CN102916039B - 具有氧化铍的半导体结构 - Google Patents

具有氧化铍的半导体结构 Download PDF

Info

Publication number
CN102916039B
CN102916039B CN201210401590.XA CN201210401590A CN102916039B CN 102916039 B CN102916039 B CN 102916039B CN 201210401590 A CN201210401590 A CN 201210401590A CN 102916039 B CN102916039 B CN 102916039B
Authority
CN
China
Prior art keywords
layer
semiconductor
crystal
crystal semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210401590.XA
Other languages
English (en)
Other versions
CN102916039A (zh
Inventor
王敬
梁仁荣
郭磊
许军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210401590.XA priority Critical patent/CN102916039B/zh
Priority to US13/816,164 priority patent/US8963295B2/en
Priority to PCT/CN2012/086875 priority patent/WO2014059733A1/zh
Publication of CN102916039A publication Critical patent/CN102916039A/zh
Application granted granted Critical
Publication of CN102916039B publication Critical patent/CN102916039B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28255Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor belonging to Group IV and not being elemental silicon, e.g. Ge, SiGe, SiGeC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提出一种具有氧化铍的半导体结构,包括:半导体衬底;和形成在半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与半导体衬底接触的绝缘氧化物层的材料为氧化铍或者二氧化硅,其余的绝缘氧化物层的材料为单晶氧化铍。根据本发明实施例的半导体结构,通过绝缘氧化物层和单晶半导体层之间的晶格匹配,可以显著降低半导体结构的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能、高密度的三维半导体器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成。

Description

具有氧化铍的半导体结构
技术领域
本发明涉及半导体领域,特别涉及一种具有氧化铍的半导体结构。
背景技术
在半导体领域,为了获得高集成度的芯片,采用三维结构是发展方向之一。例如,具有多层堆叠结构的存储器芯片是目前高密度存储技术的重要技术趋势。为了制备多层堆叠的器件结构,方法之一是首先制备多层绝缘介质层和多层单晶半导体层交替堆叠的半导体结构,再在其中的单晶半导体层制备器件。然而,具有多层绝缘介质层和多层单晶半导体层交替堆叠结构的半导体结构的制备技术多年来一直没有明显进展。这主要是因为常见的单晶半导体材料与常见的绝缘介质材料之间难以形成合适的晶格匹配。形成单晶半导体薄膜的常用方法是外延,为了在绝缘介质材料上通过外延生长高质量的单晶半导体薄膜,绝缘介质材料不但要具有单晶结构,还要与半导体薄膜之间具有良好的晶格匹配。以目前最常用的单晶硅半导体材料为例,目前熟知的绝缘介质材料大多具有无定形结构或者其晶体的晶格常数与硅差异很大。例如,常见的绝缘介质材料如SiO2、Si3N4、HfO2、ZrO2、Al2O3等可以形成为单晶,但与硅单晶的晶格常数相差巨大,在这类单晶介质层上外延生长硅薄膜将会产生非常多的缺陷,甚至无法外延生长出单晶硅薄膜,从而导致在这样的半导体薄膜上制备出来的器件无法使用。另一方面,随着半导体器件的集成密度的提高,散热将会是一个严峻问题,尤其是三维逻辑器件对散热的要求非常高,要求填充在器件之间的隔离介质的热导率越大越好,从而可以改善器件尤其是逻辑器件的性能。但是传统的二氧化硅或者氮氧化硅等绝缘介质的导热性能很差,不能满足高密度半导体逻辑器件的散热要求。
发明内容
本发明的目的旨在至少解决上述技术缺陷之一,特别是提供一种具有多层绝缘介质层和多层单晶半导体层交替堆叠的半导体材料结构,具有较低的晶体缺陷密度和较大的隔离介质热导率,用于制备高性能、高密度的三维半导体器件,同时充分满足高密度半导体器件的散热要求。
为达到上述目的,本发明提供一种具有氧化铍的半导体结构,包括:半导体衬底;和形成在所述半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与所述半导体衬底接触的所述绝缘氧化物层的材料为氧化铍或者二氧化硅,其余的所述绝缘氧化物层的材料为单晶氧化铍。
在本发明的一个实施例中,所述半导体衬底的材料包括单晶Si、单晶SiGe、单晶Ge。
在本发明的一个实施例中,每层所述绝缘氧化物层的厚度不小于25nm。
在本发明的一个实施例中,所述单晶半导体层的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。
在本发明的一个实施例中,每层所述单晶半导体层包括一层或多层结构。
在本发明的一个实施例中,至少一层所述单晶半导体层的材料与其他所述单晶半导体层不同。
在本发明的一个实施例中,所述单晶半导体层具有应变。
在本发明的一个实施例中,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变度。
在本发明的一个实施例中,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变类型。
在本发明的一个实施例中,所述半导体衬底的晶面指数包括(100)、(110)、(111)。
在本发明的一个实施例中,所述半导体衬底的晶面指数为(100),所述单晶半导体层的晶面指数为(110)。
在本发明的一个实施例中,所述绝缘氧化物层和所述单晶半导体层均通过外延生长形成。
根据本发明实施例的具有氧化铍的半导体结构,至少具有以下优点:
(1)本发明提供一种交替堆叠的多层绝缘氧化物层和多层单晶半导体层结构,可以用于制备高密度的三维器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成;
(2)通过半导体薄膜和氧化铍交替外延,形成交替堆叠的多层绝缘氧化物层和多层单晶半导体层,由于氧化铍晶体与常见的半导体材料如Si、Ge、SiGe、GaAs等同为立方晶系,同时,硅单晶的晶格常数单晶氧化铍晶格常数大约为Si单晶的一半,即一个Si晶体的单胞正好与两个氧化铍晶体单胞相匹配,即其晶格常数是基本匹配的,故可以显著降低半导体结构中的晶体缺陷,有利于在氧化铍单晶薄膜上外延形成半导体单晶薄膜,也有利于在半导体单晶薄膜上外延形成氧化铍单晶薄膜,从而有利于在该半导体结构上进一步形成高性能的半导体器件;
(3)通过设计各单晶半导体层的材料成分以及调节其组分,使得单晶半导体层的晶格常数比单晶氧化铍层的晶格常数的两倍略大或略小,可以使各单晶半导体层具有特定的应变类型和应变度。例如,当在氧化铍晶体上生长Si薄膜时,Si薄膜几乎没有应变;当在氧化铍晶体上生长SiGe薄膜时,由于Ge的原子半径比Si大,可以获得具有压应变的SiGe薄膜且其应变度随Ge含量增加而增大;当在氧化铍晶体上生长硅碳Si1-yCy(0≤y≤1,其中C为替代原子而非间隙原子)薄膜时,由于C的原子半径比Si小,可以获得具有张应变的硅碳薄膜且其应变度随C含量增加而增大;
(4)单晶氧化铍的热导率较之传统的二氧化硅或者氮氧化硅等氧化物高很多,单晶氧化铍的热导率与铝的热导率相当,从而可以显著地改善器件之间的散热问题,改善器件的性能;
(5)单晶氧化铍的禁带宽度为10.6eV,相对介电常数为6.8。尽管氧化铍的介电常数比二氧化硅高(二氧化硅的相对介电常数为3.9),单晶氧化铍具有良好的绝缘性能,可以作为两层半导体器件之间的绝缘介质。当作为器件层之间的绝缘介质时,可以采用较厚的氧化铍层,来消除其高介电常数的影响;
(6)该半导体结构的制备工艺可以采用常见的外延工艺,如、原子层沉积(ALD)、金属有机化学气相沉积(MOCVD)、超高真空化学气相淀积(UHVCVD)、分子束外延(MBE)等,这些制备工艺与传统的半导体制备工艺相兼容,简单易实现,成本低。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明一个实施例的具有氧化铍的半导体结构的示意图;和
图2为本发明另一个实施例的具有氧化铍的半导体结构的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。进一步地,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,“多层”的含义是两层或两层以上。
图1所示为本发明实施例的具有氧化铍的半导体结构的示意图。如图1所示,该半导体结构包括:半导体衬底100;和形成在半导体衬底100上的交替堆叠的多层绝缘氧化物层201、202……20x和多层单晶半导体层301、302……30x。其中,与半导体衬底100接触的绝缘氧化物层201的材料为氧化铍或者二氧化硅,其余的绝缘氧化物层202至20x的材料为单晶氧化铍。为了后续形成三维器件结构,提高器件密度器件的集成密度,单晶半导体层为两层或两层以上。通过在单晶半导体层上形成单晶氧化铍层,由于单晶氧化铍与单晶Si的晶格常数相匹配,故可以显著降低该半导体结构的晶体缺陷,尤其是可以在单晶氧化铍上生长高质量的Si薄膜,从而有利于在该半导体结构上进一步形成高性能的半导体器件。
在本发明实施例中,半导体衬底100的材料包括单晶Si、单晶SiGe、单晶Ge。
与半导体衬底100接触的绝缘氧化物层201的材料可以为单晶或者无定形结构的氧化铍或者二氧化硅,从而使半导体衬底100、绝缘氧化物层201和单晶半导体层301形成SOI(绝缘体上半导体)结构。绝缘氧化物层202……20x的材料为单晶氧化铍。由于氧化铍晶体与常见的半导体材料如Si、Ge、SiGe、GaAs等同为立方晶系,同时,硅单晶的晶格常数单晶氧化铍晶格常数大约为Si单晶的一半,即一个Si晶体的单胞正好与两个氧化铍晶体单胞相匹配,即其晶格常数是基本匹配的,故可以显著降低半导体结构中的晶体缺陷,有利于在氧化铍单晶薄膜上外延形成半导体薄膜,也有利于在半导体单晶薄膜上外延形成氧化铍单晶薄膜,从而有利于进一步形成高性能的半导体器件。特别地,可以在氧化铍单晶薄膜上外延形成高质量的Si单晶薄膜,也可以在Si单晶薄膜上外延形成氧化铍单晶薄膜,从而有利于进一步形成高性能的Si三维器件。
需要说明的是,为保证氧化铍层的绝缘性能,消除氧化铍层具有较高介电常数的影响,每层绝缘氧化物层厚度不小于25nm,优选地,每层绝缘氧化层的厚度不小于200nm。
单晶半导体层301、302……30x的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。尽管与Si相比,Ge、III-V和II-VI族化合物半导体材料与氧化铍的晶格匹配较差,但仍可以通过外延结构和工艺的优化来获得高质量的Ge、III-V和II-VI族化合物半导体,例如,可以通过增加半导体薄膜的厚度来抑制穿通位错密度,也可以先在氧化铍上外延Si薄膜,再在Si薄膜上外延Ge、III-V和II-VI族化合物半导体薄膜。需要说明的是,每层单晶半导体层可以为单层,也可以为多层结构,例如Si/SiGe/Si量子阱结构。各层单晶半导体层的材料可以相同,也可以至少其中一层单晶半导体层的材料与其他单晶半导体层不同。
在本发明的优选实施例中,绝缘氧化物层201、202……20x和单晶半导体层301、302……30x均可以通过外延生长形成,从而可以得到高质量低缺陷的氧化物薄膜和半导体薄膜。例如,采用原子层沉积(ALD)技术,以二甲基铍Be(CH3)2和水蒸气H2O为反应前驱物,在反应温度为150至450℃下,优选250℃,生长740次循环,可以得到200nm厚的单晶氧化铍薄膜。反应方程式为:3Be(CH3)2+3H2O=3BeO+6CH4↑。可选地,绝缘氧化物层201、202……20x和单晶半导体层301、302……30x可以通过常规的淀积方式形成,例如超高真空化学气相淀积(UHVCVD)、金属有机化学气相淀积(MOCVD)以及分子束外延(MBE)等其他生长方法。
半导体衬底100的晶面指数可以是(100)、(110)或者(111)。绝缘氧化物晶体层一般具有与半导体衬底100相同的晶面指数,例如,半导体衬底100的晶面指数为(100),绝缘氧化物层的晶面指数可以是与之对应的(100),相应地,单晶半导体层的晶面指数也可以是(100),即单晶半导体层的晶面指数与半导体衬底100一致。在本发明的一个实施例中,以(100)晶面的Si为半导体衬底,在其上交替外延具有(100)晶面的单晶氧化铍和具有(100)晶面的Si单晶半导体层,由于Si的晶格常数与氧化铍的两倍非常接近,故能够形成高质量的单晶氧化铍和Si单晶半导体层的交替结构,非常适合用于制作三维NAND闪存器件。
在本发明的一个实施例中,由于除了与衬底接触的绝缘氧化物层外,其他绝缘氧化物层已经确定为单晶氧化铍层,故在单晶氧化铍层上生长的半导体晶体薄膜除了是无应变的Si,还可以为压应变的SiGe、张应变的Si1-yCy(0≤y≤1,其中C为替代原子而非间隙原子)、或者生长弛豫的Ge、GaAs等材料,从而通过设计各层单晶半导体薄膜材料成分及调节其组分,使得单晶半导体薄膜与单晶氧化铍层产生较小的晶格失配,从而使各层单晶半导体薄膜具有特定的应变类型和应变度。具有应变的半导体层有益于改善沟道层的迁移率,例如对NMOSFET而言,张应变有助于提高电子的迁移率,而对PMOSFET而言,压应变有助于提高空穴的迁移率。例如,当在氧化铍晶体上生长SiGe薄膜时,由于Ge的原子半径比Si大,可以获得具有压应变的SiGe薄膜且其应变度随Ge含量增加而增大,适合于制作PMOSFET器件;当在氧化铍晶体上生长硅碳Si1-yCy(0≤y≤1)薄膜时,由于C的原子半径比Si小,可以获得具有张应变的硅碳薄膜且其应变量随C含量增加而增大,适合于制作NMOSFET器件;进一步地,在一些实施例中,至少一层单晶半导体层具有与其他单晶半导体层不同的应变类型,其中张应变的单晶半导体层可以用于制备NMOSFET器件,压应变的单晶半导体层可以用于制备PMOSFET器件;以及,在另一些实施例中,至少一层单晶半导体层具有与其他单晶半导体层不同的应变度,其中低应变的单晶半导体层可以用于制备存储器件,而高应变的单晶半导体层能够获得高载流子迁移率,可以用于制备逻辑器件。
为更好地说明本发明在引入具有应变的单晶半导体层方面的应用,进一步举例如图2所示。图2所示的半导体结构在从下至少依次包括:半导体衬底100;第一绝缘氧化物层201,第一单晶半导体层301;第二绝缘氧化物层202,第二单晶半导体层302;顶层钝化层400。其中半导体衬底100为Si(100),顶层钝化层400为Si或者氮化物等,依据第二单晶半导体层302的材料而定。
在一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为单晶氧化铍,其晶格常数与衬底100匹配(即近似为Si晶格常数的一半),第一单晶半导体层301的材料为应变Si1-yCy(0≤y≤1,其中C为替代原子而非间隙原子)),而第二单晶半导体层302的材料为应变Si1-yGey(0≤y≤1),表层钝化层400为Si,可以使材料表层具有很好的稳定性。该实施例中,由于碳原子半径比硅小、锗原子半径比硅大,则第一单晶半导体层301(即应变Si1-yCy层)具有张应变,具有高的电子迁移率,可以用于制备NMOSFET器件,第二单晶半导体层302(即应变Si1-yGey层)具有压应变,具有高的空穴迁移率,可以用于制备PMOSFET器件,即两个单晶半导体层具有不同的应变类型,分别用于制作不同类型的器件。
在另一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为单晶氧化铍,其晶格常数与衬底100匹配(即近似为Si晶格常数的一半),第一单晶半导体层301的材料为Si,而第二单晶半导体层302的材料为应变Si1-yGey(0≤y≤1),表层钝化层400为Si,可以使材料表层具有很好的稳定性。该实施例中,由于锗原子半径比硅原子大,而第二单晶半导体层302中含有Ge,故第一单晶半导体层301(Si层)为无应变层,第二单晶半导体层302(应变Si1-yGey层)为压应变层,即两个单晶半导体层具有不同的应变度。其中无应变的第一单晶半导体层301(Si层)可以用于制作NMOSFET器件,而具有压应变的第二单晶半导体层302(应变Si1-yGey层)可以用于制作PMOSFET器件。
再一个实施例中,第一绝缘氧化物层201和第二绝缘氧化物层202均为单晶氧化铍,第二绝缘氧化物层202晶格常数与衬底100匹配(即近似为Si晶格常数的一半),第一单晶半导体层301的材料为弛豫Si,而第二单晶半导体层302的材料为弛豫Ge,表层钝化层400为非晶态的氮化硅,可以使材料表层具有很好的稳定性。通过利用这种多层复合结构,有利于减小整个外延层的应变度,获得高质量的单晶半导体层。其中,第二单晶半导体层302(即Ge层)可以用于制作Ge探测器,第一单晶半导体层301(即Si层)可以用于制备MOSFET器件以形成控制Ge探测器的电路结构,实现Ge探测器和控制电路的三维集成。
需指出的是,在上述三个实施例中,可以通过调节各单晶半导体层的组分(即调节Ge、C等元素的含量)以进一步调节该单晶半导体层的应变度。例如,对于压应变Si1-yGey层,当减小Ge的含量时,应变度减小。
本发明提供一种具有氧化铍的半导体结构,通过形成交替堆叠的多层绝缘氧化物层和多层单晶半导体层,由于单晶氧化铍与单晶半导体的晶格常数相匹配,故可以显著降低半导体结构的晶体缺陷,从而有利于在该半导体结构上进一步形成高性能、高密度的三维半导体器件,大幅度提高器件的集成密度,同时也可以实现不同器件的三维集成。并且,由于单晶氧化铍的热导率较之传统的二氧化硅或者氮氧化硅等氧化物高,从而显著地改善器件之间的散热问题,改善器件的性能。另外,该半导体结构的制备工艺可以与传统的半导体制备工艺相兼容,简单易实现,成本低。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (8)

1.一种具有氧化铍的半导体结构,包括:
半导体衬底;和
形成在所述半导体衬底上的交替堆叠的多层绝缘氧化物层和多层单晶半导体层,其中,与所述半导体衬底接触的所述绝缘氧化物层的材料为氧化铍或者二氧化硅,其余的所述绝缘氧化物层的材料为单晶氧化铍,每层所述单晶半导体层包括一层或多层结构,至少一层所述单晶半导体层的材料与其他所述单晶半导体层不同,且所述单晶半导体层具有应变。
2.如权利要求1所述的半导体结构,其特征在于,所述半导体衬底的材料包括单晶Si、单晶SiGe、单晶Ge。
3.如权利要求1所述的半导体结构,其特征在于,每层所述绝缘氧化物层的厚度不小于25nm。
4.如权利要求1所述的半导体结构,其特征在于,所述单晶半导体层的材料包括:Si、Ge、SiGe、III-V族化合物半导体、II-VI族化合物半导体中的任意一种或多种的组合。
5.如权利要求1所述的半导体结构,其特征在于,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变度。
6.如权利要求1所述的半导体结构,其特征在于,至少一层所述单晶半导体层具有与其他所述单晶半导体层不同的应变类型。
7.如权利要求1所述的半导体结构,其特征在于,所述半导体衬底的晶面指数包括(100)、(110)、(111)。
8.如权利要求1所述的半导体结构,其特征在于,所述绝缘氧化物层和所述单晶半导体层均通过外延生长形成。
CN201210401590.XA 2012-10-19 2012-10-19 具有氧化铍的半导体结构 Expired - Fee Related CN102916039B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210401590.XA CN102916039B (zh) 2012-10-19 2012-10-19 具有氧化铍的半导体结构
US13/816,164 US8963295B2 (en) 2012-10-19 2012-12-18 Semiconductor structure with beryllium oxide
PCT/CN2012/086875 WO2014059733A1 (zh) 2012-10-19 2012-12-18 具有氧化铍的半导体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210401590.XA CN102916039B (zh) 2012-10-19 2012-10-19 具有氧化铍的半导体结构

Publications (2)

Publication Number Publication Date
CN102916039A CN102916039A (zh) 2013-02-06
CN102916039B true CN102916039B (zh) 2016-01-20

Family

ID=47614345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210401590.XA Expired - Fee Related CN102916039B (zh) 2012-10-19 2012-10-19 具有氧化铍的半导体结构

Country Status (3)

Country Link
US (1) US8963295B2 (zh)
CN (1) CN102916039B (zh)
WO (1) WO2014059733A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151357A (zh) * 2013-03-26 2013-06-12 清华大学 存储结构及其形成方法
US9159814B2 (en) 2013-03-26 2015-10-13 Tsinghua University Memory structure and method for forming same
US20150311138A1 (en) * 2014-04-29 2015-10-29 Qualcomm Incorporated Transistors with improved thermal conductivity
JP7159080B2 (ja) * 2018-05-10 2022-10-24 株式会社東芝 積層体および半導体装置
US10847364B2 (en) * 2018-05-10 2020-11-24 Kabushiki Kaisha Toshiba Laminated body and semiconductor device
WO2024148176A1 (en) * 2023-01-04 2024-07-11 M7D Corporation Semiconductor substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574227A (zh) * 2003-06-12 2005-02-02 硅电子股份公司 硅绝缘体晶片及其制造方法
CN1998088A (zh) * 2004-04-07 2007-07-11 先进微装置公司 绝缘体上半导体的衬底以及由该衬底所形成的半导体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158944A (ja) * 1982-03-16 1983-09-21 Futaba Corp 半導体装置
JPS6126598A (ja) * 1984-07-12 1986-02-05 Nippon Telegr & Teleph Corp <Ntt> ゲルマニウム薄膜結晶の製造方法
JPH088182A (ja) * 1994-04-22 1996-01-12 Hideo Kawanishi 半導体装置
US20020195599A1 (en) * 2001-06-20 2002-12-26 Motorola, Inc. Low-defect semiconductor structure, device including the structure and method for fabricating structure and device
US6933566B2 (en) * 2001-07-05 2005-08-23 International Business Machines Corporation Method of forming lattice-matched structure on silicon and structure formed thereby
US7452757B2 (en) * 2002-05-07 2008-11-18 Asm America, Inc. Silicon-on-insulator structures and methods
US7247534B2 (en) * 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574227A (zh) * 2003-06-12 2005-02-02 硅电子股份公司 硅绝缘体晶片及其制造方法
CN1998088A (zh) * 2004-04-07 2007-07-11 先进微装置公司 绝缘体上半导体的衬底以及由该衬底所形成的半导体装置

Also Published As

Publication number Publication date
US20140145314A1 (en) 2014-05-29
WO2014059733A1 (zh) 2014-04-24
US8963295B2 (en) 2015-02-24
CN102916039A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
CN102903739B (zh) 具有稀土氧化物的半导体结构
CN102916039B (zh) 具有氧化铍的半导体结构
CN101276791B (zh) 半导体晶片及其制造方法
TWI720050B (zh) 使用稀土金屬氧化物和磊晶氮化鋁製造的射頻濾波器的層結構及其製造方法
US7348259B2 (en) Method of fabricating a semiconductor structure that includes transferring one or more material layers to a substrate and smoothing an exposed surface of at least one of the material layers
TWI725143B (zh) 用於磊晶iii-v層之緩衝的磊晶金屬氧化物之層結構
US20100140755A1 (en) Rare-earth oxides, rare-earth nitrides, rare-earth phosphides and ternary alloys
US7199015B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US7273657B2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US7514726B2 (en) Graded index silicon geranium on lattice matched silicon geranium semiconductor alloy
US20170040209A1 (en) Methods of Forming Nanosheets on Lattice Mismatched Substrates
US8636844B1 (en) Oxygen engineered single-crystal REO template
WO2005065402A2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US8803195B2 (en) Nanomembrane structures having mixed crystalline orientations and compositions
Hartmann et al. Epitaxy of Group-IV semiconductors for quantum electronics
US7495266B2 (en) Strained silicon-on-silicon by wafer bonding and layer transfer
CN115763256A (zh) 一种半导体结构的制备方法及半导体结构
US10943902B2 (en) Forming strained channels for CMOS device fabrication
US20020149023A1 (en) Structure and method for fabricating III-V nitride devices utilizing the formation of a compliant substrate
US20050280081A1 (en) Semiconductor devices having bonded interfaces and methods for making the same
Yamamoto et al. Special Issue on SiGe Materials, Devices and Technologies
JP2003229367A (ja) 半導体薄膜製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120