CN102892972A - 地球物理数据的迭代反演方法中的伪迹减少 - Google Patents
地球物理数据的迭代反演方法中的伪迹减少 Download PDFInfo
- Publication number
- CN102892972A CN102892972A CN2011800229621A CN201180022962A CN102892972A CN 102892972 A CN102892972 A CN 102892972A CN 2011800229621 A CN2011800229621 A CN 2011800229621A CN 201180022962 A CN201180022962 A CN 201180022962A CN 102892972 A CN102892972 A CN 102892972A
- Authority
- CN
- China
- Prior art keywords
- approximate
- model
- data
- physical property
- iterative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000009467 reduction Effects 0.000 title description 2
- 230000000704 physical effect Effects 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 18
- 238000004088 simulation Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 230000001427 coherent effect Effects 0.000 abstract 1
- 238000005457 optimization Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 241000294743 Gamochaeta Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002922 simulated annealing Methods 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明涉及用于减少通过地球物理数据(130)的迭代反演(140)推断的地下物理性质模型(120)中的伪迹的方法,其中所述伪迹与在迭代反演期间做出的一些近似(110)相关联。在该方法中,近似的一些方面随着反演迭代而改变(160),以使伪迹不通过相干累加而增加。
Description
相关申请的交叉参考
本申请要求2010年5月7日提交的标题为ARTIFACT REDUCTION INITERATIVE INVERNSION OF GEOPHYSICAL DATA的美国临时专利申请61/332,463的权益,其全部内容通过引用合并于此。
技术领域
本发明一般涉及地球物理勘探领域,并且更特别地涉及地球物理数据处理。特别地,本发明涉及减少数据迭代反演中由反演中做出的近似产生的伪迹(artifacts)。
背景技术
地球物理反演[1,2]尝试找到最优解释观测数据并满足地质和地球物理约束的地下性质的模型。存在大量众所周知的地球物理反演方法。这些众所周知的方法属于两种类别即迭代反演和非迭代反演中的一种。以下是两种类别中每一种的普遍意义的定义:
·非迭代反演——通过假设一些简单的背景模型并基于输入数据更新该模型而实现的反演。该方法不使用更新模型作为另一反演步骤的输入。对于地震数据的情况,这些方法一般被称为成像、偏移、衍射层析成像或博恩反演。
·迭代反演——涉及地下性质模型的反复改进以便找到满意地解释观测数据的模型的反演。如果该反演收敛,则最终模型将更好地解释观测数据并且更接近地近似实际地下性质。迭代反演通常比非迭代反演产生更准确的模型,但是计算起来昂贵得多。
在地球物理学中普遍采用的两种迭代反演方法是成本函数最优化和级数法。成本函数最优化包括成本函数S(M)的数值相对于模型M的迭代最小化或最大化,该成本函数S(M)是计算数据与观测数据之间的错配度的度量(这有时也被称为目标函数),其中计算数据是通过计算机使用当前地球物理性质模型和源信号在由给定的地球物理性质模型表示的介质中的物理学支配传播(physics governing propagation)来仿真的。仿真计算可以通过若干数值方法中的任何一种来完成,所述数值方法包括但不限于有限差分、有限元或射线追踪。级数法涉及通过散射方程的迭代级数解进行反演(Weglein[3])。该解以级数形式写出,其中级数中的每项对应于散射的较高阶。在此情况下的迭代对应于向该解添加级数中较高阶的项。
成本函数最优化方法是局部的或全局的[4]。全局方法仅仅涉及计算模型群体{M1,M2,M3,…}的成本函数S(M)以及从该群体中选择近似最小化S(M)的一组一个或更多个模型。如果希望进一步的改进,则该新选择的模型组可以被用作基础来生成能够再次相对于成本函数S(M)被再次测试的新模型群体。对于全局方法,测试群体中的每个模型都可以视为是一次迭代,或者在更高水平下,每组被测试的群体可以视为是一次迭代。众所周知的全局反演方法包括蒙特卡罗法、仿真退火(simulated annealing)法、遗传和进化算法。
局部成本函数最优化包括:
1.选择起始模型;
2.计算成本函数S(M)关于描述该模型的参数的斜率;
3.搜索在梯度方向上作为起始模型的扰动的更新模型,该更新模型更好地解释观测数据。
该进程通过使用新的更新模型作为另一梯度搜索的起始模型来重复。该过程继续进行直到找到满意地解释观测数据的更新模型。普遍使用的局部成本函数反演方法包括梯度搜索法、共轭梯度法和牛顿法。
如上所述,因为迭代反演产生更准确的地下参数模型,所以迭代反演比非迭代反演更优选。不利的是,迭代反演在计算方面是非常昂贵的,以至于将其应用于许多感兴趣问题是不实际的。这一高计算成本是所有反演技术都需要许多计算密集的正向和/或反向仿真的结果。正向仿真意味着在时间上向前的数据计算,而反向仿真意味着在时间上向后的数据计算。
由于其高昂的计算成本,迭代反演经常需要应用加速计算的一些类型近似。不利的是,这些近似通常在最终反演模型中导致误差,该误差可以作为在反演中采用的近似的伪迹(artifacts)观察到。
需要的是一种迭代反演数据的一般方法,该方法允许应用近似而不在最终的反演模型中生成伪迹。本发明满足该需要。
发明内容
物理性质模型给出一个或更多个地下性质作为区域中的位置的函数。地震波速是一种此类物理性质,而且(例如)密度、p-波波速、横波波速、若干各向异性参数、衰减(q)参数、孔隙度、渗透度和电阻率也是此类物理性质。本发明是用于减少地下物理性质模型中的伪迹的方法,除了信源编码之外,所述伪迹还由迭代的计算机化的地球物理数据反演过程中的近似导致,所述方法包含随着所述迭代进行而改变所述近似。在一个特别实施例中,本发明是用于反演测量的地球物理数据以确定地下区域的物理性质模型的计算机实施的方法,其包含:
(a)假设地下区域的物理性质模型,所述模型提供在遍及所述地下区域的多个位置处的至少一个物理性质的数值;
(b)选择具有其中计算由对所述物理性质模型的更新组成的步骤的迭代数据反演过程,所述更新使得所述物理性质模型更符合从所测量的地球物理数据;
(c)在所述计算中做出近似,所述近似除通过信源编码之外加速所选择的迭代数据反演过程或者产生准确度折衷;
(d)使用计算机通过所述近似并使用所述物理性质模型执行所选择的迭代数据反演过程的一个循环;
(e)使用所述计算机执行下一个迭代反演循环,其中做出改变或不改变所述近似的一些方面的选择;
(f)如必需则重复(e),在一些或全部迭代循环中改变所述近似,直到满足所选择的收敛标准或达到另一停止条件的最终迭代;以及
(g)从所述最终迭代下载更新的物理性质模型,或将所述更新的物理性质模型保存到计算机存储装置。
在本发明的一些实施例中,一个或更多个伪迹类型在反演结果中被识别为由所述近似导致,并且在一些或全部迭代循环中改变的所述近似的方面被选择为对一个或更多个所识别的伪迹类型的伪迹有影响。对伪迹的影响可以使得来自一个近似的伪迹不与来自使用具有已改变方面的近似的另一迭代循环的伪迹建设性地累加。
附图说明
本发明及其优点将通过参考以下详细描述和附图更好地理解,其中:
图1是示出在此公开的一般方法中的基本步骤的流程图;
图2是示出图1的方法的特别实施例中的基本步骤的流程图,其中通过对信源进行编码和求和来近似目标函数;
图3-5属于图2的发明实施例的示例性应用:
图3示出地震波速模型,从其计算出针对该示例的地震数据;
图4示出使用在图2中概述的反演方法反演来自图3中的地震波速模型的数据;
图5示出在没有在多次迭代之间改变用于编码信源的代码的步骤的情况下,使用在图2中概述的反演方法反演来自图3中地震波速模型的数据;
图6是示出图1的方法的特别实施例中的基本步骤的流程图,其中近似是改变用于数值反演的栅格单元的大小,以便仅在需要时使用精细栅格;
图7-9属于图6的发明实施例的示例性应用:
图7是地震波速模型,从其计算出针对该示例的地震数据;
图8示出使用在图6中概述的反演方法反演来自图7中的地震波速模型的数据;
图9是在没有在多次迭代之间改变人工反射生成器的深度的步骤的情况下,使用在图6中概述的反演方法反演来自图7中地震波速模型的数据;
图10是示出图1的方法的特别实施例中的基本步骤的流程图,其中近似仅使用测量数据的子集;
图11-13属于图10的发明实施例的示例性应用:
图11示出地震波速模型,从其计算出针对该示例的地震数据;
图12示出使用在图10中概述的反演方法反演来自图11中的地震波速模型的数据;以及
图13示出在没有在多次迭代之间随机改变测量数据的子集的步骤的情况下,使用在图10中概述的反演方法反演来自图11中的地震波速模型的数据。
由于专利约束,图3-5、7-9和11-13是彩色显示的灰度转换图。
本发明将结合其优选实施例进行描述。然而,就以下详细描述专门针对本发明的特别实施例或特别用途来说,希望其仅是说明性的,并且不解释为限制本发明的保护范围。相反,其意图覆盖可以包括在由随附权利要求定义的本发明的保护范围内的全部替换、修改和等价物。
具体实施方式
本发明是用于在地球物理数据的迭代反演期间减少由近似的应用导致的伪迹。地球物理反演尝试找到最优解释观测到的地球物理数据的地下性质的模型。在阐述本发明的方法的整个过程中始终使用地震数据的示例,但该方法可以有利地应用于地球物理勘探的任何方法和任何类型的地球物理数据。使用迭代方法最准确地执行数据反演。不利的是,迭代反演在计算上经常是禁止性地昂贵的。执行地球物理数据的昂贵的正向和/或反向仿真花费了迭代反演中的大部分计算时间(在此正向的意思是在时间上向前,并且反向的意思是在时间上向后)。这些仿真的高成本一部分是由于输入数据中的每个地球物理源必须在仿真软件的独立计算机运行中计算。因此,仿真的成本与地球物理数据中的源数目成比例,对于地球物理勘查通常为约1000到10000个源。在通常的实践中,在反演期间应用近似以减少反演的成本。这些近似导致反演模型中的误差或伪迹。本发明通过在反演的多次迭代之间改变近似的一些方面以使得在一次迭代期间的伪迹不与其它迭代中的伪迹建设性地累加来减轻这些伪迹。因此减少了反演模型中的伪迹。
在迭代反演期间做出的导致伪迹的一些普遍近似包括:
1.应用到测量数据的处理
2.仿真中的不准确边界条件
3.仿真中的近似(例如,仿真器中使用的导数的低阶近似或计算中使用的栅格单元的大小)
4.模型的参数化中的近似(例如,使用过于粗糙而不能准确表示模型中的变化的参数的空间栅格)。
在地球物理学中普遍采用的两种迭代方法是成本函数最优化和级数法。本发明可以应用于这两种方法。接下来是这些方法中的每一个的概述。
迭代成本函数最优化
成本函数最优化通过相对于地下模型M最小化成本函数S(M)(有时也被称为目标函数)的数值来实现,该成本函数S(M)是观测(测量)的地球物理数据与通过假设模型的仿真计算的相应数据之间的错配度的度量。经常在地球物理反演中使用的简单成本函数S是:
其中
N=成本函数的范数(通常使用最小二乘法或L2-范数,在此情况下N=2),
M=地下模型,
g=集合(gather)指数(对于点源数据,这可以对应于各个源),
Ng=集合的数目,
r=集合内的接收器指数,
Nr=集合中接收器的数目,
t=数据记录内的时间样本指数,
Nt=时间样本的数目,
ψcalc=从模型M计算的地球物理数据,
ψobs=测量的地球物理数据,以及
Wg=集合g的源特征,即没有大地滤波效应的源信号
方程1中的集合可以是能够在正向建模程序的一次运行中仿真的任何类型集合。对于地震数据,该集合对应于地震爆破,尽管爆破可能比点源更一般[5]。对于点源,集合指数g对应于各个点源的位置。对于平面波源,g可以对应于不同的平面波传播方向。该广义源数据ψobs可以在现场获取或者可以从使用点源获取的数据合成。另一方面,计算数据ψcalc通常可以在正向建模时通过使用广义源函数直接计算(例如,对于地震数据,正向建模通常意味着各向异性粘-弹性波传播方程的解或其一些近似)。对于许多类型的正向建模(包括有限差分建模),广义源需要的计算时间约等于点源需要的计算时间。模型M是地下区域的一个或更多个物理性质的模型。地震波速是一种此类物理性质,而且(例如)p-波波速、横波波速、若干各向异性参数、衰减(q)参数、孔隙度和渗透度也是此类物理性质。模型M可以表示单个物理性质,或者它可以含有许多不同的参数,这取决于反演的复杂程度。通常,地下区域被细分成离散单元,每个单元由每个参数的单个数值表征。
迭代反演的一个主要问题是计算ψcalc占用大量计算时间,并且因此成本函数S的计算非常耗时。此外,在典型的反演方案中,必须为许多不同的模型M计算该成本函数。
迭代级数反演
除成本函数最优化之外,地球物理反演也可以使用迭代级数法来实施。用于实现该目的的普遍方法是迭代李普曼-施温格(Lippmann-Schwinger)方程[3]。李普曼-施温格方程描述介质中的波散射,其由感兴趣的物理性质模型表示为较简单模型的扰动。该方程是用于确定来自感兴趣模型的波散射的级数展开式的基底,优点是级数仅需要在较简单模型中执行计算。该级数也可以被反演以从测量数据形成允许确定感兴趣模型的迭代级数,这同样仅需要在较简单模型中执行计算。李普曼-施温格方程是可以应用于包括地震波的所有类型地球物理数据和模型的一般形式。该方法开始于两个方程:
LG=-I (2)
L0G0=-I (3)
其中L、L0分别是实际和参考差分算子,G和G0分别是实际和参考格林算子,并且I是单位算子。注意G是测量的点源数据,并且G0是来自初始模型的仿真点源数据。用于散射理论的李普曼-施温格方程是:
G=G0+G0VG (4)
其中V=L–L0,可以从其求取真实模型与初始模型之间的差值。
通过以下方式针对V迭代地求解方程4:首先将方程4以级数展开(为G的第一近似假设G=G0,以此类推),从而得到:
G=G0+G0VG0+G0VG0VG0+…(5)
然后V展开为级数:
V=V(1)+V(2)+V(3)+… (6)
其中V(n)是作为数据的残数中的第n阶的V的部分(此处数据的残数是在表面测量的G-G0)。将方程6带入方程5并合并相同阶的项,得到针对前3阶的以下方程组:
G-G0=G0V(1)G0 (7)
0=G0V(2)G0+G0V(1)G0V(1)G0(8)
0=G0V(3)G0+G0V(1)G0V(2)G0+G0V(2)G0V(1)G0+G0V(1)G0V(1)G0V(1)G0(9)
并且对于V中的更高阶有相似的结果。可以通过以下方式迭代地求解这些方程:首先通过在V(1)的两侧上反演G0来针对V(1)求解方程7,从而产生:
V(1)=G0 -1(G-G0)G0 -1 (10)
然后将来自方程10的V(1)带入方程8,并且针对V(2)求解该方程从而产生:
V(2)=-G0 -1G0V(1)G0V(1)G0G0 -1 (11)
对于V的更高阶同样如此。
方程10包括在源和频率上的和,其可以明确写作:
其中Gs是针对源s的测量数据,G0s是针对源s通过参考模型仿真的数据,并且G0s -1可以解释为来自源s的向下外推的源特征。方程10在频域中实施时可以被解释如下:(1)通过参考模型向下外推每个源的源特征(G0s -1项),(2)针对每个源,通过参考模型向下外推残余数据的接收器(G0 -1(Gs-G0s)项),(3)将这两个域相乘,然后在全部源和频率上求和。该方法中的向下外推可以使用地球物理仿真软件例如使用有限差分来执行。
示例性实施例
图1的流程图示出本发明的方法的一个实施例中的基本步骤。在步骤110中,选择将改进反演过程的一些方面的近似。该改进可能表现为加速的形式而不是提高的准确度。此类近似的示例包括使用近似目标函数或在仿真软件中使用近似。经常选择这些近似来减少反演的计算成本。然而,除计算加速之外,该改进可以替代地产生准确度折衷,即接受计算的一个方面的更高的不准确度,作为回报得到一些其它方面的更高的准确度。在步骤140中,基于测量数据130生成对假设的物理性质模型120的更新。在步骤140中,在110中选择的近似被用于执行更新计算。使用迭代局部成本函数最优化作为迭代反演的示例,作为该术语在此使用的“更新计算”包括但不限于计算目标(成本)函数、目标函数梯度以及实现前述各项所需要的所有正向建模。步骤140产生更新的物理性质模型150,其应该比假设的物理性质模型120的物理性质更接近实际地下性质。常规地,通过将该更新的物理模型150和测量数据130反馈回到步骤140中的更新方法来产生进一步改进的物理性质模型,从而进一步改进该更新的物理性质模型150。该常规迭代反演方法的缺点在于由在步骤110中选择的近似导致的反演中的任何伪迹可能在反演中建设性地增强并损害最终反演结果。
不同于直接返回步骤140,本发明的方法插入步骤160,其中在步骤110中选择的近似的一些方面被改变以使得由该近似导致的伪迹将改变并因此不被步骤140的迭代增强。通过该措施,将减轻由在步骤110中选择的近似导致的伪迹。
近似和相应伪迹的示例
以下表格含有步骤110的示例,即可以有利地用在数据反演中并且适于(步骤160)本发明的应用的近似的示例。该表格的第一列列出可以与本发明一起使用的近似。第二列列出与每种近似关联的伪迹。最后一列列出可以在多次迭代之间变化从而导致多次迭代之间的伪迹改变的特征,该改变导致伪迹不相干地累加到最终反演模型并因此被减轻。
上面的列表不是穷举的。该列表仅包括减少计算时间的近似的示例。有时在一个区域中折衷不准确度从而在另一区域中获得更高准确度是有利的。这种准确度折衷类型的近似的示例是在正向建模中使用较不准确的吸收边界条件以便使得梯度计算更准确。需要吸收边界条件以求解支配波传播的差分方程,例如在地震数据情况下的各向异性粘-弹性波传播方程(或其一些近似),或者在电磁数据情况下的麦克斯韦方程。通常,准确度折衷涉及在方法的一个方面牺牲准确度,并以另一方面提高的准确度作为回报。
测试示例1——编码目标函数
图2-5表示使用对目标函数的近似执行反演的综合示例,在该近似中对测量数据中的地震源进行编码然后求和;参见Jerome Krebs等人的美国专利公开US 2010-0018718。该近似加速了反演,因为可以使用仿真软件的一次运行来估计被编码的目标函数,而不是如同在常规反演的情况下为每个源运行一次。图2是将图1集中在该特别实施例上的自解释流程图,其中步骤210示出编码近似。
该示例中的地球物理性质模型仅是声波波速的模型。图3示出该示例的基础速度模型,即被反演并用来生成有待反演的数据的“未知”模型。阴影表示在每个深度和横向位置的速度,如由向右的“彩色”条所示。图4示出由应用如图2中的流程图概述的本发明所导致的反演。在该示例中,通过将这些源随机地乘以+1或-1来将它们编码。在步骤260中,通过改变用来生成代码的随机数种子来改变这些源的编码,其中所述代码用来编码这些源。注意在图3中示出对基础模型的良好匹配。
图5示出应用在图2的流程图中概述的反演方法的结果,但消除了步骤260的发明性特征。注意图5中的反演由串扰噪声支配(反演的斑点状外观),而该串扰噪声伪迹在源自本发明的反演中基本上不可见(图4)。
同时源的编码与将编码从一个迭代变化到下一个迭代的技术一起在Jerome Krebs等人的美国专利公开US 2010-0018718中公开;参见该专利公开中的62段和权利要求3。然而,Jerome Krebs等人的美国专利公开US 2010-0018718没有认识到或公开该编码发明是在此公开的一般发明的特定示例。
测试示例2——生成人工反射的近似
图6-9图解说明使用对生成人工反射的仿真器的近似来执行反演的综合示例。此类近似的示例是使用有限差分仿真器以使栅格中单元的大小随着距离表面的深度而改变。这种近似加速了反演,因为仿真器中的栅格可以被调整从而以深度变化方式将其最优化。通常,有限差分仿真器的浅部分所需要的栅格单元小于模型中较深处所需要的栅格单元。由该近似生成的伪迹是在栅格单元大小的改变之间的边界处的人工反射。
图6是在该示例中图解说明的本发明的实施例的流程图。在该示例中,可变栅格仿真器实际上不被用来生成人工反射器。相反(步骤610)通过在500米深度在密度模型中设置虚拟不连续性来生成人工反射。该不连续密度模型被仿真器用于模型更新,但恒定密度模型被用于生成测量数据(图6中的630)。然后以使得仅更新速度模型的方式执行反演(640),从而贯穿整个反演的迭代保持虚拟密度不连续性。
该示例中的地球物理性质模型仅是声波波速的模型(620)。图7示出该示例的基础速度模型(被反演并用来生成有待反演的数据的模型)。阴影表示在每个深度的速度。图8示出由应用如图6的流程图概述的本发明所导致的反演。在该示例中,在步骤660中,使用以500米为中心并具有100米的方差的正态分布来随机改变虚拟密度差的深度。注意图7中示出对基础模型的良好匹配。在图7-9和图11-13中,速度被绘制为等于反演速度除以初始速度的无量纲相对速度(v/v(init)),该初始速度是速度模型预期的起始猜想。
图9示出应用图6的流程图中概述的反演方法的结果,但消除了步骤660的发明性特征。可以注意到图9中的反演在500米深度处具有清晰可见的人工反射910,而该人工反射在使用本发明的方法的反演中基本上不可见(图8)。
测试示例3——测量数据的随机子集
图10-13表示使用对测量数据的近似来执行反演的综合示例。此类近似的示例是使用测量数据的子集(图10中的1010)。该近似减少了测量数据的量,由此加速反演,因为反演的计算时间与测量数据的数量成正比。在通常的反演中,需要全部测量数据以维持高的水平分辨率,并因此在通常实践中不使用该近似。由该近似生成的伪迹是由稀疏源位置和水平分辨率恶化导致的反演模型中的覆盖区(footprint)。图10是将图1的步骤集中在该示例中使用的本发明实施例上的流程图。在该示例中,测量数据的子集(图10中的1030)在该反演中被使用,例如50个测量数据中的5个数据的子集。
该示例中的地球物理性质模型仅是声波波速的模型。图11示出该示例的基础速度模型(被反演并用来生成有待反演的数据的模型)。阴影表示在每个深度的速度。图12示出由应用如图10的流程图概述的本发明所导致的反演。在该示例中,在步骤1060中,随着反演迭代增加而随机选择测量数据的子集。这导致数据的不同子集在每个迭代循环中使用。图12使用百分之十的测量数据示出对图11中示出的基础模型的良好匹配。
图13示出应用图6中的流程图概述的反演方法的结果,但消除了发明性的伪迹减少步骤1060。可以注意到图13中的反演在2000米以下的较深部分具有人工覆盖区,并在整个反演模型中具有短波长噪声,而该覆盖区噪声在使用本发明方法的反演中减轻(图12),并且短波长噪声是不可见的。
应理解图2、6和10的流程图表示在图1中更一般地描述的本发明的特定实施例的示例。
前述专利申请针对本发明的特别实施例以便图示说明本发明。然而,对本领域技术人员明显的是对在此描述的实施例的许多修改和变化是可能的。希望全部此类修改和变化在由随附权利要求定义的本发明的保护范围内。本领域技术人员容易认识到在本发明的实际应用中,本发明方法中的至少一些步骤(通常是步骤140-160,并且经常在120中生成模型)在计算机上执行,即本发明是计算机实施的。在这种情况下,最终的地下更新的物理性质模型可以下载或保存到计算机存储装置中。
参考文献
1.Tarantola,A.,“Inversion of seismic reflection data in the acousticapproximation”,Geophysics 49,1259-1266(1984)。
2.Sirgue,L.和Pratt G.“Efficient waveform inversion and imaging:Astrategy for selecting temporal frequencies”,Geophysics69,231-248(2004)。
3.Weglein,A.B.,Araujo,F.V.,Carvalho,P.M.,Stolt,R.H.,Matson,K.H.,Coates,R.T.,Corrigan,D.,Foster,D.J.,Shaw,S.A.,以及Zhang,H.,“Inverse scattering series and seismic exploration”,InverseProblems 19,R27-R83(2003)。
4.Fallat,M.R.,Dosso,S.E.,“Geoacoustic inversion via local,global,and hybrid algorithms”,Journal of the Acoustical Society of America 105,3219-3230(1999)。
5.Berkhout,A.J.,“Areal shot record technology”,Journal of SeismicExploration l,251-264(1992)。
6.Krebs,Jerome等人,“Iterative Inversion of Data from SimultaneousGeophysical Sources”,美国专利申请公开US 2010-0018718(01-28-2010)。
7.Clapp,R.G.,“Reverse time migration with random boundaries”,SEGInternational Exposition and Meeting(Houston),Expanded Abstracts,2809-2813(2009)。
Claims (15)
1.一种用于减少地下物理性质模型中的伪迹的方法,除了信源编码之外,所述伪迹还由迭代的计算机化的地球物理数据反演过程中的近似导致,所述方法包含随着所述迭代进行而改变所述近似。
2.根据权利要求1所述的方法,其中所述方法包含:
(a)假设地下区域的物理性质模型,所述模型提供在遍及所述地下区域的多个位置处的至少一个物理性质的数值;
(b)选择具有其中计算由对所述物理性质模型的更新组成的步骤的迭代数据反演过程,所述更新使得所述物理性质模型更符合从所述地下区域采集的测量的地球物理数据;
(c)在所述计算中做出近似,所述近似除通过信源编码之外加速所选择的迭代反演过程或者产生准确度折衷;
(d)使用计算机通过所述近似并使用所述物理性质模型执行所选择的迭代反演过程的一个循环;
(e)使用所述计算机执行下一个迭代反演循环,其中做出改变或不改变所述近似的一些方面的选择;
(f)如必需则重复(e),在一些或全部迭代循环中改变所述近似,直到满足所选择的收敛标准或达到另一停止条件的最终迭代;以及
(g)从所述最终迭代下载更新的物理性质模型,或将所述更新的物理性质模型保存到计算机存储装置。
3.根据权利要求2所述的方法,其中一个或更多个伪迹类型在更新的地下物理性质模型中被识别为由所述近似导致。
4.根据权利要求3所述的方法,其中在一些或全部迭代循环中改变的所述近似的方面被选择为对一个或更多个所识别的伪迹类型的伪迹有影响。
5.根据权利要求4所述的方法,其中所述影响使得来自一个近似的伪迹不与来自使用具有已改变方面的近似的另一迭代循环的伪迹建设性地累加。
6.根据权利要求2所述的方法,其中所述近似是选择所述测量的地球物理数据的子集以便输入到所述迭代反演过程中,并且所改变的方面是不同的被选子集。
7.根据权利要求6所述的方法,其中每个不同的子集是随机选择的。
8.根据权利要求1所述的方法,其中所述近似是所述迭代反演过程中的综合数据的仿真的不完全吸收边界。
9.根据权利要求1所述的方法,其中所述近似是所述迭代反演过程中的综合数据的仿真的反射边界。
10.根据权利要求1所述的方法,其中所述近似是所述迭代反演过程中的综合数据的仿真的随机边界条件。
11.根据权利要求1所述的方法,其中所述近似是所述迭代反演过程中的有限差分仿真器中的栅格单元大小的空间变化。
12.根据权利要求1所述的方法,其中所述近似是所述迭代反演过程中的仿真算子的准确度的空间变化。
13.根据权利要求1所述的方法,其中所述近似是在所述迭代反演过程中的综合数据的仿真中使用栅格单元大小,其中所述栅格单元大小太粗糙而不能准确地表示所述模型中的变化。
14.根据权利要求1所述的方法,其中所述近似是在所述迭代反演过程中的时域仿真器中使用巨大时间步长,其中“巨大”是相对于所使用的其它时间步长确定的。
15.根据权利要求1所述的方法,其中所述迭代的计算机化的地球物理数据反演过程包括计算成本函数的梯度,并且所述近似包括使用较不准确的吸收边界条件以使得梯度计算更准确。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33246310P | 2010-05-07 | 2010-05-07 | |
US61/332,463 | 2010-05-07 | ||
PCT/US2011/028345 WO2011139413A1 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in method of iterative inversion of geophysical data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102892972A true CN102892972A (zh) | 2013-01-23 |
CN102892972B CN102892972B (zh) | 2017-06-09 |
Family
ID=44902509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180022962.1A Expired - Fee Related CN102892972B (zh) | 2010-05-07 | 2011-03-14 | 地球物理数据的迭代反演中的伪迹减少 |
Country Status (11)
Country | Link |
---|---|
US (3) | US8694299B2 (zh) |
EP (1) | EP2567063B1 (zh) |
KR (1) | KR101948509B1 (zh) |
CN (1) | CN102892972B (zh) |
AU (1) | AU2011248989B2 (zh) |
BR (1) | BR112012025185A2 (zh) |
CA (1) | CA2795340C (zh) |
MY (1) | MY162803A (zh) |
RU (1) | RU2573174C2 (zh) |
SG (1) | SG184803A1 (zh) |
WO (1) | WO2011139413A1 (zh) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003218986A (ja) * | 2002-01-18 | 2003-07-31 | Gvc Corp | 設定可能なブルーツース(Bluetooth)装置のコネクション異常警示方法 |
BR112012009154A2 (pt) * | 2009-10-23 | 2016-08-16 | Exxonmobil Upstream Res Co | método para melhorar um modelo geológico de uma região de subsuperfície, produto de programa de computador, e, método para controlar hidrocarbonetos em uma região de subsuperfície |
US8694299B2 (en) | 2010-05-07 | 2014-04-08 | Exxonmobil Upstream Research Company | Artifact reduction in iterative inversion of geophysical data |
US8385151B2 (en) * | 2010-06-24 | 2013-02-26 | Chevron U.S.A. Inc. | Reverse time migration with absorbing and random boundaries |
AU2010257409B2 (en) * | 2010-12-23 | 2013-01-31 | Canon Kabushiki Kaisha | Temporal-correlation-based mode connection |
CN103703391B (zh) | 2011-03-30 | 2017-05-17 | 埃克森美孚上游研究公司 | 使用频谱整形的全波场反演的系统和计算机实施的方法 |
US9176930B2 (en) | 2011-11-29 | 2015-11-03 | Exxonmobil Upstream Research Company | Methods for approximating hessian times vector operation in full wavefield inversion |
US9964653B2 (en) * | 2011-12-21 | 2018-05-08 | Technoimaging, Llc | Method of terrain correction for potential field geophysical survey data |
WO2013133912A1 (en) * | 2012-03-08 | 2013-09-12 | Exxonmobil Upstream Research Company | Orthogonal source and receiver encoding |
WO2014084945A1 (en) | 2012-11-28 | 2014-06-05 | Exxonmobil Upstream Resarch Company | Reflection seismic data q tomography |
GB2510873A (en) | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
GB2510872A (en) * | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
US10591638B2 (en) * | 2013-03-06 | 2020-03-17 | Exxonmobil Upstream Research Company | Inversion of geophysical data on computer system having parallel processors |
CA2909105C (en) | 2013-05-24 | 2018-08-28 | Ke Wang | Multi-parameter inversion through offset dependent elastic fwi |
US10459117B2 (en) | 2013-06-03 | 2019-10-29 | Exxonmobil Upstream Research Company | Extended subspace method for cross-talk mitigation in multi-parameter inversion |
US9702998B2 (en) | 2013-07-08 | 2017-07-11 | Exxonmobil Upstream Research Company | Full-wavefield inversion of primaries and multiples in marine environment |
EP3351972A1 (en) | 2013-08-23 | 2018-07-25 | Exxonmobil Upstream Research Company | Iterative inversion of field-encoded seismic data based on constructing pseudo super-source records |
US10036818B2 (en) | 2013-09-06 | 2018-07-31 | Exxonmobil Upstream Research Company | Accelerating full wavefield inversion with nonstationary point-spread functions |
EP3114313B1 (en) * | 2014-03-05 | 2022-02-23 | Services Pétroliers Schlumberger | Inversion techniques for real-time well placement and reservoir characterization |
US9910189B2 (en) * | 2014-04-09 | 2018-03-06 | Exxonmobil Upstream Research Company | Method for fast line search in frequency domain FWI |
MX2016013366A (es) | 2014-05-09 | 2017-01-26 | Exxonmobil Upstream Res Co | Metodos de busqueda de linea eficientes para la inversion de campo de ondas completo de multi-parametros. |
US10185046B2 (en) | 2014-06-09 | 2019-01-22 | Exxonmobil Upstream Research Company | Method for temporal dispersion correction for seismic simulation, RTM and FWI |
MX362753B (es) | 2014-06-17 | 2019-02-07 | Exxonmobil Upstream Res Co | Inversion rapida de campo de ondas completo viscoacustico y viscoelastico. |
US10838092B2 (en) | 2014-07-24 | 2020-11-17 | Exxonmobil Upstream Research Company | Estimating multiple subsurface parameters by cascaded inversion of wavefield components |
US10422899B2 (en) | 2014-07-30 | 2019-09-24 | Exxonmobil Upstream Research Company | Harmonic encoding for FWI |
US10386511B2 (en) | 2014-10-03 | 2019-08-20 | Exxonmobil Upstream Research Company | Seismic survey design using full wavefield inversion |
US9977141B2 (en) | 2014-10-20 | 2018-05-22 | Exxonmobil Upstream Research Company | Velocity tomography using property scans |
EP3234659A1 (en) | 2014-12-18 | 2017-10-25 | Exxonmobil Upstream Research Company | Scalable scheduling of parallel iterative seismic jobs |
US9784865B2 (en) | 2015-01-28 | 2017-10-10 | Chevron U.S.A. Inc. | System and method for estimating lateral positioning uncertainties of a seismic image |
US10520618B2 (en) | 2015-02-04 | 2019-12-31 | ExxohnMobil Upstream Research Company | Poynting vector minimal reflection boundary conditions |
FR3032532B1 (fr) * | 2015-02-05 | 2020-02-28 | Services Petroliers Schlumberger | Derivation d'attributs sismiques a partir d'une propriete d'age geologique relatif d'un modele base sur le volume |
SG11201704620WA (en) | 2015-02-13 | 2017-09-28 | Exxonmobil Upstream Res Co | Efficient and stable absorbing boundary condition in finite-difference calculations |
CN107407736B (zh) | 2015-02-17 | 2019-11-12 | 埃克森美孚上游研究公司 | 生成无多次波的数据集的多阶段全波场反演处理 |
AU2016270000B2 (en) | 2015-06-04 | 2019-05-16 | Exxonmobil Upstream Research Company | Method for generating multiple free seismic images |
US10838093B2 (en) | 2015-07-02 | 2020-11-17 | Exxonmobil Upstream Research Company | Krylov-space-based quasi-newton preconditioner for full-wavefield inversion |
US10768322B2 (en) * | 2015-08-27 | 2020-09-08 | Pgs Geophysical As | Analogous processing of modeled and measured marine survey data |
CN108139499B (zh) | 2015-10-02 | 2020-02-14 | 埃克森美孚上游研究公司 | Q-补偿的全波场反演 |
CA2998519A1 (en) | 2015-10-15 | 2017-04-20 | Exxonmobil Upstream Research Company | Fwi model domain angle stacks with amplitude preservation |
US10768324B2 (en) | 2016-05-19 | 2020-09-08 | Exxonmobil Upstream Research Company | Method to predict pore pressure and seal integrity using full wavefield inversion |
WO2018031113A1 (en) * | 2016-08-12 | 2018-02-15 | Exxonmobil Upstream Research Company | Tomographically enhanced full wavefield inversion |
US10788597B2 (en) * | 2017-12-11 | 2020-09-29 | Saudi Arabian Oil Company | Generating a reflectivity model of subsurface structures |
US10782430B2 (en) * | 2018-01-12 | 2020-09-22 | Cgg Services Sas | Method for seismic exploration using a multiple-inclusive source wavelet |
US11320557B2 (en) | 2020-03-30 | 2022-05-03 | Saudi Arabian Oil Company | Post-stack time domain image with broadened spectrum |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6687659B1 (en) * | 2000-03-24 | 2004-02-03 | Conocophillips Company | Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications |
US6954721B2 (en) * | 2000-02-17 | 2005-10-11 | Qinetiq Limited | Signal processing technique |
US20070203673A1 (en) * | 2005-11-04 | 2007-08-30 | Sherrill Francis G | 3d pre-stack full waveform inversion |
US20090319240A1 (en) * | 2007-03-19 | 2009-12-24 | Fujitsu Limited | Simulation apparatus, simulation control method, and computer product |
US7640110B2 (en) * | 2007-04-27 | 2009-12-29 | Schlumberger Technology Corporation | Pixel based inversion method for surface electromagnetic measurement |
CN101681394A (zh) * | 2006-09-28 | 2010-03-24 | 埃克森美孚上游研究公司 | 来自并发地球物理源的数据的迭代反演 |
Family Cites Families (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3812457A (en) | 1969-11-17 | 1974-05-21 | Shell Oil Co | Seismic exploration method |
US3864667A (en) | 1970-09-11 | 1975-02-04 | Continental Oil Co | Apparatus for surface wave parameter determination |
US3984805A (en) | 1973-10-18 | 1976-10-05 | Daniel Silverman | Parallel operation of seismic vibrators without phase control |
US4168485A (en) | 1974-08-12 | 1979-09-18 | Continental Oil Company | Simultaneous use of pseudo-random control signals in vibrational exploration methods |
US4675851A (en) | 1982-09-09 | 1987-06-23 | Western Geophysical Co. | Method for seismic exploration |
US4545039A (en) | 1982-09-09 | 1985-10-01 | Western Geophysical Co. Of America | Methods for seismic exploration |
US4575830A (en) | 1982-10-15 | 1986-03-11 | Schlumberger Technology Corporation | Indirect shearwave determination |
US4562540A (en) | 1982-11-12 | 1985-12-31 | Schlumberger Technology Corporation | Diffraction tomography system and methods |
US4594662A (en) | 1982-11-12 | 1986-06-10 | Schlumberger Technology Corporation | Diffraction tomography systems and methods with fixed detector arrays |
JPS59189278A (ja) | 1983-03-23 | 1984-10-26 | 橋本電機工業株式会社 | ウイケツト型平板乾燥機 |
FR2543306B1 (fr) | 1983-03-23 | 1985-07-26 | Elf Aquitaine | Procede et dispositif pour l'optimisation des donnees sismiques |
JPS606032A (ja) | 1983-06-22 | 1985-01-12 | Honda Motor Co Ltd | 内燃エンジンの作動状態制御方法 |
US4924390A (en) | 1985-03-04 | 1990-05-08 | Conoco, Inc. | Method for determination of earth stratum elastic parameters using seismic energy |
US4715020A (en) | 1986-10-29 | 1987-12-22 | Western Atlas International, Inc. | Simultaneous performance of multiple seismic vibratory surveys |
FR2589587B1 (fr) | 1985-10-30 | 1988-02-05 | Inst Francais Du Petrole | Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre |
US4707812A (en) | 1985-12-09 | 1987-11-17 | Atlantic Richfield Company | Method of suppressing vibration seismic signal correlation noise |
US4823326A (en) | 1986-07-21 | 1989-04-18 | The Standard Oil Company | Seismic data acquisition technique having superposed signals |
US4686654A (en) | 1986-07-31 | 1987-08-11 | Western Geophysical Company Of America | Method for generating orthogonal sweep signals |
US4766574A (en) | 1987-03-31 | 1988-08-23 | Amoco Corporation | Method for depth imaging multicomponent seismic data |
US4953657A (en) | 1987-11-30 | 1990-09-04 | Halliburton Geophysical Services, Inc. | Time delay source coding |
US4969129A (en) | 1989-09-20 | 1990-11-06 | Texaco Inc. | Coding seismic sources |
US4982374A (en) | 1989-10-23 | 1991-01-01 | Halliburton Geophysical Services, Inc. | Method of source coding and harmonic cancellation for vibrational geophysical survey sources |
US5012193A (en) * | 1989-11-01 | 1991-04-30 | Schlumberger Technology Corp. | Method and apparatus for filtering data signals produced by exploration of earth formations |
GB9011836D0 (en) | 1990-05-25 | 1990-07-18 | Mason Iain M | Seismic surveying |
US5469062A (en) | 1994-03-11 | 1995-11-21 | Baker Hughes, Inc. | Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements |
GB2322704B (en) | 1994-07-07 | 1998-12-09 | Geco As | Method of Processing seismic data |
US5583825A (en) | 1994-09-02 | 1996-12-10 | Exxon Production Research Company | Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data |
US5586082A (en) * | 1995-03-02 | 1996-12-17 | The Trustees Of Columbia University In The City Of New York | Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging |
EP0766836B1 (en) | 1995-04-18 | 2003-01-29 | Western Atlas International, Inc. | Uniform subsurface coverage at steep dips |
US5924049A (en) | 1995-04-18 | 1999-07-13 | Western Atlas International, Inc. | Methods for acquiring and processing seismic data |
US5721710A (en) | 1995-09-29 | 1998-02-24 | Atlantic Richfield Company | High fidelity vibratory source seismic method with source separation |
US5719821A (en) | 1995-09-29 | 1998-02-17 | Atlantic Richfield Company | Method and apparatus for source separation of seismic vibratory signals |
US5715213A (en) | 1995-11-13 | 1998-02-03 | Mobil Oil Corporation | High fidelity vibratory source seismic method using a plurality of vibrator sources |
US5790473A (en) | 1995-11-13 | 1998-08-04 | Mobil Oil Corporation | High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources |
US5822269A (en) | 1995-11-13 | 1998-10-13 | Mobil Oil Corporation | Method for separation of a plurality of vibratory seismic energy source signals |
US5838634A (en) | 1996-04-04 | 1998-11-17 | Exxon Production Research Company | Method of generating 3-D geologic models incorporating geologic and geophysical constraints |
US5798982A (en) | 1996-04-29 | 1998-08-25 | The Trustees Of Columbia University In The City Of New York | Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models |
GB9612471D0 (en) | 1996-06-14 | 1996-08-14 | Geco As | Method and apparatus for multiple seismic vibratory surveys |
US5878372A (en) | 1997-03-04 | 1999-03-02 | Western Atlas International, Inc. | Method for simultaneous inversion processing of well log data using a plurality of earth models |
US5999489A (en) | 1997-03-21 | 1999-12-07 | Tomoseis Inc. | High vertical resolution crosswell seismic imaging |
US6014342A (en) | 1997-03-21 | 2000-01-11 | Tomo Seis, Inc. | Method of evaluating a subsurface region using gather sensitive data discrimination |
US5920838A (en) | 1997-06-02 | 1999-07-06 | Carnegie Mellon University | Reading and pronunciation tutor |
US5920828A (en) | 1997-06-02 | 1999-07-06 | Baker Hughes Incorporated | Quality control seismic data processing system |
FR2765692B1 (fr) | 1997-07-04 | 1999-09-10 | Inst Francais Du Petrole | Methode pour modeliser en 3d l'impedance d'un milieu heterogene |
GB2329043B (en) * | 1997-09-05 | 2000-04-26 | Geco As | Method of determining the response caused by model alterations in seismic simulations |
US5999488A (en) | 1998-04-27 | 1999-12-07 | Phillips Petroleum Company | Method and apparatus for migration by finite differences |
US6219621B1 (en) | 1998-06-30 | 2001-04-17 | Exxonmobil Upstream Research Co. | Sparse hyperbolic inversion of seismic data |
US6067340A (en) * | 1998-07-06 | 2000-05-23 | Eppstein; Margaret J. | Three-dimensional stochastic tomography with upscaling |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
FR2784195B1 (fr) | 1998-10-01 | 2000-11-17 | Inst Francais Du Petrole | Methode pour realiser en 3d avant sommation, une migration de donnees sismiques |
US6574564B2 (en) | 1998-10-01 | 2003-06-03 | Institut Francais Du Petrole | 3D prestack seismic data migration method |
US6225803B1 (en) | 1998-10-29 | 2001-05-01 | Baker Hughes Incorporated | NMR log processing using wavelet filter and iterative inversion |
US6021094A (en) | 1998-12-03 | 2000-02-01 | Sandia Corporation | Method of migrating seismic records |
US6246963B1 (en) * | 1999-01-29 | 2001-06-12 | Timothy A. Cross | Method for predicting stratigraphy |
US6754588B2 (en) | 1999-01-29 | 2004-06-22 | Platte River Associates, Inc. | Method of predicting three-dimensional stratigraphy using inverse optimization techniques |
EP1151326B1 (en) | 1999-02-12 | 2005-11-02 | Schlumberger Limited | Uncertainty constrained subsurface modeling |
US6058073A (en) | 1999-03-30 | 2000-05-02 | Atlantic Richfield Company | Elastic impedance estimation for inversion of far offset seismic sections |
CA2369566A1 (en) * | 1999-04-02 | 2000-10-12 | Alan Royce Huffman | A method for gravity and magnetic data inversion using vector and tensor data with seismic imaging and geopressure prediction for oil, gas and mineral exploration and production |
FR2792419B1 (fr) | 1999-04-16 | 2001-09-07 | Inst Francais Du Petrole | Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol |
GB9927395D0 (en) | 1999-05-19 | 2000-01-19 | Schlumberger Holdings | Improved seismic data acquisition method |
US6327537B1 (en) | 1999-07-19 | 2001-12-04 | Luc T. Ikelle | Multi-shooting approach to seismic modeling and acquisition |
FR2798197B1 (fr) | 1999-09-02 | 2001-10-05 | Inst Francais Du Petrole | Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques |
DE69932932D1 (de) | 1999-10-22 | 2006-10-05 | Jason Geosystems B V | Verfahren zur Bestimmung der elastischen Parameter und Felszusammensetzung von unterirdischen Formationen mit Hilfe von seismischen Daten |
FR2800473B1 (fr) | 1999-10-29 | 2001-11-30 | Inst Francais Du Petrole | Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques |
US6480790B1 (en) | 1999-10-29 | 2002-11-12 | Exxonmobil Upstream Research Company | Process for constructing three-dimensional geologic models having adjustable geologic interfaces |
DE19954866A1 (de) | 1999-11-15 | 2001-05-31 | Infineon Technologies Ag | Verfahren zur Behandlung einer durch Epitaxie hergestellten Oberfläche eines SiC-Halbleiterkörpers und danach hergestellten Schottkykontakt |
CN1188711C (zh) | 2000-01-21 | 2005-02-09 | 施鲁博格控股有限公司 | 用于地震波场分离的系统和方法 |
AU774883B2 (en) | 2000-01-21 | 2004-07-08 | Schlumberger Holdings Limited | System and method for estimating seismic material properties |
US6826486B1 (en) | 2000-02-11 | 2004-11-30 | Schlumberger Technology Corporation | Methods and apparatus for predicting pore and fracture pressures of a subsurface formation |
FR2805051B1 (fr) | 2000-02-14 | 2002-12-06 | Geophysique Cie Gle | Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques |
GB2359363B (en) | 2000-02-15 | 2002-04-03 | Geco Prakla | Processing simultaneous vibratory seismic data |
US6317695B1 (en) | 2000-03-30 | 2001-11-13 | Nutec Sciences, Inc. | Seismic data processing method |
US6687619B2 (en) | 2000-10-17 | 2004-02-03 | Westerngeco, L.L.C. | Method of using cascaded sweeps for source coding and harmonic cancellation |
AU2002239619A1 (en) | 2000-12-08 | 2002-06-18 | Peter J. Ortoleva | Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories |
FR2818753B1 (fr) | 2000-12-21 | 2003-03-21 | Inst Francais Du Petrole | Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires |
FR2821677B1 (fr) | 2001-03-05 | 2004-04-30 | Geophysique Cie Gle | Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees |
US6751558B2 (en) | 2001-03-13 | 2004-06-15 | Conoco Inc. | Method and process for prediction of subsurface fluid and rock pressures in the earth |
US6927698B2 (en) | 2001-08-27 | 2005-08-09 | Larry G. Stolarczyk | Shuttle-in receiver for radio-imaging underground geologic structures |
US6545944B2 (en) | 2001-05-30 | 2003-04-08 | Westerngeco L.L.C. | Method for acquiring and processing of data from two or more simultaneously fired sources |
US6882958B2 (en) | 2001-06-28 | 2005-04-19 | National Instruments Corporation | System and method for curve fitting using randomized techniques |
GB2379013B (en) | 2001-08-07 | 2005-04-20 | Abb Offshore Systems Ltd | Microseismic signal processing |
US6593746B2 (en) | 2001-08-27 | 2003-07-15 | Larry G. Stolarczyk | Method and system for radio-imaging underground geologic structures |
US7672824B2 (en) | 2001-12-10 | 2010-03-02 | Westerngeco L.L.C. | Method for shallow water flow detection |
US7069149B2 (en) | 2001-12-14 | 2006-06-27 | Chevron U.S.A. Inc. | Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume |
US7330799B2 (en) | 2001-12-21 | 2008-02-12 | Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. | Method and algorithm for using surface waves |
US6842701B2 (en) | 2002-02-25 | 2005-01-11 | Westerngeco L.L.C. | Method of noise removal for cascaded sweep data |
GB2387226C (en) | 2002-04-06 | 2008-05-12 | Westerngeco Ltd | A method of seismic surveying |
FR2839368B1 (fr) | 2002-05-06 | 2004-10-01 | Total Fina Elf S A | Methode de decimation de traces sismiques pilotee par le trajet sismique |
CA2488511C (en) * | 2002-06-28 | 2012-07-03 | Gedex Inc. | System and method for surveying underground density distributions |
US6832159B2 (en) | 2002-07-11 | 2004-12-14 | Schlumberger Technology Corporation | Intelligent diagnosis of environmental influence on well logs with model-based inversion |
US6906981B2 (en) | 2002-07-17 | 2005-06-14 | Pgs Americas, Inc. | Method and system for acquiring marine seismic data using multiple seismic sources |
FR2843202B1 (fr) | 2002-08-05 | 2004-09-10 | Inst Francais Du Petrole | Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration |
US6832155B2 (en) | 2002-09-23 | 2004-12-14 | Itt Manufacturing Enterprises, Inc. | Methods and apparatus for determining phase ambiguities in ranging and navigation systems |
AU2003279870A1 (en) | 2002-10-04 | 2004-05-04 | Paradigm Geophysical Corporation | Method and system for limited frequency seismic imaging |
GB2396448B (en) | 2002-12-21 | 2005-03-02 | Schlumberger Holdings | System and method for representing and processing and modeling subterranean surfaces |
US7027927B2 (en) | 2002-12-23 | 2006-04-11 | Schlumberger Technology Corporation | Methods for determining formation and borehole parameters using fresnel volume tomography |
US6735527B1 (en) | 2003-02-26 | 2004-05-11 | Landmark Graphics Corporation | 3-D prestack/poststack multiple prediction |
US6999880B2 (en) | 2003-03-18 | 2006-02-14 | The Regents Of The University Of California | Source-independent full waveform inversion of seismic data |
WO2004095072A2 (en) | 2003-03-27 | 2004-11-04 | Exxonmobil Upstream Research Company | Method to convert seismic traces into petrophysical property logs |
US7072767B2 (en) | 2003-04-01 | 2006-07-04 | Conocophillips Company | Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data |
MXPA05010458A (es) | 2003-04-01 | 2006-03-21 | Exxonmobil Upstream Res Co | Fuente vibratoria de alta frecuencia conformada. |
NO322089B1 (no) | 2003-04-09 | 2006-08-14 | Norsar V Daglig Leder | Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder |
GB2400438B (en) | 2003-04-11 | 2005-06-01 | Westerngeco Ltd | Determination of waveguide parameters |
US6970397B2 (en) | 2003-07-09 | 2005-11-29 | Gas Technology Institute | Determination of fluid properties of earth formations using stochastic inversion |
US6882938B2 (en) | 2003-07-30 | 2005-04-19 | Pgs Americas, Inc. | Method for separating seismic signals from two or more distinct sources |
GB2405473B (en) | 2003-08-23 | 2005-10-05 | Westerngeco Ltd | Multiple attenuation method |
US6944546B2 (en) | 2003-10-01 | 2005-09-13 | Halliburton Energy Services, Inc. | Method and apparatus for inversion processing of well logging data in a selected pattern space |
US6901333B2 (en) | 2003-10-27 | 2005-05-31 | Fugro N.V. | Method and device for the generation and application of anisotropic elastic parameters |
US7046581B2 (en) | 2003-12-01 | 2006-05-16 | Shell Oil Company | Well-to-well tomography |
US20050128874A1 (en) | 2003-12-15 | 2005-06-16 | Chevron U.S.A. Inc. | Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources |
US7359283B2 (en) | 2004-03-03 | 2008-04-15 | Pgs Americas, Inc. | System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers |
US7791980B2 (en) | 2004-05-21 | 2010-09-07 | Westerngeco L.L.C. | Interpolation and extrapolation method for seismic recordings |
FR2872584B1 (fr) | 2004-06-30 | 2006-08-11 | Inst Francais Du Petrole | Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires |
EP1617309B1 (en) | 2004-07-15 | 2011-01-12 | Fujitsu Limited | Simulation technique with local grid refinement |
US7646924B2 (en) | 2004-08-09 | 2010-01-12 | David Leigh Donoho | Method and apparatus for compressed sensing |
US7480206B2 (en) | 2004-09-13 | 2009-01-20 | Chevron U.S.A. Inc. | Methods for earth modeling and seismic imaging using interactive and selective updating |
FR2876458B1 (fr) | 2004-10-08 | 2007-01-19 | Geophysique Cie Gle | Perfectionnement aux traitements sismiques pour la suppression des reflexions multiples |
GB2422433B (en) | 2004-12-21 | 2008-03-19 | Sondex Wireline Ltd | Method and apparatus for determining the permeability of earth formations |
US7373251B2 (en) | 2004-12-22 | 2008-05-13 | Marathon Oil Company | Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data |
US7230879B2 (en) | 2005-02-12 | 2007-06-12 | Chevron U.S.A. Inc. | Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects |
EP1859301B1 (en) | 2005-02-22 | 2013-07-17 | Paradigm Geophysical Ltd. | Multiple suppression in angle domain time and depth migration |
US7840625B2 (en) | 2005-04-07 | 2010-11-23 | California Institute Of Technology | Methods for performing fast discrete curvelet transforms of data |
WO2006122146A2 (en) | 2005-05-10 | 2006-11-16 | William Marsh Rice University | Method and apparatus for distributed compressed sensing |
US7405997B2 (en) | 2005-08-11 | 2008-07-29 | Conocophillips Company | Method of accounting for wavelet stretch in seismic data |
EP1941386A4 (en) | 2005-10-18 | 2010-03-17 | Sinvent As | IMAGING OF GEOLOGICAL RESPONSES DATA WITH FLOW PROCESSORS |
FR2895091B1 (fr) | 2005-12-21 | 2008-02-22 | Inst Francais Du Petrole | Methode pour mettre a jour un modele geologique par des donnees sismiques |
GB2436626B (en) | 2006-03-28 | 2008-08-06 | Westerngeco Seismic Holdings | Method of evaluating the interaction between a wavefield and a solid body |
US7620534B2 (en) | 2006-04-28 | 2009-11-17 | Saudi Aramco | Sound enabling computerized system for real time reservoir model calibration using field surveillance data |
US20070274155A1 (en) | 2006-05-25 | 2007-11-29 | Ikelle Luc T | Coding and Decoding: Seismic Data Modeling, Acquisition and Processing |
US7725266B2 (en) | 2006-05-31 | 2010-05-25 | Bp Corporation North America Inc. | System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling |
RU2428739C2 (ru) * | 2006-07-07 | 2011-09-10 | Эксонмобил Апстрим Рисерч Компани | Укрупнение сетки для моделей коллекторов путем повторного использования расчетов потока, полученных на основе геологических моделей |
US7599798B2 (en) | 2006-09-11 | 2009-10-06 | Westerngeco L.L.C. | Migrating composite seismic response data to produce a representation of a seismic volume |
AU2007330350A1 (en) | 2006-12-07 | 2008-06-12 | Council Of Scientific & Industrial Research | A method for computing an exact impulse response of a plane acoustic reflector at zero offset due to a point acoustic source |
WO2008087505A2 (en) | 2007-01-20 | 2008-07-24 | Spectraseis Ag | Time reverse reservoir localization |
WO2008123920A1 (en) | 2007-04-10 | 2008-10-16 | Exxonmobil Upstream Research Company | Separation and noise removal for multiple vibratory source seismic data |
US20080279434A1 (en) * | 2007-05-11 | 2008-11-13 | William Cassill | Method and system for automated modeling |
US7715986B2 (en) | 2007-05-22 | 2010-05-11 | Chevron U.S.A. Inc. | Method for identifying and removing multiples for imaging with beams |
US7974824B2 (en) * | 2007-06-29 | 2011-07-05 | Westerngeco L. L. C. | Seismic inversion of data containing surface-related multiples |
JP2009063942A (ja) | 2007-09-10 | 2009-03-26 | Sumitomo Electric Ind Ltd | 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置 |
US20090070042A1 (en) | 2007-09-11 | 2009-03-12 | Richard Birchwood | Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state |
US20090083006A1 (en) * | 2007-09-20 | 2009-03-26 | Randall Mackie | Methods and apparatus for three-dimensional inversion of electromagnetic data |
WO2009067041A1 (en) | 2007-11-19 | 2009-05-28 | Steklov Mathematical Institute Ras | Method and system for evaluating the characteristic properties of two contacting media and of the interface between them based on mixed surface waves propagating along the interface |
US7732381B2 (en) | 2007-11-30 | 2010-06-08 | Schlumberger Technology Corporation | Conductive cement formulation and application for use in wells |
US20090164186A1 (en) | 2007-12-20 | 2009-06-25 | Bhp Billiton Innovation Pty Ltd. | Method for determining improved estimates of properties of a model |
AU2008346986B2 (en) | 2008-01-08 | 2013-11-21 | Exxonmobil Upstream Research Company | Spectral shaping inversion and migration of seismic data |
US8577660B2 (en) | 2008-01-23 | 2013-11-05 | Schlumberger Technology Corporation | Three-dimensional mechanical earth modeling |
ES2651923T3 (es) | 2008-03-21 | 2018-01-30 | Exxonmobil Upstream Research Company | Un método eficiente para la inversión de datos geofísicos |
WO2009120401A1 (en) | 2008-03-28 | 2009-10-01 | Exxonmobil Upstream Research Company | Characterizing spatial variablility of surface waves in seismic processing |
EP2105765A1 (en) | 2008-03-28 | 2009-09-30 | Schlumberger Holdings Limited | Simultaneous inversion of induction data for dielectric permittivity and electric conductivity |
US8275592B2 (en) | 2008-04-07 | 2012-09-25 | Westerngeco L.L.C. | Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data |
US8494777B2 (en) | 2008-04-09 | 2013-07-23 | Schlumberger Technology Corporation | Continuous microseismic mapping for real-time 3D event detection and location |
US8345510B2 (en) | 2008-06-02 | 2013-01-01 | Pgs Geophysical As | Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s) |
US8239181B2 (en) * | 2008-07-23 | 2012-08-07 | Exxonmobil Upstream Research Company | Inversion of CSEM data with measurement system signature suppression |
US20110182141A1 (en) | 2008-08-14 | 2011-07-28 | Schlumberger Technology Corporation | Method and system for monitoring a logging tool position in a borehole |
US8559270B2 (en) | 2008-08-15 | 2013-10-15 | Bp Corporation North America Inc. | Method for separating independent simultaneous sources |
BRPI0918020B8 (pt) | 2008-08-15 | 2020-01-28 | Bp Corp North America Inc | métodos de exploração sísmica |
US20100054082A1 (en) | 2008-08-29 | 2010-03-04 | Acceleware Corp. | Reverse-time depth migration with reduced memory requirements |
US8296069B2 (en) | 2008-10-06 | 2012-10-23 | Bp Corporation North America Inc. | Pseudo-analytical method for the solution of wave equations |
US7616523B1 (en) | 2008-10-22 | 2009-11-10 | Pgs Geophysical As | Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth |
US9213119B2 (en) | 2008-10-29 | 2015-12-15 | Conocophillips Company | Marine seismic acquisition |
US20100118651A1 (en) | 2008-11-10 | 2010-05-13 | Chevron U.S.A. Inc. | Method for generation of images related to a subsurface region of interest |
US20100142316A1 (en) | 2008-12-07 | 2010-06-10 | Henk Keers | Using waveform inversion to determine properties of a subsurface medium |
AU2009335964B2 (en) * | 2009-01-09 | 2015-05-14 | Exxonmobil Upstream Research Company | Hydrocarbon detection with passive seismic data |
US8095345B2 (en) | 2009-01-20 | 2012-01-10 | Chevron U.S.A. Inc | Stochastic inversion of geophysical data for estimating earth model parameters |
WO2010085822A2 (en) | 2009-01-26 | 2010-07-29 | Shotspotter, Inc. | Systems and methods with improved three-dimensional source location processing including constraint of location solutions to a two-dimensional plane |
US9052410B2 (en) | 2009-02-12 | 2015-06-09 | Conocophillips Company | Multiple seismic signal inversion |
US20110299361A1 (en) | 2009-02-17 | 2011-12-08 | Changsoo Shin | Apparatus and method for imaging subsurface structure |
US8352190B2 (en) | 2009-02-20 | 2013-01-08 | Exxonmobil Upstream Research Company | Method for analyzing multiple geophysical data sets |
US9110191B2 (en) | 2009-03-30 | 2015-08-18 | Westerngeco L.L.C. | Multiple attenuation for ocean-bottom seismic data |
US8547794B2 (en) | 2009-04-16 | 2013-10-01 | Baker Hughes Incorporated | Extending the coverage of VSP/CDP imaging by using first-order downgoing multiples |
US9075163B2 (en) | 2009-04-17 | 2015-07-07 | Westerngeco L.L.C. | Interferometric seismic data processing |
US7856528B1 (en) | 2009-08-11 | 2010-12-21 | Texas Memory Systems, Inc. | Method and apparatus for protecting data using variable size page stripes in a FLASH-based storage system |
US20110044127A1 (en) | 2009-08-19 | 2011-02-24 | Clement Kostov | Removing free-surface effects from seismic data acquired in a towed survey |
US8923093B2 (en) | 2009-08-25 | 2014-12-30 | Westerngeco L.L.C. | Determining the quality of a seismic inversion |
US20110131020A1 (en) | 2009-09-09 | 2011-06-02 | Conocophillips Company | Dip guided full waveform inversion |
US9360583B2 (en) | 2009-10-01 | 2016-06-07 | Halliburton Energy Services, Inc. | Apparatus and methods of locating downhole anomalies |
US9244181B2 (en) | 2009-10-19 | 2016-01-26 | Westerngeco L.L.C. | Full-waveform inversion in the traveltime domain |
US8861308B2 (en) | 2009-12-07 | 2014-10-14 | Westerngeco L.L.C. | Simultaneous joint inversion of surface wave and refraction data |
FR2955396B1 (fr) | 2010-01-15 | 2013-03-01 | Cggveritas Services Sa | Dispositif de traitement de donnees sismiques marines |
CA2787149A1 (en) | 2010-01-22 | 2011-07-28 | Schlumberger Canada Limited | Real-time formation anisotropy and dip evaluation using tri-axial induction measurements |
WO2011091367A1 (en) | 2010-01-25 | 2011-07-28 | CGGVeritas Services (U.S.) Inc. | Methods and systems for estimating stress using seismic data |
US8265875B2 (en) | 2010-01-29 | 2012-09-11 | Westerngeco L.L.C. | Interpolation of periodic data |
WO2011093945A1 (en) | 2010-01-29 | 2011-08-04 | Exxonmobil Upstream Research Company | Temporary field storage of gas to optimize field development |
US8537638B2 (en) | 2010-02-10 | 2013-09-17 | Exxonmobil Upstream Research Company | Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration |
EA023436B1 (ru) * | 2010-03-01 | 2016-06-30 | Бп Корпорейшн Норт Америка Инк. | Способ геофизической разведки |
SG184002A1 (en) | 2010-03-12 | 2012-10-30 | Cggveritas Services Us Inc | Methods and systems for performing azimuthal simultaneous elastic inversion |
US8680865B2 (en) | 2010-03-19 | 2014-03-25 | Schlumberger Technology Corporation | Single well reservoir imaging apparatus and methods |
US20110235464A1 (en) | 2010-03-24 | 2011-09-29 | John Brittan | Method of imaging the earth's subsurface during marine seismic data acquisition |
US8223587B2 (en) | 2010-03-29 | 2012-07-17 | Exxonmobil Upstream Research Company | Full wavefield inversion using time varying filters |
US9176244B2 (en) | 2010-03-31 | 2015-11-03 | Schlumberger Technology Corporation | Data set inversion using source-receiver compression |
US8576663B2 (en) | 2010-04-30 | 2013-11-05 | Schlumberger Technology Corporation | Multicomponent seismic inversion of VSP data |
KR101167715B1 (ko) | 2010-04-30 | 2012-07-20 | 서울대학교산학협력단 | 복소 구배 최소자승법에의한 파형 역산을 이용한 지하 구조의 영상화 장치 및 방법 |
US8694299B2 (en) | 2010-05-07 | 2014-04-08 | Exxonmobil Upstream Research Company | Artifact reduction in iterative inversion of geophysical data |
US8756042B2 (en) | 2010-05-19 | 2014-06-17 | Exxonmobile Upstream Research Company | Method and system for checkpointing during simulations |
CN102947233B (zh) | 2010-06-15 | 2016-01-27 | 电化株式会社 | 透光性硬质基板层叠体的制造方法 |
US20110320180A1 (en) | 2010-06-29 | 2011-12-29 | Al-Saleh Saleh M | Migration Velocity Analysis of Seismic Data Using Common Image Cube and Green's Functions |
US8612188B2 (en) | 2010-07-12 | 2013-12-17 | The University Of Manchester | Wave modelling |
CA2806874C (en) | 2010-08-16 | 2016-12-06 | Exxonmobil Upstream Research Company | Reducing the dimensionality of the joint inversion problem |
US20120051176A1 (en) | 2010-08-31 | 2012-03-01 | Chevron U.S.A. Inc. | Reverse time migration back-scattering noise removal using decomposed wavefield directivity |
US8781748B2 (en) | 2010-09-20 | 2014-07-15 | Chevron U.S.A. Inc. | System and method for generating images of subsurface structures |
US8437998B2 (en) | 2010-09-27 | 2013-05-07 | Exxonmobil Upstream Research Company | Hybrid method for full waveform inversion using simultaneous and sequential source method |
SG188191A1 (en) | 2010-09-27 | 2013-04-30 | Exxonmobil Upstream Res Co | Simultaneous source encoding and source separation as a practical solution for full wavefield inversion |
CA2810960A1 (en) | 2010-09-28 | 2012-04-05 | Rene-Edouard Andre Michel Plessix | Earth model estimation through an acoustic full waveform inversion of seismic data |
EP2646944A4 (en) | 2010-12-01 | 2017-02-22 | Exxonmobil Upstream Research Company | Simultaneous source inversion for marine streamer data with cross-correlation objective function |
US9134442B2 (en) | 2010-12-16 | 2015-09-15 | Bp Corporation North America Inc. | Seismic acquisition using narrowband seismic sources |
US9702994B2 (en) | 2011-02-18 | 2017-07-11 | Westerngeco L.L.C. | Waveform inversion by multiple shot-encoding for non-fixed spread geometries |
CN103703391B (zh) | 2011-03-30 | 2017-05-17 | 埃克森美孚上游研究公司 | 使用频谱整形的全波场反演的系统和计算机实施的方法 |
US20120275267A1 (en) | 2011-04-26 | 2012-11-01 | Ramesh Neelamani | Seismic Data Processing |
CA2833968C (en) | 2011-05-13 | 2017-12-12 | Saudi Arabian Oil Company | Coupled time-distance dependent swept frequency source acquisition design and data de-noising |
US20120316791A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for seismic data inversion by non-linear model update |
US9075159B2 (en) | 2011-06-08 | 2015-07-07 | Chevron U.S.A., Inc. | System and method for seismic data inversion |
US20120316790A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for data inversion with phase extrapolation |
US20120316844A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for data inversion with phase unwrapping |
US9176930B2 (en) | 2011-11-29 | 2015-11-03 | Exxonmobil Upstream Research Company | Methods for approximating hessian times vector operation in full wavefield inversion |
WO2013133912A1 (en) | 2012-03-08 | 2013-09-12 | Exxonmobil Upstream Research Company | Orthogonal source and receiver encoding |
US9541661B2 (en) | 2012-04-19 | 2017-01-10 | Cgg Services Sa | Device and method for deghosting variable depth streamer data |
US9435905B2 (en) | 2012-04-19 | 2016-09-06 | Cgg Services Sa | Premigration deghosting of seismic data with a bootstrap technique |
-
2011
- 2011-03-10 US US13/045,215 patent/US8694299B2/en active Active
- 2011-03-14 MY MYPI2012004520A patent/MY162803A/en unknown
- 2011-03-14 KR KR1020127031840A patent/KR101948509B1/ko active IP Right Grant
- 2011-03-14 CN CN201180022962.1A patent/CN102892972B/zh not_active Expired - Fee Related
- 2011-03-14 CA CA2795340A patent/CA2795340C/en not_active Expired - Fee Related
- 2011-03-14 RU RU2012152638/28A patent/RU2573174C2/ru not_active IP Right Cessation
- 2011-03-14 SG SG2012073284A patent/SG184803A1/en unknown
- 2011-03-14 EP EP11777738.3A patent/EP2567063B1/en active Active
- 2011-03-14 WO PCT/US2011/028345 patent/WO2011139413A1/en active Application Filing
- 2011-03-14 BR BR112012025185A patent/BR112012025185A2/pt not_active Application Discontinuation
- 2011-03-14 AU AU2011248989A patent/AU2011248989B2/en not_active Ceased
-
2014
- 2014-02-27 US US14/192,497 patent/US8880384B2/en active Active
- 2014-09-12 US US14/484,603 patent/US10002211B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6954721B2 (en) * | 2000-02-17 | 2005-10-11 | Qinetiq Limited | Signal processing technique |
US6687659B1 (en) * | 2000-03-24 | 2004-02-03 | Conocophillips Company | Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications |
US20070203673A1 (en) * | 2005-11-04 | 2007-08-30 | Sherrill Francis G | 3d pre-stack full waveform inversion |
CN101681394A (zh) * | 2006-09-28 | 2010-03-24 | 埃克森美孚上游研究公司 | 来自并发地球物理源的数据的迭代反演 |
US20090319240A1 (en) * | 2007-03-19 | 2009-12-24 | Fujitsu Limited | Simulation apparatus, simulation control method, and computer product |
US7640110B2 (en) * | 2007-04-27 | 2009-12-29 | Schlumberger Technology Corporation | Pixel based inversion method for surface electromagnetic measurement |
Also Published As
Publication number | Publication date |
---|---|
KR101948509B1 (ko) | 2019-02-18 |
KR20130060231A (ko) | 2013-06-07 |
SG184803A1 (en) | 2012-11-29 |
US8694299B2 (en) | 2014-04-08 |
US20140180656A1 (en) | 2014-06-26 |
US20140379315A1 (en) | 2014-12-25 |
CA2795340C (en) | 2016-04-19 |
EP2567063B1 (en) | 2020-07-08 |
AU2011248989B2 (en) | 2016-04-21 |
RU2573174C2 (ru) | 2016-01-20 |
EP2567063A1 (en) | 2013-03-13 |
CA2795340A1 (en) | 2011-11-10 |
RU2012152638A (ru) | 2014-06-20 |
CN102892972B (zh) | 2017-06-09 |
US10002211B2 (en) | 2018-06-19 |
US20110276320A1 (en) | 2011-11-10 |
EP2567063A4 (en) | 2017-05-03 |
WO2011139413A1 (en) | 2011-11-10 |
US8880384B2 (en) | 2014-11-04 |
MY162803A (en) | 2017-07-14 |
AU2011248989A1 (en) | 2012-11-22 |
BR112012025185A2 (pt) | 2016-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102892972A (zh) | 地球物理数据的迭代反演方法中的伪迹减少 | |
KR102020759B1 (ko) | Q-보상된 전 파동장 반전 | |
Chen et al. | Elastic least-squares reverse time migration via linearized elastic full-waveform inversion with pseudo-Hessian preconditioning | |
CN103238158B (zh) | 利用互相关目标函数进行的海洋拖缆数据同时源反演 | |
CN102239429B (zh) | Tti地球模型的多各向异性参数反演 | |
CN101952743B (zh) | 地球物理数据反演的有效方法 | |
US5539704A (en) | Bayesian sequential Gaussian simulation of lithology with non-linear data | |
CN101688926B (zh) | 基于拉普拉斯域波形反演的地下结构成像装置和分析方法 | |
US8121792B2 (en) | Integration of geomechanics and seismic analysis for passive seismic feasibility analysis | |
Soupios et al. | Applications of hybrid genetic algorithms in seismic tomography | |
US20130258810A1 (en) | Method and System for Tomographic Inversion | |
CN103703391A (zh) | 使用频谱整形的全波场反演的收敛速度 | |
CN108369289A (zh) | 使用全波场反演点扩展函数分析设计地球物理勘测的方法 | |
NO315216B1 (no) | Fremgangsmåte for bayesisk sekvensiell indikatorsimulering av litologi fraseismiske attributter og litologiske borehullsdata | |
Cho et al. | Generalized multiscale finite elements for simulation of elastic-wave propagation in fractured media | |
Huang et al. | Bayesian full-waveform inversion in anisotropic elastic media using the iterated extended Kalman filter | |
RU2570827C2 (ru) | Гибридный способ для полноволновой инверсии с использованием способа одновременных и последовательных источников | |
Aleardi et al. | Hamiltonian Monte Carlo algorithms for target-and interval-oriented amplitude versus angle inversions | |
Pan et al. | Random objective waveform inversion of surface waves | |
Li et al. | 2D high-resolution crosswell seismic traveltime tomography | |
AlMuhaidib et al. | Finite difference elastic wave modeling including surface topography | |
US20240310544A1 (en) | Domain decomposition for high-frequency elastic full waveform inversion method and system | |
Meskaranian et al. | Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study | |
Tran et al. | Shear wave velocity via inversion of full waveforms | |
Alashloo et al. | Research Article Influence of Error in Estimating Anisotropy Parameters on VTI Depth Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170609 Termination date: 20210314 |