CN102879363B - 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 - Google Patents

一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 Download PDF

Info

Publication number
CN102879363B
CN102879363B CN201210348195.XA CN201210348195A CN102879363B CN 102879363 B CN102879363 B CN 102879363B CN 201210348195 A CN201210348195 A CN 201210348195A CN 102879363 B CN102879363 B CN 102879363B
Authority
CN
China
Prior art keywords
sensor
resonance energy
detection method
nayf4
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210348195.XA
Other languages
English (en)
Other versions
CN102879363A (zh
Inventor
汪乐余
李慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201210348195.XA priority Critical patent/CN102879363B/zh
Publication of CN102879363A publication Critical patent/CN102879363A/zh
Application granted granted Critical
Publication of CN102879363B publication Critical patent/CN102879363B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法。本方法利用超声微乳法制得了水溶性的单分散大小均一的表面修饰有罗丹明硫代内酯的稀土上转换纳米颗粒,即基于上转换NaYF4共振能量转移的Hg2+传感器。在Hg2+存在的条件下,修饰在纳米颗粒表面的罗丹明硫代内酯与Hg2+特异性的结合发生开环,在555nm处有一个最大吸收峰,在980nm近红外光的激发下,正好与NaYF4纳米颗粒的543nm处的发射峰发生重叠,发生有效的共振能量转移,NaYF4纳米颗粒的荧光发射峰很快被淬灭,可以通过检测荧光强度,达到定性定量检测Hg2+的目的。与传统的检测方法比较,该方法操作简单,背景干扰小,信号强,成本低,且具有快速准确,高灵敏,高选择性的特点。

Description

一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法
技术领域
本发明属于Hg2+传感器制备技术领域,特别涉及一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法。 
技术背景
随着工业技术的发展,重金属污染问题日趋严重,特别是汞污染问题。汞具有高毒性,对生物体和环境均具有极大的危害。汞具有挥发性,汞及其化合物可通过呼吸道、皮肤或消化道等不同途径侵入人体,食物链对于汞有极强的富集能力,富集在人体内的汞可以对大脑的神经系统造成危害,并会引发心脏、肝脏、胃等组织和器官的疾病。因此,对于日常生活中的汞离子的检测和监控至关重要,实现环境和生物体内汞离子实时快速有效的监测就显得意义重大。 
目前汞离子的检测方法多种多样,大多是集中在光谱法,如原子吸收光谱法、原子发射光谱法,分光光度法及荧光分析方法等等,大多数分析方法对仪器和样品的要求都很高,耗时较长,在实际应用中会受到一定的限制。而荧光分子探针技术(Himali S.,Hewage,Eric V.Anslyn.J.AM.CHEM.SOC.2009,131,13099–13106;Tsui-Lien Kao.J.Org.Chem.2005,70,2912-2920;Denis Svechkarev.J.Phys.Chem.A 2011,115,4223–4230)在一定程度上弥补了其不足之处,可以实现重金属汞离子的原位检测,但是大多数有机荧光探针分子水溶性都不好,且其荧光寿命短,稳定性差,在实际样品的检测中仍然存在一定的局限性。 
近年来,纳米材料的发展为解决这一问题提供了新的思路。纳米颗粒以其独特的光学和磁学等性质也引起了很多研究者的兴趣,其中以量子点(Ming Li,Qiaoyi Wang,,Xiaodong Shi,Lawrence A.Hornak,and Nianqiang Wu.Anal.Chem.2011,83,7061–7065)、聚合物纳米颗粒(Chao Ma,Fang Zeng,Lifang Huang,and Shuizhu Wu.J.Phys.Chem.B 2011,115,874–882)、碳纳米管(Libing Zhang,Tao Li,Bingling Li,Jing Li and Erkang Wang.Chem.Commun.,2010,46,1476–1478)、金或银(Xun Yuan,Teik Jin Yeow,Qingbo Zhang,Jim Yang Lee and Jianping Xie.Nanoscale,2012,4,1968–1971)为主要材料设计重金属汞离子传感器都有相关的报道。稀土上转换发光材料发射谱带窄,荧光寿命长,背景干扰小,荧光稳定,发光强,激发光穿透性强,对基质的损伤小,正是因为以上这些优异的特性,使其在细胞成像,癌症诊断等生物领域有着潜在的应用价值(Meng Wang,Cong-Cong Mi etc.ACS Nano2009,3,1580-1585.)。为了进一步研究其在重金属汞离子传感器领域的实际应用价值,设计一 种简单的基于稀土上转换发光材料FRET的Hg2+传感器,达到水溶性好、高灵敏度、高选择性、快速且低成本的检测目的,是本发明的意义和重点所在。 
发明内容
本发明的目的是提供一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法,以克服现有的检测技术中的缺陷和不足之处,达到高灵敏、高选择性和低成本检测环境中重金属汞离子的目的。 
本发明所述的基于上转换NaYF4共振能量转移的Hg2+传感器的制备方法为: 
a.将0.02-0.1g的十二烷基肌氨酸钠加入6-10mL去离子水中,超声促使其完全溶解; 
b.将浓度为0.1-1mg/mL的block-polymer 150-300μL、浓度为0.3-0.8mmol/mL的稀土上转换纳米颗粒100-300μL、浓度为0.5-1mg/mL的磷脂150-200μL、浓度为5-15mg/mL的曲拉通X-100量取10-50μL、浓度为3-6mg/mL的罗丹明硫代内酯200-300μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿或者环己烷为溶剂; 
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5-10min,最终形成水包油微乳液体系,超声功率为400-600W; 
d.静置2-3min后,将微乳液在55-65℃水浴条件下进行抽滤旋蒸10-20min,去除溶液中的氯仿或环己烷; 
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析1-2天。 
步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为10-18wt%,Er的掺杂量为2-10wt%,纳米颗粒直径为15-20nm,纳米颗粒表面包覆有油酸。 
步骤e所述的微孔透析袋的处理方法为:剪取4-6cm长的透析袋加进含有0.05-0.06g乙二胺四乙酸、2-4mg碳酸氢钠的150mL去离子水中加热煮沸8-12分钟,用水洗干净后再放入含0.05-0.06g乙二胺四乙酸的150mL去离子水中加热煮沸8-12分钟,自然冷却到室温,放置到冰箱中冷藏待用。 
将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器应用于金属离子的检测: 
a.配制金属离子溶液; 
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器加入金属离子溶液中,再加入缓冲溶液,常温下混合均匀后进行光谱测试; 
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图,根据荧光强度定性定量检测Hg2+。 
本发明的有益效果:本方法利用超声微乳法,在高分子和表面活性剂及磷脂的存在下, 制得了水溶性的单分散大小均一的表面修饰有罗丹明硫代内酯的稀土上转换纳米颗粒,即基于上转换NaYF4共振能量转移的Hg2+传感器。在Hg2+存在的条件下,修饰在纳米颗粒表面的罗丹明硫代内酯与Hg2+特异性的结合,罗丹明硫代内酯发生开环,在555nm处有一个最大吸收峰,在980nm近红外光的激发下,正好与NaYF4纳米颗粒的543nm处的发射峰发生重叠,发生有效的共振能量转移,NaYF4纳米颗粒的荧光发射峰很快被淬灭,可以通过检测荧光强度,达到定性定量检测Hg2+的目的。与传统的检测方法比较,该方法操作简单,背景干扰小,信号强,成本低,且具有快速准确,高灵敏,高选择性的特点。 
附图说明
图1为实施例1使用的稀土上转换纳米颗粒的XRD图; 
图2为实施例1使用的稀土上转换纳米颗粒的TEM照片; 
图3为实施例1制备的基于上转换NaYF4共振能量转移的Hg2+传感器的TEM照片; 
图4为实施例1制备的基于上转换NaYF4共振能量转移的Hg2+传感器的FT-IR图; 
图5为罗丹明硫代内酯和稀土上转换纳米颗粒光谱重叠图; 
图6为实施例1中pH值对Hg2+传感器的影响关系图; 
图7为实施例1中不同浓度汞离子存在下Hg2+传感器的荧光发射峰变化图; 
图8为实施例1中不同浓度汞离子对Hg2+传感器荧光强度的标准曲线图; 
图9为实施例1中不同浓度汞离子存在下检测溶液的吸光度; 
图10为实施例1不同金属离子存在下Hg2+传感器在543nm处的荧光强度的变化; 
图11为荧光共振能量转移Hg2+传感器的原理图。 
具体实施方式
实施例1: 
a.将0.1g的十二烷基肌氨酸钠加入7mL去离子水中,超声促使其完全溶解; 
b.将浓度为1mg/mL的block-polymer 200μL、浓度为0.5mmol/mL的稀土上转换纳米颗粒200μL、浓度为1mg/mL的磷脂200μL、浓度为10mg/mL的曲拉通X-100量取20μL、浓度为5mg/mL的罗丹明硫代内酯200μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿为溶剂; 
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5min,最终形成水包油微乳液体系,超声功率为500W; 
d.静置3min后,将微乳液在60℃水浴条件下进行抽滤旋蒸20min,去除溶液中的氯仿; 
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析2天,期间每3h更换一次去离子水。 
步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为15wt%,Er的掺杂量为5wt%,纳米颗粒直径为15-20nm,呈单晶颗粒分布,纳米颗粒表面包覆有油酸,采用油相的溶剂热法合成,其XRD、TEM如图1、2所示。 
步骤e所述的微孔透析袋的处理方法为:剪取5cm长的透析袋加进装有0.05g乙二胺四乙酸、2mg碳酸氢钠的150mL去离子水中加热煮沸10分钟,用水洗干净后再放入含0.06g乙二胺四乙酸的150mL去离子水中加热煮沸10分钟,自然冷却到室温,放置到冰箱中冷藏待用。 
block-polymer的CAS号为251553-55-6,分子量575,化学式为polyethylene-block-poly-(ethylene glycol)。 
曲拉通X-100的CAS号为9002-93-1。 
磷脂的化学式为2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)(sodium salt)(carboxylated phospholipid,PL)。 
上述制得的基于上转换NaYF4共振能量转移的Hg2+传感器的TEM照片、FT-IR如图3、4所示。 
将上述制得的基于上转换NaYF4共振能量转移的Hg2+传感器进行检测操作: 
a.分别配制浓度为1mM的Fe3+、Fe2+、Mn2+、Pb2+、Zn2+、Hg2+、Ni2+、Ag+、Cd2+、Cu2+、Al3+、Ca2+、Mg2+、Na+、NH4 +、K+的金属离子溶液和浓度为0、0.005、0.01、0.03、0.07、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.4、1.8、2.2、2.6、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、8.0、9.0、10.0(μM)的Hg2+溶液; 
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器分别加入步骤a配置的溶液中,Hg2+传感器的加入量为50μg/mL,再加入0.2M的NaH2PO4-Na2HPO4缓冲溶液调节pH值为5,常温下混合均匀后进行光谱测试; 
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图。 
罗丹明硫代内酯的吸收光谱和稀土上转换纳米颗粒的发射光谱的重叠图如图5所示,溶液的pH值对汞离子检测的影响如图6所示,不同浓度的汞离子存在下上述Hg2+传感器的溶液荧光光谱的变化、标准曲线、紫外吸收光谱的变化如图7、8、9所示,不同金属离子存在下Hg2+传感器的溶液在543nm处的荧光强度的变化如图10所示。 

Claims (3)

1.一种基于上转换NaYF4共振能量转移的Hg2+传感器的制备方法,其特征在于,其具体制备步骤为:
a.将0.02-0.1g的十二烷基肌氨酸钠加入6-10mL去离子水中,超声促使其完全溶解;
b.将浓度为0.1-1mg/mL的block-polymer150-300μL、浓度为0.3-0.8mmol/mL的稀土上转换纳米颗粒100-300μL、浓度为0.5-1mg/mL的磷脂150-200μL、浓度为5-15mg/mL的曲拉通X-100量取10-50μL、浓度为3-6mg/mL的罗丹明硫代内酯200-300μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿或者环己烷为溶剂;
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5-10min,最终形成水包油微乳液体系,超声功率为400-600W;
d.静置2-3min后,将微乳液在55-65℃水浴条件下进行抽滤旋蒸10-20min,去除溶液中的氯仿或环己烷;
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析1-2天;
步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为10-18wt%,Er的掺杂量为2-10wt%,纳米颗粒直径为15-20nm,纳米颗粒表面包覆有油酸。
2.根据权利要求1所述的制备方法,其特征在于,步骤e所述的微孔透析袋的处理方法为:剪取4-6cm长的透析袋加进含有0.05-0.06g乙二胺四乙酸、2-4mg碳酸氢钠的150mL去离子水中加热煮沸8-12分钟,用水洗干净后再放入含0.05-0.06g乙二胺四乙酸的150mL去离子水中加热煮沸8-12分钟,自然冷却到室温,放置到冰箱中冷藏待用。
3.根据权利要求1所述的基于上转换NaYF4共振能量转移的Hg2+传感器的检测方法,其特征在于,检测操作步骤为:
a.配制金属离子溶液;
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器加入金属离子溶液中,再加入缓冲溶液,常温下混合均匀后进行光谱测试;
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图,根据荧光强度定性定量检测Hg2+
CN201210348195.XA 2012-09-18 2012-09-18 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 Expired - Fee Related CN102879363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210348195.XA CN102879363B (zh) 2012-09-18 2012-09-18 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210348195.XA CN102879363B (zh) 2012-09-18 2012-09-18 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法

Publications (2)

Publication Number Publication Date
CN102879363A CN102879363A (zh) 2013-01-16
CN102879363B true CN102879363B (zh) 2014-11-26

Family

ID=47480771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210348195.XA Expired - Fee Related CN102879363B (zh) 2012-09-18 2012-09-18 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法

Country Status (1)

Country Link
CN (1) CN102879363B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111206B (zh) * 2013-01-18 2015-06-17 北京化工大学 一种通过表面修饰将油溶性纳米晶体稳定分散于水中的方法
CN104730052A (zh) * 2015-03-20 2015-06-24 北京化工大学 一种基于亲水性上转换纳米NaYF4的过氧化氢和葡萄糖传感器
CN105086997A (zh) * 2015-09-08 2015-11-25 上海海事大学 一种荧光探针及其制备方法
CN105203506A (zh) * 2015-09-24 2015-12-30 上海大学 重金属离子上转换发光检测用纳米探针及其制备方法
CN107677650B (zh) * 2016-08-02 2020-04-10 天津师范大学 基于镱和铥掺杂的四氟钇钠上转换纳米粒子的多巴胺检测方法
CN107312519B (zh) * 2017-05-26 2019-06-04 安徽师范大学 UCNPs-Au-SH-ssDNA及其制备方法以及二价汞离子的检测方法
CN110229165B (zh) * 2019-05-31 2020-11-06 苏州科技大学 上转换荧光探针罗丹明衍生物及其应用
CN110987890B (zh) * 2019-12-18 2022-06-10 东南大学 一种红外光激发可视化检测重金属离子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456866A (zh) * 2007-12-10 2009-06-17 中国科学院化学研究所 一种罗丹明b内硫酯及其制备方法与应用
CN101948694A (zh) * 2010-09-08 2011-01-19 吉林大学 稀土上转换纳米晶/银双功能复合纳米材料及制备方法及在癌症检测与治疗中的应用
CN102516978A (zh) * 2011-11-18 2012-06-27 厦门大学 用于检测水中汞离子及银离子的分子探针及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782573A (zh) * 2009-11-22 2012-11-14 圣诺制药公司 在治疗和诊断中应用的稀土掺杂上转换纳米颗粒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456866A (zh) * 2007-12-10 2009-06-17 中国科学院化学研究所 一种罗丹明b内硫酯及其制备方法与应用
CN101948694A (zh) * 2010-09-08 2011-01-19 吉林大学 稀土上转换纳米晶/银双功能复合纳米材料及制备方法及在癌症检测与治疗中的应用
CN102516978A (zh) * 2011-11-18 2012-06-27 厦门大学 用于检测水中汞离子及银离子的分子探针及其制备方法

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
、High-Efficiency Upconversion Luminescent Sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors;Qian Liu et al.;《acsnano》;20110907;第5卷(第10期);8040–8048 *
2597. *
Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana;Yangyang Zhang et al.;《Sensors and Actuators B: Chemical》;20101015;第153卷;261-265 *
Enhanced sensitivity in a Hg2+ sensor by photonic crystals;Liying Cui et al.;《COMMUNICATION》;20100413;448-450 *
Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles;Leyu Wang;《communication》;20051231;6054-6057 *
Hee Jung Kim.Selective chromogenic and fluorogenic signalling of Hg2&thorn *
Hee Jung Kim.Selective chromogenic and fluorogenic signalling of Hg2þions using a fluorescein-coumarin conjugate.《Deys and pigments》.2009,54-58. *
Hg2+ Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging;Xiaoqiang Chen et al.;《ORGANIC LETTERS》;20081028;第10卷(第22期);5235-5238 *
ions using a fluorescein-coumarin conjugate.《Deys and pigments》.2009,54-58. *
Iridium-Complex-Modifi ed Upconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Wate;Liming Yao et al.;《Adv. Funct. Mater.》;20120329;2667–2672 *
Jing Hui Zeng et al..Synthesis of complex rare earth fluoride nanocrystal phosphors.《Nanotechnology》.2006,3549-3555. *
Leyu Wang.Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles.《communication》.2005,6054-6057. *
Liming Yao et al..Iridium-Complex-Modifi ed Upconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Wate.《Adv. Funct. Mater.》.2012,2667–2672. *
Liying Cui et al..Enhanced sensitivity in a Hg2+ sensor by photonic crystals.《COMMUNICATION》.2010,448-450. *
Mingliang Deng et al..Surface Functionalization of Hydrophobic Nanocrystals with One Particle per Micelle for Bioapplications.《Chem. Mater.》.2012,2592&#8722 *
Qian Liu et al..、High-Efficiency Upconversion Luminescent Sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors.《acsnano》.2011,第5卷(第10期),8040–8048. *
Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media;Wen Shi and Huimin Ma;《ChemComm》;20080227;1856–1858 *
Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II);Xin-Qi Zhan,等;《chem. comm.》;20080310;1859-1861 *
Surface Functionalization of Hydrophobic Nanocrystals with One Particle per Micelle for Bioapplications;Mingliang Deng et al.;《Chem. Mater.》;20120612;2592−2597 *
Synthesis of complex rare earth fluoride nanocrystal phosphors;Jing Hui Zeng et al.;《Nanotechnology》;20060626;3549-3555 *
Wen Shi and Huimin Ma.Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media.《ChemComm》.2008,1856–1858. *
Xiaoqiang Chen et al..Hg2+ Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging.《ORGANIC LETTERS》.2008,第10卷(第22期),5235-5238. *
Xin-Qi Zhan,等.Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II).《chem. comm.》.2008,1859-1861. *
Yangyang Zhang et al..Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana.《Sensors and Actuators B: Chemical》.2010,第153卷261-265. *
β-NaYF4:Yb,Er 纳米晶与四甲基异氰酸罗丹明染料分子间的发光共振能量转移研究;孙聆东等;《中国科学 B 辑:化学》;20091231;第39卷(第10期);1153-1158 *
孙聆东等.β-NaYF4:Yb Er 纳米晶与四甲基异氰酸罗丹明染料分子间的发光共振能量转移研究.《中国科学 B 辑:化学》.2009 *

Also Published As

Publication number Publication date
CN102879363A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN102879363B (zh) 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法
Ankireddy et al. Highly selective and sensitive detection of calcium (II) ions in human serum using novel fluorescent carbon dots
Xu et al. Microwave-assisted synthesis of carbon dots for" turn-on" fluorometric determination of Hg (II) via aggregation-induced emission
Zhu et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications
Kaur et al. Highly photoluminescent and pH sensitive nitrogen doped carbon dots (NCDs) as a fluorescent sensor for the efficient detection of Cr (VI) ions in aqueous media
Wang et al. Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection
Wu et al. Preparation of photoluminescent carbon nanodots by traditional Chinese medicine and application as a probe for Hg 2+
Zhou et al. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions
Li et al. A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2, 4, 6-trinitrophenol
Wang et al. Comparative study of Cl, N-Cdots and N-Cdots and application for trinitrophenol and ClO− sensor and cell-imaging
Chen et al. Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing
Hong et al. One-step hydrothermal synthesis of down/up-conversion luminescence F-doped carbon quantum dots for label-free detection of Fe3+
Chandra et al. Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells
CN103756667B (zh) 具有上转换发光性质的硫氢根离子纳米传感材料及其制备方法
Chen et al. Water detection through Nd 3+-sensitized photon upconversion in core–shell nanoarchitecture
Liang et al. The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb3+, Er3+ nanoparticles by codoping with K+ ions
Omer et al. Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions
Wang et al. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4: Yb, Ho nanocrystals and gold nanoparticles
Zhou et al. Red-emitting carbon dots as luminescent agent in wide-range water detection in organic solvents and polarity-selective zebrafish imaging
Sun et al. Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium
Xu et al. Synthesis of multi-functional green fluorescence carbon dots and their applications as a fluorescent probe for Hg 2+ detection and zebrafish imaging
Li et al. A novel fluorescent probe involving a graphene quantum dot–enzyme hybrid system for the analysis of hydroquinone in the presence of toxic resorcinol and catechol
Zhang et al. Synthesis of novel fluorescent carbon quantum dots from Rosa roxburghii for rapid and highly selective detection of o-nitrophenol and cellular imaging
Adinarayana et al. Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions
Zhang et al. Selective, sensitive and label-free detection of Fe 3+ ion in tap water using highly fluorescent graphene quantum dots

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141126

Termination date: 20150918

EXPY Termination of patent right or utility model