CN102901715A - 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法 - Google Patents

基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法 Download PDF

Info

Publication number
CN102901715A
CN102901715A CN2012104418366A CN201210441836A CN102901715A CN 102901715 A CN102901715 A CN 102901715A CN 2012104418366 A CN2012104418366 A CN 2012104418366A CN 201210441836 A CN201210441836 A CN 201210441836A CN 102901715 A CN102901715 A CN 102901715A
Authority
CN
China
Prior art keywords
micro
nano
fluorescence
substrate
periodic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104418366A
Other languages
English (en)
Inventor
崔小强
郑伟涛
刘畅
张雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN2012104418366A priority Critical patent/CN102901715A/zh
Publication of CN102901715A publication Critical patent/CN102901715A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法,该芯片基于表面等离激元共振增强荧光技术的微/纳米周期结构作为微阵列生物芯片基底材料。在玻璃或/和高分子衬底上加工一系列微/纳米周期结构:周期400-800nm,深度为20-100nm,继以沉积多层功能薄膜,使其具有表面等离激元共振耦合增强荧光作用。基底上的生物分子微阵列分析的荧光信号强度和灵敏度被提高约10倍,这种微/纳米周期结构有潜力成为全新的低成本、高通量、超灵敏的微阵列生物芯片基底材料。其特点是:将表面等离激元共振增强荧光与微阵列生物芯片技术结合,结构简单,取材灵活多样,适合大批量生产和高通量检测。

Description

基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法
技术领域
本发明涉及一种新型基于表面等离激元共振(Surface Plasmon Resonance,SPR)增强荧光的微/纳米周期结构,作为生物传感芯片基底材料,在这基底上书写蛋白质微阵列并进行扫描,可以提高表面的荧光信号强度约10倍,有助于提高检测目标分子的灵敏度,使这种微/纳米周期结构成为全新的低成本、高通量、超灵敏的微阵列生物芯片基底材料。
背景技术
微阵列生物芯片(Microarray)是一种被广泛应用于基因、蛋白质、糖类、细胞以及其他生物组分的高通量分析方法。它的主要原理是在活化的固体基底上利用机械或化学的方法制备各种生物分子包括DNA、糖类、蛋白质等的矩阵排列,然后通过分子间的特异性相互作用对各种生命物质进行分析检测。
微阵列芯片的制作通常涉及芯片基底材料的选择,芯片的表面修饰,芯片生物标记材料的选择等步骤。理想的芯片表面应具有尺寸准确、平滑、平整、均一、荧光惰性等特点,通常使用的芯片基底是商业化载玻片、硅片以及高聚物的薄片。在芯片的表面修饰方面,氨基化表面是最早被开发利用的,但它与生物分子之间的静电作用会引起较多的非特异性吸附,造成较强的背底;醛基修饰表面在空气中容易被氧气氧化成羧基而使醛基部分失活,不利于芯片的长期保存;最近,越来越多的研究者利用环氧修饰表面,它既可以固定末端修饰有羟基、氨基的生物分子,并且环氧化的表面可以在空气中稳定保存几个月。在芯片生物标记材料的选择上,传统的放射性标记法的灵敏度高,但其操作复杂,危害性大,现在已经不常见;使用金属纳米粒子作为生物标记材料,具有很好的光稳定性,但实验过程比较繁琐;荧光标记法是目前应用最普遍的标记形式,具有灵敏度高,操作简便等特点,但荧光标记的光稳定性普遍较差,光漂白作用严重,实验过程中应注意避光,防止光漂白现象的发生。
本发明的设计是在石英或其他高分子材料基底上利用传统的微/纳加工技术或者新型的纳米压印复制的方法获得一系列微/纳米周期结构(不同周期,不同深度的一维线性光栅和二维纳米孔),在这种结构表面沉积Au或者Ag等膜层结构,表面继以环氧修饰,形成一种可以作为微阵列生物芯片基底材料的微/纳米周期结构,以达到提高芯片表面荧光信号强度生物的效果,实现提高检测灵敏度的目的。
本发明设计的芯片基底材料的原理是基于微/纳米周期结构耦合表面等离激元共振现象以达到增强芯片表面荧光信号强度的效果。表面等离激元共振是金属纳米结构非常独特的光学特性,金属薄膜表面介电常数和厚度的变化会影响SPR曲线的变化,从而实现对金属表面介质环境变化的传感。微量的分子吸附就可以导致表面等离激元共振频率的改变,从而引起光谱的变化;一些特殊的纳米结构也可以导致局域光电场的显著增强,这可以使得吸附分子的拉曼散射强度增强几个至十几个数量级。随着纳米合成手段与材料加工技术的发展,以SPR为基础的研究日益活跃,并派生出众多的研究分支,例如表面光电场增强、表面增强光谱、光透射增强、表面等离激元生物传感器等等。等离激元材料学的研究使研究者看到了发展具有超高检测灵敏度的新型传感器的极大希望。在国际上,面向这一领域的材料学基础理论研究和实验探索正在如火如荼的进行之中,在国内这些研究才刚刚起步。
目前,有三种在金属表面激发SPR的方法:棱镜耦合、金属纳米粒子耦合以及周期排列微/纳米结构耦合。相对于其他两种耦合方式,在平面上周期排列的纳/微米金属结构激发SPR由于具有共振角度小、耦合效率高、有效距离长、使用成本低、易于显微观察等特点,因此特别适合于在光电器件、平面集成以及光谱增强等传感器等方面的开发应用。
本发明将基于表面等离激元共振技术的微/纳米周期结构作为微阵列生物芯片的基底,目的是将SPR与微阵列芯片两种新兴检测手段完美的结合在一起。微阵列生物芯片技术虽然在上个世纪末才刚刚起步,但如今它已在基因表达、疾病检测、环境监测、预防医学、食品监督等诸多领域均有贡献,具有广阔的应用前景。通过两者(SPR技术与微阵列芯片技术)的完美结合,一方面可以实现传统SPR技术不能实现的高通量检测,另一方面,微/纳米周期结构耦合的SPR激发出的消逝场对微阵列生物芯片表面的荧光信号等进行增强,也可以为更多的研究者提供一种芯片表面的信号放大技术,可以达到提高检测灵敏度的目的。
发明内容
本发明着重解决的问题是,在石英以及其他高分子基底上制备一系列不同周期、不同深度的微/纳米周期结构,利用磁控溅射设备对基底镀膜用于激发表面等离激元,形成性能优异的生物芯片。把沉积膜层的微/纳米周期结构作为微阵列生物芯片的基底,书写蛋白质微阵列。扫描后,这种新型基底有效地提高了芯片表面的荧光信号强度,与传统使用的玻璃芯片相比,荧光信号强度提高了约10倍。
以抗体(Cy5-IgG)为检测模型,验证本发明设计的可行性。在三种不同的基底材料上(Au包覆的一维光栅、Au包覆的玻璃、裸玻璃)书写蛋白质微阵列,检测并对比不同基底上的荧光强度。
本发明的主要内容是:
一种基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法,在石英在内的玻璃或/和高分子衬底上加工一系列微/纳米周期结构:周期400-800nm,深度为20-100nm,继以沉积多层功能薄膜,使其具有表面等离激元共振耦合增强荧光作用,用于低成本高通量检测的微阵列生物芯片;
所述表面等离激元共振耦合增强荧光用作微阵列生物芯片基底材料的微/纳米周期结构,所述多层功能薄膜结构包括:用于改善基底与金属之间的附着性的增强吸附层,包含0.4-2.0nm的Cr,Ti;表面等离激元激发层,包含20-200nm的Ag,Au,Al;用于表面修饰生物分子以及防止荧光淬灭的隔离层,包含10-500nm的ZnO,SiO2,TiO2,MgF2
所述表面用于生物分子修饰表面及微阵列分析。
所述芯片表面修饰采用包括GPTS的乙醇溶液的硅烷化试剂对结构表面进行修饰,便于与蛋白质分子的结合。
所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片的制备方法:
采用双光束干涉刻蚀的方法,在给定激光波长下,通过改变干涉光刻设备中反射镜的角度获得不同周期的光栅,具体的制备过程分为三个步骤:
步骤一,首先,包括石英在内的玻璃或/和高分子衬底材料在体积分数1%的Hellmanex II(表面活性剂)溶液中超声清洗15-20min,随后使用去离子水和酒精彻底漂洗,并在空气中彻底干燥;
步骤二,其次,清洁的基底被悬涂上一层厚度为0.5-2μm的正光刻胶,光刻胶的图案化过程是使用一束干涉He-Cd激光曝光100s实现的,通过改变照射时间,控制光栅结构的占空比:台形结构的半高宽与周期的比值,曝光、显影后直接进行干法刻蚀,获得一维周期性光栅,第一次曝光后,将基底旋转90°进行二次曝光,再继以显影、刻蚀步骤,获得二维纳米孔周期阵列结构;
步骤三,使用干法刻蚀机对曝光后的基底进行干法刻蚀,光栅的深度是通过改变刻蚀时间来实现的,通常的刻蚀速率为2nm/s;
在不同沉底材料的微/纳米周期结构进行膜层的覆盖,使用多靶磁控溅射设备在周期结构表面一步完成膜层结构的沉积,这些膜层结构包括Cr膜用于改善基底与金属或介质层与金属之间的附着性,Ag或Au膜用来激发表面等离激元;SiO2介质隔离层用于芯片的表面修饰以及防止荧光淬灭,以沉积膜层后的微/纳米周期结构为基底获得性能优异的生物芯片。
所述膜层结构的沉积是将清洁的带有微/纳米周期结构的衬底材料放入真空室内,当真空室的真空度高于4×10-4Pa时,进行薄膜沉积∶首先使用直流溅射电源沉积一层1-2nm的Cr,沉积时间10-15s,工作压强1-2Pa,来改善Au与石英之间的附着程度;
继续利用直流溅射电源依次沉积145-155nm厚的Au和一层更薄的Cr,0.4-0.6nm,沉积Au用于激发表面等离激元,沉积时间1000-1200s,工作压强1-2Pa;
为了防止荧光分子能量转移引起的荧光淬灭以及便于使用硅烷化试剂对芯片表面进行环氧修饰,利用射频磁控溅射电源沉积一层厚度为20-30nm的SiO2,沉积时间1500-1800s,工作压强1-1.5Pa,偏压:-60--80V。
所述芯片的表面修饰是将体积分数5%的GPTS乙醇溶液滴在制备好芯片表面培育2h,然后用乙醇冲洗表面除去残余的硅烷化试剂并用N2吹干,在110℃的真空烘箱中培育2h,使用的点样液是PH=7.4的0.01M PBS溶液,优化后点样液中体积分数为2.5%-10%保湿剂甘油和体积分数为0.002%-0.008%的表面活性剂Triton X-100,并加入10-50μg/ml的Cy5标记的IgG。
所述点样过程按以下步骤进行:
步骤一,取15μl点样液加入孔板,利用接触式点样机器人进行点样,点样完成后,将芯片放在30-40℃的真空烘箱避光培育8-12h;
步骤二,培育后取出样品,样品进行振荡清洗,先使用pH=8.0的0.05M TBS溶液清洗三次,每次3-5min,再使用去离子水漂洗三次,每次3-5min,清洗后用N2吹干。
使用带有635nm激光器的微阵列扫描仪对芯片进行扫描,具体的扫描参数是:分辨率:5-40μm;激光功率:80%-95%;光电倍增系数:800-850。
使用优化后的点样液(甘油含量5%,Triton X-100含量0.002%)在不同环氧修饰后的基底(玻璃、Au薄膜、Au周期:400nm、深度:30nm一维光栅)上书写微阵列,微阵列扫描荧光图像和荧光强度柱状图参阅图4
本发明的技术效果是:
以抗体(Cy5-IgG)为检测模型,验证本发明设计的可行性。完成微阵列书写后,样品在30-40℃真空环境中培育8-12h后,使用微阵列扫描仪扫描,获得不同基底上的荧光增强效果,结果表明在覆盖膜层后的微/纳米周期结构获得的荧光信号的强度约是两种对照基底上信号强度的10倍。这种微/纳米周期结构有潜力成为全新的低成本、高通量、超灵敏的微阵列生物芯片基底材料。本发明的主要特点是:将表面等离激元共振增强荧光与微阵列生物芯片技术结合,结构简单,取材灵活多样,适合大批量生产和高通量检测。
附图说明
图1(a)是发明的一维光栅周期结构示意图的俯视图。
图1(b)是发明的二维纳米孔阵列周期结构示意图的俯视图。
图1(c)是发明设计的微/纳米周期结构表面膜层结构截面的示意图。
图2(a)是周期400nm,深度30nm的一维光栅覆盖膜层前后的原子力显微镜(AFM)图。
图2(b)是周期500nm,深度20nm的二维纳米孔覆盖金属膜前的AFM图。
图3(a)是周期为400nm,深度30nm的一维光栅在空气中与水中的SPR曲线。
图3(b)是周期为500nm,深度30nm的一维光栅在空气中与水中的SPR曲线。
图4是三种不同基底上的微阵列扫描荧光图像和荧光强度柱状图。
图1(c)中的数字分别代表:
1.是发明的微/纳米周期结构的深度(光栅以及纳米孔的深度),深度的范围是20-100nm;
2.是发明的微/纳米周期结构的周期,周期的范围是400-800nm;
3.是电介质隔离层,材料可以是SiO2、MgF2、ZnO、TiO2等半导体材料,厚度为20-500nm;
4.是隔离层与表面等离激元激发层之间的金属过渡层,材料可以是Cr和Ti等金属,厚度0.4-0.6nm;
5.是表面等离激元激发层,材料可以是Ag或Au,厚度30-200nm;
6.是表面等离激元激发层与基底之间的金属过渡层,材料可是以Cr和Ti等金属,厚度1-2nm;
7.是包括石英在内的玻璃或高分子薄片等用于制作微纳米周期结构的基底。
具体实施方式
下面进一步说明本发明的具体实施方式。
在石英基底上获得一系列周期400-800nm,深度20-100nm的微/纳米周期结构是采用双光束干涉刻蚀的方法实现。在给定激光波长下,通过改变干涉光刻设备中反射镜的角度可以获得不同周期的光栅。具体的制备过程分为三个步骤:首先,石英基底在体积分数1%的Hellmanex II(表面活性剂)溶液中超声清洗15-20min,随后使用去离子水和酒精彻底漂洗,并在空气中彻底干燥。其次,清洁的石英基底被悬涂上一层厚度为0.5-2μm的正光刻胶。光刻胶的图案化过程是使用一束干涉He-Cd激光曝光100s实现的。通过改变照射时间,可以控制光栅结构的占空比(台形结构的半高宽与周期的比值)。曝光、显影后直接进行干法刻蚀,可以获得一维周期性光栅。第一次曝光后,将基底旋转90°进行二次曝光,再继以显影、刻蚀等步骤,可以获得二维纳米孔周期阵列结构,一维周期性光栅和二维纳米孔周期结构的示意图参见图1。第三,使用干法刻蚀机对曝光后的基底进行干法刻蚀。光栅的深度是通过改变刻蚀时间来实现的,通常的刻蚀速率为2nm/s。
在石英光栅上实现膜层的覆盖,采用多靶磁控溅射设备一步完成。本发明的多靶磁控溅射设备配有多个不同功率的直流溅射电源和一个射频溅射电源,可以沉积各类金属以及半导体薄膜。膜层结构的示意图参阅图1。将清洁的石英光栅放入真空室内,当真空室的真空度高于4×10-4Pa时,可以进行薄膜沉积。首先使用直流溅射电源沉积一层1-2nm的Cr(沉积时间10-15s,工作压强1-2Pa)来改善Au与石英之间的附着程度。继续利用直流溅射电源依次沉积145-155nm厚的Au用于激发表面等离激元(沉积时间1000-1200s,工作压强1-2Pa)、另外一层更薄的Cr(0.4-0.6nm)。为了防止荧光分子能量转移引起的荧光淬灭以及便于使用硅烷化试剂对芯片表面进行环氧修饰,本发明利用射频磁控溅射电源沉积一层厚度为20-30nm的SiO2(沉积时间1500-1800s,工作压强1-1.5Pa,偏压:-60--80V)。使用AFM在轻敲模式下对膜层覆盖前后的周期分别是400nm、500nm,深度30nm的一维光栅表面形貌进行表征,参阅图2。
周期400nm和500nm,深度30nm的一维光栅结构在空气中与PBS溶液中的SPR曲线是使用实验室搭建的SPR设备(入射激光波长:632.8nm)在角度扫描模式下获得的,参阅图4。
芯片表面的修饰是将体积分数5%的GPTS乙醇溶液滴在制备好芯片表面培育2h,然后用乙醇冲洗表面除去残余的硅烷化试剂并用N2吹干,在110℃的真空烘箱中培育2h。
本发明使用的点样液是0.01M PBS溶液(PH=7.4),优化后点样液中保湿剂甘油(体积分数2.5%-10%)和表面活性剂Triton X-100(体积分数0.002%-0.008%),并加入10-50μg/ml的Cy5标记的IgG。点样的具体过程是:
1.取15μl点样液加入孔板,利用接触式点样机器人进行点样。点样完成后,将芯片放在30-40℃的真空烘箱避光培育8-12h。
2.培育后取出样品,样品进行振荡清洗。先使用0.05M TBS溶液(pH=8.0)清洗三次,每次3-5min。再使用去离子水漂洗三次,每次3-5min,清洗后用N2吹干。
使用带有635nm激光器的微阵列扫描仪对芯片进行扫描,具体的扫描参数是:分辨率:5-40μm;激光功率:80%-95%;光电倍增系数:800-850。
使用优化后的点样液(甘油含量5%,Triton X-100含量0.002%)在不同环氧修饰后的基底(玻璃、Au薄膜、Au周期:400nm、深度:30nm一维光栅)上书写微阵列,微阵列扫描荧光图像和荧光强度柱状图参阅图4。

Claims (6)

1.一种基于微/纳米周期结构的荧光增强微阵列生物芯片,其特征在于:
在玻璃或/和高分子衬底上加工一系列微/纳米周期结构:周期400-800nm,深度为20-100nm,继以沉积多层功能薄膜,使其具有表面等离激元共振耦合增强荧光作用,用于低成本高通量检测的微阵列生物芯片;
所述表面等离激元共振耦合增强荧光用作微阵列生物芯片基底材料的微/纳米周期结构,所述多层功能薄膜结构包括:用于改善基底与金属之间的附着性的增强吸附层,包含0.4-2.0nm的Cr,Ti;表面等离激元激发层,包含20-200nm的Ag,Au,Al;用于表面修饰生物分子以及防止荧光淬灭的隔离层,包含10-500nm的ZnO,SiO2,TiO2,MgF2
所述表面用于生物分子修饰表面及微阵列分析。
2.根据权利要求1所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片,其特征在于:
所述芯片表面修饰采用包括GPTS的乙醇溶液的硅烷化试剂对结构表面进行修饰,便于与蛋白质分子的结合。
3.根据权利要求1或2所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片的制备方法,其特征在于:
采用双光束干涉刻蚀的方法,在给定激光波长下,通过改变干涉光刻设备中反射镜的角度获得不同周期的光栅,具体的制备过程分为三个步骤:
步骤一,首先,包括石英在内的玻璃或/和高分子衬底在体积分数1%的Hellmanex II表面活性剂溶液中超声清洗15-20min,随后使用去离子水和酒精彻底漂洗,并在空气中彻底干燥;
步骤二,其次,清洁的基底被悬涂上一层厚度为0.5-2μm的正光刻胶,光刻胶的图案化过程是使用一束干涉He-Cd激光曝光100s实现的,通过改变照射时间,控制光栅结构的占空比:台形结构的半高宽与周期的比值,曝光、显影后直接进行干法刻蚀,获得一维周期性光栅,第一次曝光后,将基底旋转90°进行二次曝光,再继以显影、刻蚀步骤,获得二维纳米孔周期阵列结构;
步骤三,使用干法刻蚀机对曝光后的基底进行干法刻蚀,光栅的深度是通过改变刻蚀时间来实现的,通常的刻蚀速率为2nm/s;
在包括石英或其他高分子衬底材料的微/纳米上周期结构上进行膜层的覆盖,使用多靶磁控溅射设备在周期结构表面一步完成膜层结构的沉积,这些膜层结构包括Cr膜用于改善基底与金属或介质层与金属之间的附着性,Ag或Au膜用来激发表面等离激元;SiO2介质隔离层用于芯片的表面修饰以及防止荧光淬灭,以沉积膜层后的微/纳米周期结构为基底获得性能优异的生物芯片。
4.根据权利要求3所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片的制备方法,其特征在于:
所述膜层结构的沉积是将清洁的带有微/纳米周期结构的衬底材料放入真空室内,当真空室的真空度高于4×10-4Pa时,进行薄膜沉积∶首先使用直流溅射电源沉积一层1-2nm的Cr,沉积时间10-15s,工作压强1-2Pa,来改善Au与石英之间的附着程度;
继续利用直流溅射电源依次沉积145-155nm厚的Au和一层更薄的Cr,0.4-0.6nm,沉积Au用于激发表面等离激元,沉积时间1000-1200s,工作压强1-2Pa;
为了防止荧光分子能量转移引起的荧光淬灭以及便于使用硅烷化试剂对芯片表面进行环氧修饰,利用射频磁控溅射电源沉积一层厚度为20-30nm的SiO2,沉积时间1500-1800s,工作压强1-1.5Pa,偏压:-60--80V。
5.根据权利要求3或4所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片的制备方法,其特征在于:
所述芯片的表面修饰是将体积分数5%的GPTS乙醇溶液滴在制备好芯片表面培育2h,然后用乙醇冲洗表面除去残余的硅烷化试剂并用N2吹干,在110℃的真空烘箱中培育2h,使用的点样液是PH=7.4的0.01M PBS溶液,优化后点样液中体积分数为2.5%-10%保湿剂甘油和体积分数为0.002%-0.008%的表面活性剂Triton X-100,并加入10-50μg/ml的Cy5标记的IgG。
6.根据权利要求5所述的一种基于微/纳米周期结构的荧光增强微阵列生物芯片的制备方法,其特征在于:
所述点样过程按以下步骤进行:
步骤一,取15μl点样液加入孔板,利用接触式点样机器人进行点样,点样完成后,将芯片放在30-40℃的真空烘箱避光培育8-12h;
步骤二,培育后取出样品,样品进行振荡清洗,先使用pH=8.0的0.05M TBS溶液清洗三次,每次3-5min,再使用去离子水漂洗三次,每次3-5min,清洗后用N2吹干。
CN2012104418366A 2012-11-07 2012-11-07 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法 Pending CN102901715A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104418366A CN102901715A (zh) 2012-11-07 2012-11-07 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104418366A CN102901715A (zh) 2012-11-07 2012-11-07 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法

Publications (1)

Publication Number Publication Date
CN102901715A true CN102901715A (zh) 2013-01-30

Family

ID=47574068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104418366A Pending CN102901715A (zh) 2012-11-07 2012-11-07 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN102901715A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353452A (zh) * 2013-07-12 2013-10-16 北京惟馨雨生物科技有限公司 细胞载体芯片及利用其进行单细胞快速鉴定或分选的方法
CN104198441A (zh) * 2014-09-09 2014-12-10 吉林大学 一种限域型表面等离子体共振传感器、制备方法及其应用
CN104360438A (zh) * 2014-11-14 2015-02-18 四川飞阳科技有限公司 测量y结构分岔口刻蚀深度的方法及基材
CN104880447A (zh) * 2015-06-09 2015-09-02 吉林大学 一种新型ZnO NRs/Au膜复合三维微阵列生物芯片基底及其制备方法
CN105203511A (zh) * 2015-09-14 2015-12-30 东南大学 一种具有荧光增强效果的基底的制备方法
CN105241635A (zh) * 2015-09-01 2016-01-13 中国科学院苏州生物医学工程技术研究所 用于测试分辨率的荧光纳米标准板的制备方法
CN108088996A (zh) * 2017-12-08 2018-05-29 深圳市检验检疫科学研究院 疟疾快速检测
CN108436253A (zh) * 2018-02-26 2018-08-24 北京航空航天大学 一种sers-荧光双模式金属增强基底的制备方法
CN109725375A (zh) * 2018-12-21 2019-05-07 中国电子科技集团公司第四十四研究所 一种ⅲ-ⅴ族材料纳米光栅刻蚀方法
CN110133770A (zh) * 2019-05-10 2019-08-16 中国科学院微电子研究所 纳米线栅结构、荧光各向异性增强装置及其制备方法
WO2019165713A1 (zh) * 2018-03-01 2019-09-06 东南大学 一种等离激元多谐振机制增强的可调超光谱探测芯片
WO2020108664A1 (zh) * 2018-11-27 2020-06-04 茂莱(南京)仪器有限公司 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN111239052A (zh) * 2020-02-16 2020-06-05 中北大学 一种双周期纳米孔芯片的弹光调制偏振成像生物传感系统
CN112547147A (zh) * 2020-11-23 2021-03-26 武汉世纪康敏生物科技有限公司 一种免疫检测芯片及其制备方法
CN112877213A (zh) * 2021-03-29 2021-06-01 中北大学 一种神经元定向生长和神经太赫兹信号激励集成芯片
CN113514397A (zh) * 2021-06-18 2021-10-19 淮阴工学院 一种增强免疫检测中荧光信号收集效率的装置及制备方法
WO2022001021A1 (zh) * 2020-07-03 2022-01-06 西湖大学 光学生物传感器及covid-19病毒检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256331A1 (en) * 2002-08-06 2006-11-16 University Of Maryland, Baltimore Optical structures for metal-enhanced sensing
EP1953554A2 (en) * 2007-01-31 2008-08-06 FUJIFILM Corporation A method for production of physiologically active substance-immobilized substrate
WO2008130735A1 (en) * 2007-02-26 2008-10-30 Wisconsin Alumni Research Foundation Surface plasmon resonance compatible carbon thin films
CN102002670A (zh) * 2010-12-17 2011-04-06 中国科学院长春应用化学研究所 一种表面等离子体共振芯片的制备方法
JP2011226925A (ja) * 2010-04-20 2011-11-10 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレート及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256331A1 (en) * 2002-08-06 2006-11-16 University Of Maryland, Baltimore Optical structures for metal-enhanced sensing
EP1953554A2 (en) * 2007-01-31 2008-08-06 FUJIFILM Corporation A method for production of physiologically active substance-immobilized substrate
WO2008130735A1 (en) * 2007-02-26 2008-10-30 Wisconsin Alumni Research Foundation Surface plasmon resonance compatible carbon thin films
JP2011226925A (ja) * 2010-04-20 2011-11-10 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレート及びその製造方法
CN102002670A (zh) * 2010-12-17 2011-04-06 中国科学院长春应用化学研究所 一种表面等离子体共振芯片的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TAWA, K等: "Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy", 《BIOPHYSICAL JOURNAL》, vol. 89, no. 4, 31 October 2005 (2005-10-31) *
WEIHUA HU等: ""ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification", 《BIOSENSORS AND BIOELECTRONICS》, vol. 26, no. 8, 26 February 2011 (2011-02-26) *
XIAOQIANG CUI等: "Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging", 《ADVANCED FUNCTIONAL MATERIALS》, vol. 20, no. 4, 19 January 2010 (2010-01-19) *
XIAOQIANG CU等: "Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array", 《ADVANCED FUNCTIONAL MATERIALS》, vol. 20, no. 6, 25 February 2010 (2010-02-25) *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353452B (zh) * 2013-07-12 2016-08-17 上海合森生物科技有限公司 细胞载体芯片及利用其进行单细胞快速鉴定或分选的方法
CN103353452A (zh) * 2013-07-12 2013-10-16 北京惟馨雨生物科技有限公司 细胞载体芯片及利用其进行单细胞快速鉴定或分选的方法
CN104198441A (zh) * 2014-09-09 2014-12-10 吉林大学 一种限域型表面等离子体共振传感器、制备方法及其应用
CN104198441B (zh) * 2014-09-09 2017-01-18 吉林大学 一种限域型表面等离子体共振传感器、制备方法及其应用
CN104360438B (zh) * 2014-11-14 2017-02-22 四川飞阳科技有限公司 测量y结构分岔口刻蚀深度的方法及基材
CN104360438A (zh) * 2014-11-14 2015-02-18 四川飞阳科技有限公司 测量y结构分岔口刻蚀深度的方法及基材
CN104880447A (zh) * 2015-06-09 2015-09-02 吉林大学 一种新型ZnO NRs/Au膜复合三维微阵列生物芯片基底及其制备方法
CN104880447B (zh) * 2015-06-09 2018-02-13 吉林大学 一种ZnO NRs/Au膜复合三维微阵列生物芯片基底及其制备方法
CN105241635A (zh) * 2015-09-01 2016-01-13 中国科学院苏州生物医学工程技术研究所 用于测试分辨率的荧光纳米标准板的制备方法
CN105203511A (zh) * 2015-09-14 2015-12-30 东南大学 一种具有荧光增强效果的基底的制备方法
CN108088996A (zh) * 2017-12-08 2018-05-29 深圳市检验检疫科学研究院 疟疾快速检测
CN108436253B (zh) * 2018-02-26 2020-07-17 北京航空航天大学 一种sers-荧光双模式金属增强基底的制备方法
CN108436253A (zh) * 2018-02-26 2018-08-24 北京航空航天大学 一种sers-荧光双模式金属增强基底的制备方法
US11060916B2 (en) 2018-03-01 2021-07-13 Southeast University Adjustable hyperspectral detection chip enhanced by multi-resonance plasmonic mechanism
WO2019165713A1 (zh) * 2018-03-01 2019-09-06 东南大学 一种等离激元多谐振机制增强的可调超光谱探测芯片
WO2020108664A1 (zh) * 2018-11-27 2020-06-04 茂莱(南京)仪器有限公司 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN109725375A (zh) * 2018-12-21 2019-05-07 中国电子科技集团公司第四十四研究所 一种ⅲ-ⅴ族材料纳米光栅刻蚀方法
CN110133770A (zh) * 2019-05-10 2019-08-16 中国科学院微电子研究所 纳米线栅结构、荧光各向异性增强装置及其制备方法
CN111239052A (zh) * 2020-02-16 2020-06-05 中北大学 一种双周期纳米孔芯片的弹光调制偏振成像生物传感系统
WO2022001021A1 (zh) * 2020-07-03 2022-01-06 西湖大学 光学生物传感器及covid-19病毒检测装置
CN112547147A (zh) * 2020-11-23 2021-03-26 武汉世纪康敏生物科技有限公司 一种免疫检测芯片及其制备方法
CN112547147B (zh) * 2020-11-23 2022-06-14 北京康敏生物科技有限公司 一种免疫检测芯片及其制备方法
CN112877213A (zh) * 2021-03-29 2021-06-01 中北大学 一种神经元定向生长和神经太赫兹信号激励集成芯片
CN113514397A (zh) * 2021-06-18 2021-10-19 淮阴工学院 一种增强免疫检测中荧光信号收集效率的装置及制备方法

Similar Documents

Publication Publication Date Title
CN102901715A (zh) 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法
Shrivastav et al. A comprehensive review on plasmonic-based biosensors used in viral diagnostics
Shin et al. A plasmonic biosensor array by block copolymer lithography
JP4992000B2 (ja) ターゲット・オリゴヌクレオチド・ストランドを検出するセンサ・システム及び方法
Yeom et al. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference
Negri et al. Ag nanorod based surface‐enhanced Raman spectroscopy applied to bioanalytical sensing
Lu et al. Low-concentration mechanical biosensor based on a photonic crystal nanowire array
Hassan et al. A review on plasmonic and metamaterial based biosensing platforms for virus detection
Li et al. Well-designed metal nanostructured arrays for label-free plasmonic biosensing
WO2014129933A1 (ru) Биологический сенсор и способ создания биологического сенсора
Zhang et al. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates
Crouch et al. Zero-mode waveguide nanophotonic structures for single molecule characterization
Handschuh-Wang et al. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques
CN102798615A (zh) 一种基于周期性纳米结构的生物传感器及其制备方法
Rong et al. A high-throughput fully automatic biosensing platform for efficient COVID-19 detection
CN100399059C (zh) 有构图薄层的微阵列基底,含该基底的微阵列及其制备法
Rella et al. Liquid phase SPR imaging experiments for biosensors applications
Im et al. Characterization of extracellular vesicles by surface plasmon resonance
CN102680453A (zh) 一种涂覆增益介质的拉曼光谱高电磁增强基底及制备
Sonato et al. Enhanced sensitivity azimuthally controlled grating-coupled surface plasmon resonance applied to the calibration of thiol-poly (ethylene oxide) grafting
CN103712951B (zh) 一种基于三维结构纳米阵列生物芯片的制备方法及其应用
Memisevic et al. Characterization of a novel ultra-low refractive index material for biosensor application
Tan et al. Stretchable and Flexible Micro–Nano Substrates for SERS Detection of Organic Dyes
JP4759732B2 (ja) Dnaの検出方法、dna検出用の金属構造体およびdnaの検出装置
Rodríguez-Franco et al. Fabrication of broad area optical nanostructures for high throughput chemical sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130130