WO2020108664A1 - 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置 - Google Patents

一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置 Download PDF

Info

Publication number
WO2020108664A1
WO2020108664A1 PCT/CN2020/070194 CN2020070194W WO2020108664A1 WO 2020108664 A1 WO2020108664 A1 WO 2020108664A1 CN 2020070194 W CN2020070194 W CN 2020070194W WO 2020108664 A1 WO2020108664 A1 WO 2020108664A1
Authority
WO
WIPO (PCT)
Prior art keywords
stepped
biochip
gene sequencing
sequencing device
fluorescent
Prior art date
Application number
PCT/CN2020/070194
Other languages
English (en)
French (fr)
Inventor
余美群
周威
Original Assignee
茂莱(南京)仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂莱(南京)仪器有限公司 filed Critical 茂莱(南京)仪器有限公司
Priority to US17/297,466 priority Critical patent/US20210325655A1/en
Publication of WO2020108664A1 publication Critical patent/WO2020108664A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/021Adjust spacings in an array of wells, pipettes or holders, format transfer between arrays of different size or geometry
    • B01L2200/022Variable spacings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors

Definitions

  • the invention relates to a step type biochip and a gene sequencing device used for detecting the biochip, belonging to the technical field of optical measurement.
  • Gene sequencing is a new type of medical detection technology, which is of great significance, so the popularity at home and abroad remains high. How to achieve low-cost high-speed gene sequencing has always been the research direction of many companies.
  • the genetic sequencing devices that are industrialized all use 20X microscope objectives equipped with high NA (to achieve high resolution, usually the resolution is in the sub-micron level) to achieve fluorescence signal collection; and use coaxial illumination, at the same time
  • the precision inhibits the laser from entering the filter of the camera (cut-off depth is greater than 6) to improve the signal-to-noise ratio of the gene sequencing device, thereby realizing the imaging analysis of the fluorescent signal. Therefore, the cost of existing gene sequencing equipment is very high, and the requirements for each device are also extremely demanding.
  • the technical problem to be solved by the present invention is to provide a stepped biochip which can enable a gene sequencing device to obtain information by taking multiple images in the same field of view, An image represents a step depth, assuming that the chip has N steps, then N images can be taken in the same field of view (by moving the Z axis), and by recording the number of shots, the positions of these images can be accurately known. If the resolution of the objective lens used in this device is ⁇ , the resolution of the objective lens can be increased to ⁇ /N by using a stepped biochip.
  • the technical problem to be solved by the present invention is to provide a gene sequencing device for detecting the above-mentioned stepped biochip.
  • the gene sequencing device does not need to use a high-resolution microscope objective, as long as a standard microscope objective is used. High-resolution imaging, and no filter is needed in the device, which greatly reduces the cost of gene sequencing equipment.
  • the technical solutions adopted by the present invention are:
  • a step type biochip includes a base and a fluorescent ball carrying biological information at the top of the base, and the height of the center point of the adjacent fluorescent ball from the bottom edge A of the base increases or decreases with equal values.
  • adjacent fluorescent balls are arranged in a step shape, a plurality of fluorescent balls arranged in a step shape form a group, and a plurality of sets of fluorescent balls arranged in a step shape are sequentially arranged on the biochip.
  • a gene sequencing device for detecting the above-mentioned stepped biochip includes a chip placement platform and a stepped biochip placed on the platform, a micro objective lens above the chip placement platform, and a stepped illumination at a certain angle of incidence Illumination light source on the biochip; wherein the stepped biochip includes a base and a fluorescent ball carrying biological information at the top of the base, and the height of the center point of the adjacent fluorescent ball from the bottom edge A of the base increases or decreases by an equal number .
  • the height difference between adjacent fluorescent balls is greater than 2 times the depth of focus of the microscope objective.
  • the included angle between the incident light emitted by the illumination light source and the biochip is greater than 0° and less than 90°, specifically, the incident angle of the illumination light source is greater than arctan(D/2L); where D is the diameter of the microscope objective and L is The vertical distance from the objective lens to the biochip.
  • the horizontal interval of adjacent fluorescent beads is submicron level, and the depth of the step (the vertical height difference between the center points of adjacent fluorescent beads) is greater than 2 times the focal depth of the objective lens, preventing the fluorescence images of different step depths from affecting each other and ensuring a single photo Only for the depth of the fluorescent signal, the relevant signal is confirmed through the step information (that is, the corresponding luminescent fluorescent ball is positioned by express delivery), and the high-resolution imaging of the low NA objective lens is realized.
  • the gene sequencing device of the present invention uses a low-magnification standard microscopic objective lens, and the field of view is much larger than the traditional 20X objective lens, thereby improving the scanning speed of the device;
  • the gene sequencing device of the present invention uses an oblique incidence illumination mode, and the illumination light cannot enter the system Become background stray light, which greatly improves the signal-to-noise ratio of the system, and at the same time no longer requires a high-precision filter to cut off the laser;
  • the biological chip of the gene sequencing device of the invention adopts a step structure, thereby achieving the use of low magnification and low numerical aperture objectives Can also get the effect of high-resolution imaging.
  • Figure 1 is a schematic structural diagram of an existing gene sequencing device
  • FIG. 2 is a schematic structural diagram of a gene sequencing device of the present invention.
  • FIG. 3 is a schematic structural diagram of a stepped biochip of the present invention.
  • the stepped biochip of the present invention includes a substrate and a fluorescent ball fixed on the top of the substrate carrying biological information.
  • the vertical height of the center point of the adjacent fluorescent ball from the bottom edge A of the substrate is decreased every five
  • a group of fluorescent balls arranged in a stepped shape is a group, and three groups of fluorescent balls arranged in a stepped manner are arranged on the biochip in a horizontal direction (three groups of fluorescent balls are arranged on a horizontal line), each group In the fluorescent balls arranged in a step, the vertical height difference between the center points of adjacent fluorescent balls is greater than 2 times the depth of focus of the microscope objective.
  • the selection of the number of steps (there are several fluorescent balls arranged in a stepped manner) and the depth of the steps (the difference in height between the centers of adjacent fluorescent balls) are related to the microscope objective used in the device.
  • the micro objective selected in the present invention is 5X, and the NA is 0.15. If the resolution needs to reach 0.9um equal to the level of the traditional 20X/0.75 objective lens, because the resolution of the 5X objective lens is only 4.5um, then we need to use 5 steps, that is, each group of fluorescent balls arranged in a stepped arrangement The number is 5. In order to avoid the mutual influence of imaging between the two steps, the height difference between the two steps needs to be guaranteed to be about 100um at 2 times the depth of focus.
  • the test speed of the gene sequencing device of the present invention will also be greatly improved.
  • the object-side field of view of the 5X objective lens is ⁇ 5mm (standard objective lens with a field number of 25mm), while the 20X objective lens of the traditional method has an object-side field of view of 1.25mm, so compared with the existing gene sequencing device, the gene sequencing device of the present invention
  • the area of one imaging is increased by 16 times. When the time of chip movement, autofocus and photographing are the same, testing the chip of the same area will increase the speed of the gene sequencing device of the invention by 8 times.
  • the gene sequencing device of the present invention for detecting the above-mentioned stepped biochip includes a chip placement platform and a stepped biochip placed on the platform, and also includes a micro objective lens and a certain The angle of incidence illuminates the illuminating light source of the stepped bio-core; the angle of incidence of the illuminating light source, that is, the angle between the incident light and the biochip is greater than 0 degrees and less than 90 degrees.
  • the angle of incidence of the illumination light source is greater than arctan (D/2L); where D is the diameter of the microscope objective and L is the vertical distance from the objective to the biochip.
  • the gene sequencing device of the present invention uses oblique incident illumination, so that the illumination light that has not been converted into fluorescence can be reflected by the mirror surface and cannot enter the imaging system to become background stray light, so there is no need to provide a filter that suppresses the illumination light source in the device.
  • oblique incidence illumination greatly reduces the noise of the system, and at the same time, the filter that suppresses the illumination light source is not needed, which greatly reduces the cost.
  • the angle of oblique incidence is related to the outer diameter and working distance of the selected objective lens.
  • the oblique incidence angle of the illumination light source (oblique incidence angle refers to the angle between the incident light and the biochip) needs to be greater than arctan (D /2L).
  • the working process is as follows: light is emitted from the illuminating light source, enters the system through the reflection of the dichroic sheet, and then reaches the biochip through the beam splitter and the objective lens, and illuminates the biological tissue to excite fluorescence. Fluorescence is collected through the objective lens, and enters the camera through the beam splitter, dichroic film, tube lens, and filter.
  • the size of the biochip is large, and the field of view of the objective lens is small. Therefore, a high-precision XY moving platform is required. Each movement requires automatic focusing once to ensure that the biochip is always on the focal plane of the objective lens. Since the energy of the illumination light source is very high and the fluorescence energy is extremely weak, the light energy reflected by the objective lens and the beam splitter needs to be suppressed by a filter with a high cut-off depth.
  • the working process of the device of the present invention is as follows: light enters the biochip obliquely from the illumination light source, then the light reflected through the base and the cover glass belongs to regular reflection and cannot enter the fluorescence collection system, so both the filter and the dichroic filter can be removed. Greatly reduce costs. Similarly, the fluorescence is excited, collected through the objective lens and the tube lens, and enters the camera.
  • the autofocus module also ensures that when the XY mobile platform moves, the biochip is always on the focal plane of the objective lens. Multiple images need to be collected in the same field of view, and a displacement in the Z direction is required between two adjacent images. The displacement depth is the depth difference between the two steps.
  • the device of the present invention Due to the large field of view of the microscope objective lens of the present invention, to obtain all the information on the biochip in the same field of view, the device of the present invention only needs to image the corresponding number of steps in the Z direction on the biochip (that is, imaging on each step Once), and the prior art device needs to move the biochip multiple times in the XY direction, and each time it moves, it needs to focus once to get all the information on the biochip in the same field of view, so the test speed of the device of the present invention is far Far higher than existing devices.

Abstract

一种台阶式生物芯片及用于检测该生物芯片的基因测序装置。该台阶式生物芯片包括基底以及位于基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的高度为等数值递增或递减。该基因测序装置包括芯片放置平台、台阶式生物芯片、位于芯片放置平台上方的显微物镜以及以一定入射角度照射在台阶式生物芯片上的照明光源。

Description

一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置 技术领域
本发明涉及一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置,属于光学测量技术领域。
背景技术
基因测序是一种新型的医疗检测技术,意义非常重大,因此国内外热度居高不下。如何实现低成本高速率的基因测序一直都是众多公司的研究方向。
目前实现产业化的基因测序装置都是采用搭载高NA的20X显微物镜(为了实现高分辨率,通常分辨率在亚微米级),实现荧光信号收集;且采用同轴照明,同时通过配合高精度抑制激光进入相机的滤光片(截止深度大于6)来提高基因测序装置的信噪比,从而实现荧光信号的成像分析。因此现有基因测序设备成本非常高,对各个器件的要求也极为苛刻。
发明内容
发明目的:本发明所要解决的技术问题是提供一种台阶式生物芯片,该台阶式的生物芯片,台阶式生物芯片能够使基因测序装置通过在同一视场范围内拍摄多幅图像来获取信息,一幅图像代表一个台阶深度,假设该芯片有N个台阶,那么同一视场内可拍摄N幅图像(通过移动Z轴),通过记录拍摄的次数,能够精准的知道这些图像的位置。若该装置使用的物镜的分辨率是δ,通过使用台阶式生物芯片,能够使物镜的分辨率提高到δ/N。
本发明还要解决的技术问题是提供一种用于检测上述台阶式生物芯片的基因测序装置,该基因测序装置无需使用高分辨率的显微物镜,只要使用标准的显微物镜即可得到高分辨率的成像,且装置中无需使用滤光片,从而使基因测序设备的成本大大降低。
为解决上述技术问题,本发明所采用的技术方案为:
一种台阶式生物芯片,包括基底以及位于基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的高度为等数值递增或递减。
其中,相邻荧光小球呈阶梯状排布,多个呈阶梯状排布的荧光小球为一组,生物芯片上依次排布有多组呈阶梯状排布的荧光小球。
一种用于检测上述台阶式生物芯片的基因测序装置,包括芯片放置平台以及放置在 平台上的台阶式生物芯片,还包括位于芯片放置平台上方的显微物镜以及以一定入射角度照射在台阶式生物芯片上的照明光源;其中,所述台阶式生物芯片包括基底以及位于基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的高度为等数值递增或递减。
其中,每组呈阶梯状排布的荧光小球中,相邻荧光小球的高度差大于显微物镜的2倍焦深。
其中,所述照明光源发出的入射光与生物芯片的夹角大于0°小于90°,具体为照明光源的入射角度大于arctan(D/2L);其中,D为显微物镜的直径,L为物镜到生物芯片的垂直距离。
相邻荧光小球的水平间隔为亚微米级,台阶的深度(相邻荧光小球中心点的垂直高度差)大于物镜的2倍焦深,防止不同台阶深度的荧光像相互影响,保证一次拍照只针对一个深度的荧光信号,通过台阶信息确认相关信号(即快递定位到对应发光的荧光小球),实现低NA物镜高分辨率成像。
与现有技术相比,本发明技术方案具有的有益效果是:
本发明基因测序装置采用的是低倍率标准显微物镜,视场范围远远大于传统的20X物镜,从而提高了装置的扫描速度;本发明基因测序装置采用斜入射照明方式,照明光无法进入系统成为背景杂光,从而大大提高系统的信噪比,同时也不再需要截止激光的高精度滤光片;本发明基因测序装置的生物芯片采用台阶结构,从而实现了采用低倍率低数值孔径物镜也能得到高分辨率成像的效果。
附图说明
图1为现有基因测序装置的结构示意图;
图2为本发明基因测序装置的结构示意图;
图3为本发明台阶式生物芯片的结构示意图。
具体实施方式
以下结合附图对本发明的技术方案做进一步说明。
如图3所示,本发明台阶式生物芯片,包括基底以及固定在基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的垂直高度等数值递减,每五个呈阶梯状排布的荧光小球为一组,生物芯片上沿水平向依次排布有三组呈阶梯状排布的荧光小球(三组荧光小球排布在一条水平线上),每组呈阶梯状排布的荧光小球中,相邻荧 光小球中心点垂直高度差大于显微物镜的2倍焦深。
台阶数(每组呈阶梯状排布的荧光小球有几个)和台阶深度(相邻荧光小球的中心高度差)的选取与设备中所使用的显微物镜相关。本发明选取的显微物镜为5X,NA为0.15。如果分辨率需要达到0.9um等同于传统方式的20X/0.75物镜的水平,由于5X物镜的分辨率只有4.5um,那么我们需要采用5个台阶,即每组呈阶梯状排布的荧光小球的个数为5个。为了避免两个台阶之间成像相互影响,两个台阶之间的高度差需要保证在2倍焦深约100um。同理本发明基因测序装置的测试速度也将大大提高。5X物镜的物方视场为ф5mm(场数为25mm的标准物镜),而传统方式的20X物镜,物方视场为ф1.25mm,因此相比于现有基因测序装置,本发明基因测序装置一次成像的面积整整增大了16倍,在芯片移动、自动对焦和拍照的时间均相同时,测试同样面积的芯片,本发明基因测序装置的速度提高了8倍。
如图2所示,本发明用于检测上述台阶式生物芯片的基因测序装置,包括芯片放置平台以及放置在平台上的台阶式生物芯片,还包括位于芯片放置平台上方的显微物镜以及以一定入射角度照射在台阶式生物芯的照明光源;照明光源的入射角度,即入射光与生物芯片的夹角大于0度小于90度,具体来说,当选定了装置中的显微物镜后,照明光源的入射角度大于arctan(D/2L);其中,D为显微物镜的直径,L为物镜到生物芯片的垂直距离。
本发明基因测序装置采用是斜入射照明,那么未转化成荧光的照明光通过镜面反射,无法进入成像系统成为背景杂光,从而不需要在装置中设置抑制照明光源的滤光片。与传统的同轴照明相比,斜入射照明大大降低了系统的噪音,同时抑制照明光源的滤光片也不在需要,从而大大降低了成本。斜入射的角度与选取的物镜的外径和工作距离相关。假设物镜的直径为D,工作距离(物镜到生物芯片的垂直距离)为L,那么照明光源的斜入射角度(斜入射角度是指入射光与生物芯片呈一定的夹角)需要大于arctan(D/2L)。
传统的方式,工作过程如下:光从照明光源发出,通过分色片的反射进入系统,再通过分光片和物镜,到达生物芯片,照射在生物组织上激发荧光。荧光通过物镜收集,通过分光片、分色片和筒镜、滤光片进入相机。生物芯片的尺寸较大,而物镜的视场范围小,因此需要一个高精度XY移动平台,每一移动一次都需要自动对焦一次,保证生物芯片一直在物镜的焦面上。由于照明光源能量非常高,而荧光能量极其弱,物镜和分光片等反射的光能量需要截止深度很高的滤光片进行抑制。
而本发明装置工作过程如下:光从照明光源斜入射进入生物芯片中,那么通过基底和盖玻璃反射的光属于规则反射,无法进入荧光收集系统,因此滤光片和分色片都可以去掉,大大降低成本。同理激发荧光,通过物镜和筒镜收集进入相机。自动对焦模块也是保证XY移动平台移动时,生物芯片始终处于物镜的焦面上。在同一视场需要采集多幅图像,相邻两幅图像之间需要一个在Z方向有一个位移,该位移深度为两个台阶之间的深度差。由于本发明显微物镜视场范围大,因此得到相同视场下生物芯片上的所有信息,本发明装置只需要对生物芯片进行Z方向上对应台阶数的成像即可(即每个台阶上成像一次),而现有技术装置需要将生物芯片在XY方向上移动多次,且每移动一次,需要聚焦一次,才能得到相同视场下生物芯片上的所有信息,从而本发明装置的测试速度远远高于现有装置。

Claims (5)

  1. 一种台阶式生物芯片,其特征在于:包括基底以及位于基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的垂直高度为等数值递增或递减。
  2. 根据权利要求1所述的台阶式生物芯片,其特征在于:相邻荧光小球呈阶梯状排布,多个呈阶梯状排布的荧光小球为一组,生物芯片上依次排布有多组呈阶梯状排布的荧光小球。
  3. 一种用于检测权利要求1所述的台阶式生物芯片的基因测序装置,其特征在于:包括芯片放置平台以及放置在平台上的台阶式生物芯片,还包括位于芯片放置平台上方的显微物镜以及以一定入射角度照射在台阶式生物芯片上的照明光源;其中,所述台阶式生物芯片包括基底以及位于基底顶端携带有生物信息的荧光小球,相邻荧光小球中心点距基底底边A的高度为等数值递增或递减。
  4. 根据权利要求3所述的用于检测台阶式生物芯片的基因测序装置,其特征在于:每组呈阶梯状排布的荧光小球中,相邻荧光小球的高度差大于显微物镜的2倍焦深。
  5. 根据权利要求3所述的用于检测台阶式生物芯片的基因测序装置,其特征在于:所述照明光源发出的入射光与生物芯片的夹角大于0°小于90°。
PCT/CN2020/070194 2018-11-27 2020-01-03 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置 WO2020108664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/297,466 US20210325655A1 (en) 2018-11-27 2020-01-03 Stepped biological chip and gene sequencing device for testing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811427102.6A CN109433282B (zh) 2018-11-27 2018-11-27 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN201811427102.6 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020108664A1 true WO2020108664A1 (zh) 2020-06-04

Family

ID=65555852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070194 WO2020108664A1 (zh) 2018-11-27 2020-01-03 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置

Country Status (3)

Country Link
US (1) US20210325655A1 (zh)
CN (1) CN109433282B (zh)
WO (1) WO2020108664A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433282B (zh) * 2018-11-27 2024-02-13 茂莱(南京)仪器有限公司 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030059820A1 (en) * 1997-11-26 2003-03-27 Tuan Vo-Dinh SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips
WO2004004885A1 (de) * 2002-07-05 2004-01-15 Marcel Rogalla Verfahren und programmierbare beleuchtungsvorrichtung zur hochauflösenden, massiv parallelen, räumlichen synthese und analyse von microarrays
JP2004138420A (ja) * 2002-10-16 2004-05-13 Omron Corp 共焦点光学系を備えたバイオチップ
CN101378067A (zh) * 2007-08-31 2009-03-04 明荧光学有限公司 特征光谱识别芯片、其制造方法及使用该芯片的检测装置
CN101493411A (zh) * 2008-01-22 2009-07-29 明荧光学有限公司 生物芯片及其制备方法、以及应用生物芯片的装置
CN102901715A (zh) * 2012-11-07 2013-01-30 吉林大学 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法
CN107402199A (zh) * 2017-07-31 2017-11-28 京东方科技集团股份有限公司 基因测序芯片及其测序方法以及基因测序装置
CN109433282A (zh) * 2018-11-27 2019-03-08 茂莱(南京)仪器有限公司 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN209451867U (zh) * 2018-11-27 2019-10-01 茂莱(南京)仪器有限公司 台阶式生物芯片以及用于检测该生物芯片的基因测序装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113114A (ja) * 2002-09-26 2004-04-15 National Cancer Center-Japan 哺乳動物由来の検体の癌化度を評価する方法
CN101013083A (zh) * 2007-02-01 2007-08-08 大连理工大学 光纤嵌入式低电压驱动毛细管电泳芯片
CN101576491A (zh) * 2008-05-09 2009-11-11 南开大学 一种基于二元光学器件的阵列化表面等离子共振传感器芯片
DE102009043744A1 (de) * 2009-09-30 2011-03-31 Carl Zeiss Microlmaging Gmbh Verfahren und Mikroskop zur dreidimensional auflösungsgesteigerten Mikroskopie
CN103969451A (zh) * 2014-05-27 2014-08-06 武汉中博生物股份有限公司 猪圆环病毒2型IgM抗体胶体金免疫层析检测试纸卡及其制备方法和应用
CN105758834B (zh) * 2016-04-26 2018-11-27 福州大学 一种激光诱导与ccd采集的生物芯片检测方法
CN205920047U (zh) * 2016-07-27 2017-02-01 福州大学 一种大功率led的微阵列芯片荧光检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030059820A1 (en) * 1997-11-26 2003-03-27 Tuan Vo-Dinh SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips
WO2004004885A1 (de) * 2002-07-05 2004-01-15 Marcel Rogalla Verfahren und programmierbare beleuchtungsvorrichtung zur hochauflösenden, massiv parallelen, räumlichen synthese und analyse von microarrays
JP2004138420A (ja) * 2002-10-16 2004-05-13 Omron Corp 共焦点光学系を備えたバイオチップ
CN101378067A (zh) * 2007-08-31 2009-03-04 明荧光学有限公司 特征光谱识别芯片、其制造方法及使用该芯片的检测装置
CN101493411A (zh) * 2008-01-22 2009-07-29 明荧光学有限公司 生物芯片及其制备方法、以及应用生物芯片的装置
CN102901715A (zh) * 2012-11-07 2013-01-30 吉林大学 基于微/纳米周期结构的荧光增强微阵列生物芯片及其制备方法
CN107402199A (zh) * 2017-07-31 2017-11-28 京东方科技集团股份有限公司 基因测序芯片及其测序方法以及基因测序装置
CN109433282A (zh) * 2018-11-27 2019-03-08 茂莱(南京)仪器有限公司 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN209451867U (zh) * 2018-11-27 2019-10-01 茂莱(南京)仪器有限公司 台阶式生物芯片以及用于检测该生物芯片的基因测序装置

Also Published As

Publication number Publication date
CN109433282A (zh) 2019-03-08
US20210325655A1 (en) 2021-10-21
CN109433282B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN100417931C (zh) 微阵列芯片检测系统
CN103411557B (zh) 阵列照明的角谱扫描准共焦环形微结构测量装置与方法
JP2014515179A (ja) 光ガイドピクセル
SG178555A1 (en) Compact automated cell counter
CN107783206B (zh) 双层微透镜阵列光学元件
CN109342369A (zh) 用于循环肿瘤细胞快速检测的大视场生物成像、扫描、分析装置
US20230367112A1 (en) Microscopic devices and focusing methods thereof
CN115524839A (zh) 一种用于数字elisa的大视野、高分辨成像系统和检测方法
WO2020108664A1 (zh) 一种台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN109375355A (zh) 共聚焦三维测量装置及其多孔径尼普科夫圆盘
CN210015041U (zh) 显微成像系统
US10634890B1 (en) Miniaturized microscope for phase contrast and multicolor fluorescence imaging
CN103411555B (zh) 基于线阵角谱照明的并行共焦环形微结构测量方法
CN114858764A (zh) 一种可自动聚焦的荧光检测系统和自动聚焦方法
CN103411559B (zh) 基于阵列照明的角谱扫描准共焦微结构测量方法
CN103411558B (zh) 一种角谱扫描照明阵列式共焦微结构测量装置与方法
CN108845406A (zh) 多倍率全自动显微成像方法及装置
CN209451867U (zh) 台阶式生物芯片以及用于检测该生物芯片的基因测序装置
CN104034282A (zh) 原位液体成形光学微透镜制造中的高精度面形获取方法
JP2009210889A (ja) 共焦点顕微鏡システム
CN217718246U (zh) 一种多功能大靶面显微管镜和显示面板检测系统
AU2020366521B2 (en) Virtual fiducials
CN101710209A (zh) 复合显微镜
TWM637272U (zh) 一種檢測設備
CN209707371U (zh) 用于循环肿瘤细胞快速检测的大视场生物成像、扫描、分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20728896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20728896

Country of ref document: EP

Kind code of ref document: A1