次包括:半导体衬底100,其材料为晶面指数(100)的单晶硅;第一绝缘氧化物层201,其材料为晶面指数为(110)的(Pr1-xLax)2O3(0≤x≤1)(例如La2O3);第一单晶半导体层301,其材料为晶面指数(110)的单晶锗;第二绝缘氧化物层202,其材料为晶面指数为(110)的(Pr1-xLax)2O3(0≤x≤1)(例如La2O3);以及第二单晶半导体层302,其材料为晶面指数(110)的单晶锗。
在本发明的一个实施例中,可以在同一衬底的不同区域形成具有不同晶面指数的单晶半导体层以适应不同的器件需求。例如,在具有(100)晶面的Si衬底上,可以在一部分区域交替外延形成具有(100)晶面的稀土氧化物层和具有(100)晶面的Si单晶半导体层交替结构,这部分用于制作NMOSFET器件,另一部分区域外延形成具有(110)晶面的稀土氧化物层和具有(110)晶面的Si单晶半导体层。由于(110)晶面/<110>晶向的Si具有比常见的(100)晶面/<110>晶向的Si高出一倍以上的空穴迁移率,可以用于制作PMOSFET器件。
在本发明的一个优选实施例中,单晶半导体层可以具有应变。可通过控制稀土氧化物层中的稀土元素含量来控制其晶格常数。例如,La2O3的晶格常数比Ge的两倍略大,而Er2O3、Gd2O3比Si的两倍略小,Pr2O3、Nd2O3介于Si和Ge的两倍之间,通过调整稀土氧化物中La、Er等稀土元素的含量,可以使其晶格常数比Si、Ge、SiGe、GaAs等半导体晶体的晶格常数的两倍略大、略小或者相等,相应地,在稀土氧化物层上生长的半导体晶体薄膜可以为压应变、张应变或者无应变,从而可以控制在稀土氧化物晶体上外延单晶半导体薄膜的应变类型和应变度。具有应变的半导体层有益于改善沟道层的迁移率,例如对NMOSFET而言,张应变有助于提高电子的迁移率,而对PMOSFET而言,压应变有助于提高空穴的迁移率。进一步地,在一些实施例中,至少一层单晶半导体层具有与其他单晶半导体层不同的应变类型,其中张应变的单晶半导体层可以用于制备NMOSFET器件,压应变的单晶半导体层可以用于制备PMOSFET器件;以及,在另一些实施例中,至少一层单晶半导体层具有与其他单晶半导体层不同的应变度,其中低应变的单晶半导体层可以用于制备存储器件,而高应变的单晶半导体层能够获得高载流子迁移率,可以用于制备逻辑器件。
为更好地说明本发明在引入具有应变的单晶半导体层方面的应用,进一步举例如图3所示。图3所示的半导体结构在从下至少依次包括:半导体衬底100;第一绝缘氧化物层201,第一单晶半导体层301;第二绝缘氧化物层202,第二单晶半导体层302;顶层钝化层400。其中半导体衬底100为Si(100),顶层钝化层400为Si或者氮化物等,依据第二单晶半导体层302的材料而定。
在一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为(Er1-xLax)2O3(0≤x≤1),其晶格常数与衬底100匹配(即为Si晶格常数的两倍),第一单晶半导体层301的材料为应变硅碳Si1-yCy(0≤y≤1,其中C为替代原子而非间隙原子),而第二单晶半导体层302的材料为应变Si1-yGey(0≤y≤1),表层钝化层400为Si,可以使材料表层具有很好的稳定性。该实施例中,由于碳原子半径比硅小、锗原子半径比硅大,则第一单晶半导体层301(即应变Si1-yCy层)具有张应变,具有高的电子迁移率,可以用于制备NMOSFET器件,第二单晶半导体层302(即应变Si1-yGey层)具有压应变,具有高的空穴迁移率,可以用于制备PMOSFET器件,即两个单晶半导体层具有不同的应变类型,分别用于制作不同类型的器件。
在另一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为(Er1-xLax)2O3(0≤x≤1),其晶格常数与衬底100匹配(即为Si晶格常数的两倍),第一单晶半导体层301的材料为Si,而第二单晶半导体层302的材料为应变Si1-yGey(0≤y≤1),表层钝化层400为Si,可以使材料表层具有很好的稳定性。该实施例中,由于锗原子半径比硅原子大,而第二单晶半导体层302中含有Ge,故第一单晶半导体层301(Si层)为无应变层,第二单晶半导体层302(应变Si1-yGey层)为压应变层,即两个单晶半导体层具有不同的应变度。其中无应变的第一单晶半导体层301(Si层)可以用于制作NMOSFET器件,而具有压应变的第二单晶半导体层302(应变Si1-yGey层)可以用于制作PMOSFET器件。
再一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为(Er1-xLax)2O3,但其中每层中的x值不相同,其中,第一绝缘氧化物层201的La含量低,而第二绝缘氧化物层202的La含量高,使得第一绝缘氧化物层201晶格常数小于第二绝缘氧化物层202,第一绝缘氧化物层201晶格常数与Si匹配(即为Si晶格常数的两倍),第二绝缘氧化物层202晶格常数与Ge匹配(即为Ge晶格常数的两倍),第一单晶半导体层301的材料为弛豫Si,而第二单晶半导体层302的材料为弛豫Ge,表层钝化层400为非晶态的氮化硅,可以使材料表层具有很好的稳定性。该实施例中,通过调整绝缘氧化物层中的稀土元素含量,调整其晶格常数,使第一单晶半导体层301和第二单晶半导体层302基本无应变,有利于控制单晶半导体层中的应变度,获得高质量的单晶半导体层。其中,第二单晶半导体层302(即Ge层)可以用于制作Ge探测器,第一单晶半导体层301(即Si层)可以用于制备MOSFET器件以形成控制Ge探测器的电路结构,实现Ge探测器和控制电路的三维集成。
本发明提供一种具有稀土氧化物的半导体结构,通过形成交替堆叠的多层绝缘氧化物层和多层单晶半导体层,由于单晶稀土氧化物与单晶半导体的晶格常数相匹配,故可以显著降低半导体结构的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能、高密度的三维半导体器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成。并且,由于单晶稀土氧化物的热导率较之传统的二氧化硅或者氮氧化硅等氧化物高,从而显著地改善器件之间的散热问题,改善器件的性能。另外,该半导体结构的制备工艺可以与传统的半导体制备工艺相兼容,简单易实现,成本低。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (10)

1.一种具有稀土氧化物的半导体结构,包括:
半导体衬底;和
形成在所述半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与所述半导体衬底接触的所述绝缘氧化物层的材料为稀土氧化物或者二氧化硅,其余的所述绝缘氧化物层的材料为单晶稀土氧化物,其中,所述绝缘氧化物层的材料包括:(Gd1-xErx)2O3、(Gd1-xNdx)2O3、(Er1-xNdx)2O3、(Pr1-xLax)2O3、(Pr1-xNdx)2O3、(Pr1-xGdx)2O3、(Er1-xLax)2O3中的一种或多种的组合,其中x的取值范围为0-1,每层所述绝缘氧化物层包括一层或多层结构,其中,至少一层所述单晶半导体层的材料与其他所述单晶半导体层不同,并且所述单晶半导体层具有应变,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变度。
2.如权利要求1所述的半导体结构,其特征在于,所述半导体衬底的材料包括单晶Si、单晶SiGe、单晶Ge。
3.如权利要求1所述的半导体结构,其特征在于,每层所述绝缘氧化物层的厚度不小于50nm。
4.如权利要求1所述的半导体结构,其特征在于,所述单晶半导体层的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。
5.如权利要求1所述的半导体结构,其特征在于,每层所述单晶半导体层包括一层或多层结构。
6.如权利要求1所述的半导体结构,其特征在于,至少一层所述绝缘氧化物层的材料与其他所述绝缘氧化物层不同。
7.如权利要求1所述的半导体结构,其特征在于,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变类型。
8.如权利要求1所述的半导体结构,其特征在于,所述半导体衬底的晶面指数包括(100)、(110)、(111)。
9.如权利要求8所述的半导体结构,其特征在于,所述半导体衬底的晶面指数为(100),所述单晶半导体层的晶面指数为(110)。
10.如权利要求1所述的半导体结构,其特征在于,所述绝缘氧化物层和所述单晶半导体层均通过外延生长形成。
CN201210401766.1A 2012-10-19 2012-10-19 具有稀土氧化物的半导体结构 Active CN102903739B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210401766.1A CN102903739B (zh) 2012-10-19 2012-10-19 具有稀土氧化物的半导体结构
US13/816,173 US9105464B2 (en) 2012-10-19 2012-12-18 Semiconductor structure with rare earth oxide
PCT/CN2012/086872 WO2014059732A1 (zh) 2012-10-19 2012-12-18 具有稀土氧化物的半导体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210401766.1A CN102903739B (zh) 2012-10-19 2012-10-19 具有稀土氧化物的半导体结构

Publications (2)

Publication Number Publication Date
CN102903739A CN102903739A (zh) 2013-01-30
CN102903739B true CN102903739B (zh) 2016-01-20

Family

ID=47575902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210401766.1A Active CN102903739B (zh) 2012-10-19 2012-10-19 具有稀土氧化物的半导体结构

Country Status (3)

Country Link
US (1) US9105464B2 (zh)
CN (1) CN102903739B (zh)
WO (1) WO2014059732A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151357A (zh) * 2013-03-26 2013-06-12 清华大学 存储结构及其形成方法
US9281198B2 (en) * 2013-05-23 2016-03-08 GlobalFoundries, Inc. Method of fabricating a semiconductor device including embedded crystalline back-gate bias planes
CN103337519A (zh) * 2013-06-26 2013-10-02 清华大学 场效应晶体管及其形成方法
WO2015029535A1 (ja) * 2013-08-30 2015-03-05 独立行政法人科学技術振興機構 ゲルマニウム層上に酸化ゲルマニウムを含む膜を備える半導体構造およびその製造方法
US9613803B2 (en) 2015-04-30 2017-04-04 International Business Machines Corporation Low defect relaxed SiGe/strained Si structures on implant anneal buffer/strain relaxed buffer layers with epitaxial rare earth oxide interlayers and methods to fabricate same
EP3443582A1 (en) * 2016-04-13 2019-02-20 IQE, Plc. Group iii semiconductor epitaxy formed on silicon via single crystal ren and reo buffer layers
TWI728130B (zh) * 2016-06-19 2021-05-21 英商Iqe有限公司 用於射頻濾波器應用的磊晶 AlN/cREO 結構
US9881998B1 (en) 2017-02-02 2018-01-30 International Business Machines Corporation Stacked nanosheet field effect transistor device with substrate isolation
US10586853B2 (en) 2017-11-27 2020-03-10 International Business Machines Corporation Non-planar field effect transistor devices with wrap-around source/drain contacts
US10679890B2 (en) 2018-02-01 2020-06-09 International Business Machines Corporation Nanosheet structure with isolated gate
CN109742138B (zh) * 2019-01-02 2022-12-16 北京工业大学 具有低温度敏感性的SOI SiGe异质结双极晶体管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500288A (zh) * 2001-03-31 2004-05-26 国际商业机器公司 形成绝缘体上的应变硅(ssoi)的方法及其形成的结构
CN1998088A (zh) * 2004-04-07 2007-07-11 先进微装置公司 绝缘体上半导体的衬底以及由该衬底所形成的半导体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195599A1 (en) * 2001-06-20 2002-12-26 Motorola, Inc. Low-defect semiconductor structure, device including the structure and method for fabricating structure and device
US6933566B2 (en) * 2001-07-05 2005-08-23 International Business Machines Corporation Method of forming lattice-matched structure on silicon and structure formed thereby
CN1610114A (zh) * 2004-10-15 2005-04-27 中国科学院上海微系统与信息技术研究所 一种三维多层平面互补金属氧化物半导体器件结构及其制备方法
US8049100B2 (en) * 2007-07-26 2011-11-01 Translucent, Inc. Multijunction rare earth solar cell
US20110220173A1 (en) * 2010-03-09 2011-09-15 Michael Lebby Active solar concentrator with multi-junction devices
US8835955B2 (en) * 2010-11-01 2014-09-16 Translucent, Inc. IIIOxNy on single crystal SOI substrate and III n growth platform
CN102683385B (zh) * 2012-05-30 2014-12-24 清华大学 半导体结构及其形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500288A (zh) * 2001-03-31 2004-05-26 国际商业机器公司 形成绝缘体上的应变硅(ssoi)的方法及其形成的结构
CN1998088A (zh) * 2004-04-07 2007-07-11 先进微装置公司 绝缘体上半导体的衬底以及由该衬底所形成的半导体装置

Also Published As

Publication number Publication date
US20140145312A1 (en) 2014-05-29
WO2014059732A1 (zh) 2014-04-24
US9105464B2 (en) 2015-08-11
CN102903739A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
CN102903739B (zh) 具有稀土氧化物的半导体结构
CN101276791B (zh) 半导体晶片及其制造方法
JP7217781B2 (ja) 希土類酸化物およびエピタキシャル窒化アルミニウムを用いて加工されるrfフィルタのための層構造
US6833332B2 (en) Method for fabrication of relaxed SiGe buffer layers on silicon-on-insulators and structures containing the same
US10825912B2 (en) Integrated epitaxial metal electrodes
CN102916039B (zh) 具有氧化铍的半导体结构
US20100140755A1 (en) Rare-earth oxides, rare-earth nitrides, rare-earth phosphides and ternary alloys
US7199015B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US20050161663A1 (en) Rare earth-oxides, rare earth -nitrides, rare earth -phosphides and ternary alloys with silicon
US7273657B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
TWI725143B (zh) 用於磊晶iii-v層之緩衝的磊晶金屬氧化物之層結構
US20020168864A1 (en) Method for semiconductor device fabrication
US7709826B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphies, and ternary alloys with silicon
US20050163692A1 (en) Rare earth-oxides, rare earth -nitrides, rare earth -phosphides and ternary alloys with silicon
US8636844B1 (en) Oxygen engineered single-crystal REO template
KR100707215B1 (ko) 고배향성 실리콘 박막 형성 방법, 3d 반도체소자 제조방법 및 3d 반도체소자
WO2005065402A2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
TWI753915B (zh) 用於GaN基底應用的磷屬化物緩衝結構和裝置
US10418457B2 (en) Metal electrode with tunable work functions
TW201802884A (zh) 經由單晶稀土族氮化物及稀土族氧化物緩衝層磊晶形成於矽上之第iii族半導體
CN1322547C (zh) 基于硅锗/硅结构注氧隔离制备绝缘体上硅锗材料的方法
CN100336172C (zh) 改进注氧隔离技术制备的绝缘体上的硅锗材料结构及工艺
US20210320214A1 (en) LOCALIZED STRAIN FIELDS IN EPITAXIAL LAYER OVER cREO
TW202429537A (zh) 半導體結構
JP2003234294A (ja) 半導体薄膜製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231123

Address after: Room 201, 1st and 2nd floors, Building 3, No. 16 Yongchang Middle Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing, 100176

Patentee after: Beijing Xinli Technology Innovation Center Co.,Ltd.

Address before: 100084-82 box 100084, Beijing, Haidian District

Patentee before: TSINGHUA University

TR01 Transfer of patent right