CN102879363A - 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 - Google Patents
一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 Download PDFInfo
- Publication number
- CN102879363A CN102879363A CN201210348195XA CN201210348195A CN102879363A CN 102879363 A CN102879363 A CN 102879363A CN 201210348195X A CN201210348195X A CN 201210348195XA CN 201210348195 A CN201210348195 A CN 201210348195A CN 102879363 A CN102879363 A CN 102879363A
- Authority
- CN
- China
- Prior art keywords
- nayf
- energy transfer
- nanoparticles
- resonance energy
- add
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 238000002165 resonance energy transfer Methods 0.000 title claims abstract description 19
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 title description 3
- 239000002105 nanoparticle Substances 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 14
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 14
- OROGUZVNAFJPHA-UHFFFAOYSA-N 3-hydroxy-2,4-dimethyl-2H-thiophen-5-one Chemical compound CC1SC(=O)C(C)=C1O OROGUZVNAFJPHA-UHFFFAOYSA-N 0.000 claims abstract description 10
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 238000000502 dialysis Methods 0.000 claims description 12
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 7
- 239000004530 micro-emulsion Substances 0.000 claims description 6
- 150000003904 phospholipids Chemical class 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- 239000013504 Triton X-100 Substances 0.000 claims description 4
- 229920004890 Triton X-100 Polymers 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 239000007853 buffer solution Substances 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 3
- 239000000839 emulsion Substances 0.000 claims description 3
- 239000005457 ice water Substances 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- ADWNFGORSPBALY-UHFFFAOYSA-M sodium;2-[dodecyl(methyl)amino]acetate Chemical compound [Na+].CCCCCCCCCCCCN(C)CC([O-])=O ADWNFGORSPBALY-UHFFFAOYSA-M 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 238000010025 steaming Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000000967 suction filtration Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 229960001484 edetic acid Drugs 0.000 claims 3
- 238000000034 method Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 238000000593 microemulsion method Methods 0.000 abstract description 2
- 229910052753 mercury Inorganic materials 0.000 description 16
- -1 mercury ions Chemical class 0.000 description 10
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920000362 Polyethylene-block-poly(ethylene glycol) Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 229940079862 sodium lauryl sarcosinate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法。本方法利用超声微乳法制得了水溶性的单分散大小均一的表面修饰有罗丹明硫代内酯的稀土上转换纳米颗粒,即基于上转换NaYF4共振能量转移的Hg2+传感器。在Hg2+存在的条件下,修饰在纳米颗粒表面的罗丹明硫代内酯与Hg2+特异性的结合发生开环,在555nm处有一个最大吸收峰,在980nm近红外光的激发下,正好与NaYF4纳米颗粒的543nm处的发射峰发生重叠,发生有效的共振能量转移,NaYF4纳米颗粒的荧光发射峰很快被淬灭,可以通过检测荧光强度,达到定性定量检测Hg2+的目的。与传统的检测方法比较,该方法操作简单,背景干扰小,信号强,成本低,且具有快速准确,高灵敏,高选择性的特点。
Description
技术领域
本发明属于Hg2+传感器制备技术领域,特别涉及一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法。
技术背景
随着工业技术的发展,重金属污染问题日趋严重,特别是汞污染问题。汞具有高毒性,对生物体和环境均具有极大的危害。汞具有挥发性,汞及其化合物可通过呼吸道、皮肤或消化道等不同途径侵入人体,食物链对于汞有极强的富集能力,富集在人体内的汞可以对大脑的神经系统造成危害,并会引发心脏、肝脏、胃等组织和器官的疾病。因此,对于日常生活中的汞离子的检测和监控至关重要,实现环境和生物体内汞离子实时快速有效的监测就显得意义重大。
目前汞离子的检测方法多种多样,大多是集中在光谱法,如原子吸收光谱法、原子发射光谱法,分光光度法及荧光分析方法等等,大多数分析方法对仪器和样品的要求都很高,耗时较长,在实际应用中会受到一定的限制。而荧光分子探针技术(Himali S.,Hewage,Eric V.Anslyn.J.AM.CHEM.SOC.2009,131,13099–13106;Tsui-Lien Kao.J.Org.Chem.2005,70,2912-2920;Denis Svechkarev.J.Phys.Chem.A 2011,115,4223–4230)在一定程度上弥补了其不足之处,可以实现重金属汞离子的原位检测,但是大多数有机荧光探针分子水溶性都不好,且其荧光寿命短,稳定性差,在实际样品的检测中仍然存在一定的局限性。
近年来,纳米材料的发展为解决这一问题提供了新的思路。纳米颗粒以其独特的光学和磁学等性质也引起了很多研究者的兴趣,其中以量子点(Ming Li,Qiaoyi Wang,,Xiaodong Shi,Lawrence A.Hornak,and Nianqiang Wu.Anal.Chem.2011,83,7061–7065)、聚合物纳米颗粒(Chao Ma,Fang Zeng,Lifang Huang,and Shuizhu Wu.J.Phys.Chem.B 2011,115,874–882)、碳纳米管(Libing Zhang,Tao Li,Bingling Li,Jing Li and Erkang Wang.Chem.Commun.,2010,46,1476–1478)、金或银(Xun Yuan,Teik Jin Yeow,Qingbo Zhang,Jim YangLee and Jianping Xie.Nanoscale,2012,4,1968–1971)为主要材料设计重金属汞离子传感器都有相关的报道。稀土上转换发光材料发射谱带窄,荧光寿命长,背景干扰小,荧光稳定,发光强,激发光穿透性强,对基质的损伤小,正是因为以上这些优异的特性,使其在细胞成像,癌症诊断等生物领域有着潜在的应用价值(Meng Wang,Cong-Cong Mi etc.ACS Nano2009,3,1580-1585.)。为了进一步研究其在重金属汞离子传感器领域的实际应用价值,设计一种简单的基于稀土上转换发光材料FRET的Hg2+传感器,达到水溶性好、高灵敏度、高选择性、快速且低成本的检测目的,是本发明的意义和重点所在。
发明内容
本发明的目的是提供一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法,以克服现有的检测技术中的缺陷和不足之处,达到高灵敏、高选择性和低成本检测环境中重金属汞离子的目的。
本发明所述的基于上转换NaYF4共振能量转移的Hg2+传感器的制备方法为:
a.将0.02-0.1g的十二烷基肌氨酸钠加入6-10mL去离子水中,超声促使其完全溶解;
b.将浓度为0.1-1mg/mL的block-polymer 150-300μL、浓度为0.3-0.8mmol/mL的稀土上转换纳米颗粒100-300μL、浓度为0.5-1mg/mL的磷脂150-200μL、浓度为5-15mg/mL的曲拉通X-100量取10-50μL、浓度为3-6mg/mL的罗丹明硫代内酯200-300μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿或者环己烷为溶剂;
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5-10min,最终形成水包油微乳液体系,超声功率为400-600W;
d.静置2-3min后,将微乳液在55-65℃水浴条件下进行抽滤旋蒸10-20min,去除溶液中的氯仿或环己烷;
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析1-2天。
步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为10-18wt%,Er的掺杂量为2-10wt%,纳米颗粒直径为15-20nm,纳米颗粒表面包覆有油酸。
步骤e所述的微孔透析袋的处理方法为:剪取4-6cm长的透析袋加进含有0.05-0.06g乙二胺四乙酸、2-4mg碳酸氢钠的150mL去离子水中加热煮沸8-12分钟,用水洗干净后再放入含0.05-0.06g乙二胺四乙酸的150mL去离子水中加热煮沸8-12分钟,自然冷却到室温,放置到冰箱中冷藏待用。
将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器应用于金属离子的检测:
a.配制金属离子溶液;
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器加入金属离子溶液中,再加入缓冲溶液,常温下混合均匀后进行光谱测试;
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图,根据荧光强度定性定量检测Hg2+。
本发明的有益效果:本方法利用超声微乳法,在高分子和表面活性剂及磷脂的存在下,制得了水溶性的单分散大小均一的表面修饰有罗丹明硫代内酯的稀土上转换纳米颗粒,即基于上转换NaYF4共振能量转移的Hg2+传感器。在Hg2+存在的条件下,修饰在纳米颗粒表面的罗丹明硫代内酯与Hg2+特异性的结合,罗丹明硫代内酯发生开环,在555nm处有一个最大吸收峰,在980nm近红外光的激发下,正好与NaYF4纳米颗粒的543nm处的发射峰发生重叠,发生有效的共振能量转移,NaYF4纳米颗粒的荧光发射峰很快被淬灭,可以通过检测荧光强度,达到定性定量检测Hg2+的目的。与传统的检测方法比较,该方法操作简单,背景干扰小,信号强,成本低,且具有快速准确,高灵敏,高选择性的特点。
附图说明
图1为实施例1使用的稀土上转换纳米颗粒的XRD图;
图2为实施例1使用的稀土上转换纳米颗粒的TEM照片;
图3为实施例1制备的基于上转换NaYF4共振能量转移的Hg2+传感器的TEM照片;
图4为实施例1制备的基于上转换NaYF4共振能量转移的Hg2+传感器的FT-IR图;
图5为罗丹明硫代内酯和稀土上转换纳米颗粒光谱重叠图;
图6为实施例1中pH值对Hg2+传感器的影响关系图;
图7为实施例1中不同浓度汞离子存在下Hg2+传感器的荧光发射峰变化图;
图8为实施例1中不同浓度汞离子对Hg2+传感器荧光强度的标准曲线图;
图9为实施例1中不同浓度汞离子存在下检测溶液的吸光度;
图10为实施例1不同金属离子存在下Hg2+传感器在543nm处的荧光强度的变化;
图11为荧光共振能量转移Hg2+传感器的原理图。
具体实施方式
实施例1:
a.将0.1g的十二烷基肌氨酸钠加入7mL去离子水中,超声促使其完全溶解;
b.将浓度为1mg/mL的block-polymer 200μL、浓度为0.5mmol/mL的稀土上转换纳米颗粒200μL、浓度为1mg/mL的磷脂200μL、浓度为10mg/mL的曲拉通X-100量取20μL、浓度为5mg/mL的罗丹明硫代内酯200μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿为溶剂;
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5min,最终形成水包油微乳液体系,超声功率为500W;
d.静置3min后,将微乳液在60℃水浴条件下进行抽滤旋蒸20min,去除溶液中的氯仿;
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析2天,期间每3h更换一次去离子水。
步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为15wt%,Er的掺杂量为5wt%,纳米颗粒直径为15-20nm,呈单晶颗粒分布,纳米颗粒表面包覆有油酸,采用油相的溶剂热法合成,其XRD、TEM如图1、2所示。
步骤e所述的微孔透析袋的处理方法为:剪取5cm长的透析袋加进装有0.05g乙二胺四乙酸、2mg碳酸氢钠的150mL去离子水中加热煮沸10分钟,用水洗干净后再放入含0.06g乙二胺四乙酸的150mL去离子水中加热煮沸10分钟,自然冷却到室温,放置到冰箱中冷藏待用。
block-polymer的CAS号为251553-55-6,分子量575,化学式为polyethylene-block-poly-(ethylene glycol)。
曲拉通X-100的CAS号为9002-93-1。
磷脂的化学式为2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)(sodium salt)(carboxylated phospholipid,PL)。
上述制得的基于上转换NaYF4共振能量转移的Hg2+传感器的TEM照片、FT-IR如图3、4所示。
将上述制得的基于上转换NaYF4共振能量转移的Hg2+传感器进行检测操作:
a.分别配制浓度为1mM的Fe3+、Fe2+、Mn2+、Pb2+、Zn2+、Hg2+、Ni2+、Ag+、Cd2+、Cu2+、Al3+、Ca2+、Mg2+、Na+、NH4 +、K+的金属离子溶液和浓度为0、0.005、0.01、0.03、0.07、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.4、1.8、2.2、2.6、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、8.0、9.0、10.0(μM)的Hg2+溶液;
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器分别加入步骤a配置的溶液中,Hg2+传感器的加入量为50μg/mL,再加入0.2M的NaH2PO4-Na2HPO4缓冲溶液调节pH值为5,常温下混合均匀后进行光谱测试;
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图。
罗丹明硫代内酯的吸收光谱和稀土上转换纳米颗粒的发射光谱的重叠图如图5所示,溶液的pH值对汞离子检测的影响如图6所示,不同浓度的汞离子存在下上述Hg2+传感器的溶液荧光光谱的变化、标准曲线、紫外吸收光谱的变化如图7、8、9所示,不同金属离子存在下Hg2+传感器的溶液在543nm处的荧光强度的变化如图10所示。
Claims (4)
1.一种基于上转换NaYF4共振能量转移的Hg2+传感器的制备方法,其特征在于,其具体制备步骤为:
a.将0.02-0.1g的十二烷基肌氨酸钠加入6-10mL去离子水中,超声促使其完全溶解;
b.将浓度为0.1-1mg/mL的block-polymer 150-300μL、浓度为0.3-0.8mmol/mL的稀土上转换纳米颗粒100-300μL、浓度为0.5-1mg/mL的磷脂150-200μL、浓度为5-15mg/mL的曲拉通X-100量取10-50μL、浓度为3-6mg/mL的罗丹明硫代内酯200-300μL,混匀均匀后加入步骤a配制的溶液中,以上五种物质均以氯仿或者环己烷为溶剂;
c.在冰水浴、搅拌条件下用破碎粉碎仪超声5-10min,最终形成水包油微乳液体系,超声功率为400-600W;
d.静置2-3min后,将微乳液在55-65℃水浴条件下进行抽滤旋蒸10-20min,去除溶液中的氯仿或环己烷;
e.将得到的乳液转移入处理后的微孔透析袋中,两端封闭,放入盛有去离子水的烧杯中透析1-2天。
2.根据权利要求1所述的制备方法,其特征在于,步骤b所述的稀土上转换纳米颗粒为NaYF4:Yb,Er,Yb的掺杂量为10-18wt%,Er的掺杂量为2-10wt%,纳米颗粒直径为15-20nm,纳米颗粒表面包覆有油酸。
3.根据权利要求1所述的制备方法,其特征在于,步骤e所述的微孔透析袋的处理方法为:剪取4-6cm长的透析袋加进含有0.05-0.06g乙二胺四乙酸、2-4mg碳酸氢钠的150mL去离子水中加热煮沸8-12分钟,用水洗干净后再放入含0.05-0.06g乙二胺四乙酸的150mL去离子水中加热煮沸8-12分钟,自然冷却到室温,放置到冰箱中冷藏待用。
4.根据权利要求1所述的基于上转换NaYF4共振能量转移的Hg2+传感器的检测方法,其特征在于,检测操作步骤为:
a.配制金属离子溶液;
b.将上述制备的基于上转换NaYF4共振能量转移的Hg2+传感器加入金属离子溶液中,再加入缓冲溶液,常温下混合均匀后进行光谱测试;
c.固定激发光波长为980nm,收集500-600nm波长范围内的光谱图,根据荧光强度定性定量检测Hg2+。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210348195.XA CN102879363B (zh) | 2012-09-18 | 2012-09-18 | 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210348195.XA CN102879363B (zh) | 2012-09-18 | 2012-09-18 | 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102879363A true CN102879363A (zh) | 2013-01-16 |
CN102879363B CN102879363B (zh) | 2014-11-26 |
Family
ID=47480771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210348195.XA Expired - Fee Related CN102879363B (zh) | 2012-09-18 | 2012-09-18 | 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102879363B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111206A (zh) * | 2013-01-18 | 2013-05-22 | 北京化工大学 | 一种通过表面修饰将油溶性纳米晶体稳定分散于水中的方法 |
CN104730052A (zh) * | 2015-03-20 | 2015-06-24 | 北京化工大学 | 一种基于亲水性上转换纳米NaYF4的过氧化氢和葡萄糖传感器 |
CN105086997A (zh) * | 2015-09-08 | 2015-11-25 | 上海海事大学 | 一种荧光探针及其制备方法 |
CN105203506A (zh) * | 2015-09-24 | 2015-12-30 | 上海大学 | 重金属离子上转换发光检测用纳米探针及其制备方法 |
CN107312519A (zh) * | 2017-05-26 | 2017-11-03 | 安徽师范大学 | UCNPs‑Au‑SH‑ssDNA及其制备方法以及二价汞离子的检测方法 |
CN107677650A (zh) * | 2016-08-02 | 2018-02-09 | 天津师范大学 | 基于镱和铥掺杂的四氟钇钠上转换纳米粒子的多巴胺检测方法 |
CN110229165A (zh) * | 2019-05-31 | 2019-09-13 | 苏州科技大学 | 上转换荧光探针罗丹明衍生物及其应用 |
CN110987890A (zh) * | 2019-12-18 | 2020-04-10 | 东南大学 | 一种红外光激发可视化检测重金属离子的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456866A (zh) * | 2007-12-10 | 2009-06-17 | 中国科学院化学研究所 | 一种罗丹明b内硫酯及其制备方法与应用 |
CN101948694A (zh) * | 2010-09-08 | 2011-01-19 | 吉林大学 | 稀土上转换纳米晶/银双功能复合纳米材料及制备方法及在癌症检测与治疗中的应用 |
WO2011063356A2 (en) * | 2009-11-22 | 2011-05-26 | Sirnaomics, Inc. | Rare earth-doped up-conversion nanoparticles for therapeutic and diagnostic applications |
CN102516978A (zh) * | 2011-11-18 | 2012-06-27 | 厦门大学 | 用于检测水中汞离子及银离子的分子探针及其制备方法 |
-
2012
- 2012-09-18 CN CN201210348195.XA patent/CN102879363B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456866A (zh) * | 2007-12-10 | 2009-06-17 | 中国科学院化学研究所 | 一种罗丹明b内硫酯及其制备方法与应用 |
WO2011063356A2 (en) * | 2009-11-22 | 2011-05-26 | Sirnaomics, Inc. | Rare earth-doped up-conversion nanoparticles for therapeutic and diagnostic applications |
CN101948694A (zh) * | 2010-09-08 | 2011-01-19 | 吉林大学 | 稀土上转换纳米晶/银双功能复合纳米材料及制备方法及在癌症检测与治疗中的应用 |
CN102516978A (zh) * | 2011-11-18 | 2012-06-27 | 厦门大学 | 用于检测水中汞离子及银离子的分子探针及其制备方法 |
Non-Patent Citations (12)
Title |
---|
HEE JUNG KIM: "Selective chromogenic and fluorogenic signalling of Hg2þ ions using a fluorescein-coumarin conjugate", 《DEYS AND PIGMENTS》, 30 June 2009 (2009-06-30), pages 54 - 58 * |
JING HUI ZENG ET AL.: "Synthesis of complex rare earth fluoride nanocrystal phosphors", 《NANOTECHNOLOGY》, 26 June 2006 (2006-06-26), pages 3549 - 3555 * |
LEYU WANG: "Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles", 《COMMUNICATION》, 31 December 2005 (2005-12-31), pages 6054 - 6057 * |
LIMING YAO ET AL.: "Iridium-Complex-Modifi ed Upconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Wate", 《ADV. FUNCT. MATER.》, 29 March 2012 (2012-03-29), pages 2667 - 2672 * |
LIYING CUI ET AL.: "Enhanced sensitivity in a Hg2+ sensor by photonic crystals", 《COMMUNICATION》, 13 April 2010 (2010-04-13), pages 448 - 450 * |
MINGLIANG DENG ET AL.: "Surface Functionalization of Hydrophobic Nanocrystals with One Particle per Micelle for Bioapplications", 《CHEM. MATER.》, 12 June 2012 (2012-06-12) * |
QIAN LIU ET AL.: "、High-Efficiency Upconversion Luminescent Sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors", 《ACSNANO》, vol. 5, no. 10, 7 September 2011 (2011-09-07), pages 8040 - 8048 * |
WEN SHI AND HUIMIN MA: "Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media", 《CHEMCOMM》, 27 February 2008 (2008-02-27), pages 1856 - 1858 * |
XIAOQIANG CHEN ET AL.: "Hg2+ Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging", 《ORGANIC LETTERS》, vol. 10, no. 22, 28 October 2008 (2008-10-28), pages 5235 - 5238 * |
XIN-QI ZHAN,等: "Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II)", 《CHEM. COMM.》, 10 March 2008 (2008-03-10), pages 1859 - 1861 * |
YANGYANG ZHANG ET AL.: "Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana", 《SENSORS AND ACTUATORS B: CHEMICAL》, vol. 153, 15 October 2010 (2010-10-15), pages 261 - 265 * |
孙聆东等: "β-NaYF4:Yb,Er 纳米晶与四甲基异氰酸罗丹明染料分子间的发光共振能量转移研究", 《中国科学 B 辑:化学》, vol. 39, no. 10, 31 December 2009 (2009-12-31), pages 1153 - 1158 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111206A (zh) * | 2013-01-18 | 2013-05-22 | 北京化工大学 | 一种通过表面修饰将油溶性纳米晶体稳定分散于水中的方法 |
CN103111206B (zh) * | 2013-01-18 | 2015-06-17 | 北京化工大学 | 一种通过表面修饰将油溶性纳米晶体稳定分散于水中的方法 |
CN104730052A (zh) * | 2015-03-20 | 2015-06-24 | 北京化工大学 | 一种基于亲水性上转换纳米NaYF4的过氧化氢和葡萄糖传感器 |
CN105086997A (zh) * | 2015-09-08 | 2015-11-25 | 上海海事大学 | 一种荧光探针及其制备方法 |
CN105203506A (zh) * | 2015-09-24 | 2015-12-30 | 上海大学 | 重金属离子上转换发光检测用纳米探针及其制备方法 |
CN107677650A (zh) * | 2016-08-02 | 2018-02-09 | 天津师范大学 | 基于镱和铥掺杂的四氟钇钠上转换纳米粒子的多巴胺检测方法 |
CN107312519A (zh) * | 2017-05-26 | 2017-11-03 | 安徽师范大学 | UCNPs‑Au‑SH‑ssDNA及其制备方法以及二价汞离子的检测方法 |
CN107312519B (zh) * | 2017-05-26 | 2019-06-04 | 安徽师范大学 | UCNPs-Au-SH-ssDNA及其制备方法以及二价汞离子的检测方法 |
CN110229165A (zh) * | 2019-05-31 | 2019-09-13 | 苏州科技大学 | 上转换荧光探针罗丹明衍生物及其应用 |
CN110987890A (zh) * | 2019-12-18 | 2020-04-10 | 东南大学 | 一种红外光激发可视化检测重金属离子的方法 |
CN110987890B (zh) * | 2019-12-18 | 2022-06-10 | 东南大学 | 一种红外光激发可视化检测重金属离子的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102879363B (zh) | 2014-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102879363A (zh) | 一种基于上转换NaYF4共振能量转移的Hg2+传感器及其检测方法 | |
Yang et al. | Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid | |
Xu et al. | Microwave-assisted synthesis of carbon dots for" turn-on" fluorometric determination of Hg (II) via aggregation-induced emission | |
Yang et al. | Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect | |
Gunjal et al. | Nitrogen doped waste tea residue derived carbon dots for selective quantification of tetracycline in urine and pharmaceutical samples and yeast cell imaging application | |
Du et al. | Facile, rapid synthesis of N, P-dual-doped carbon dots as a label-free multifunctional nanosensor for Mn (VII) detection, temperature sensing and cellular imaging | |
Shi et al. | Naked oats-derived dual-emission carbon nanodots for ratiometric sensing and cellular imaging | |
Duan et al. | A rapid microwave synthesis of nitrogen–sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid | |
Meng et al. | Multi-sensing function integrated nitrogen-doped fluorescent carbon dots as the platform toward multi-mode detection and bioimaging | |
Ding et al. | Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe 3+-sensing | |
Gao et al. | Deep eutectic solvents-derived carbon dots for detection of mercury (II), photocatalytic antifungal activity and fluorescent labeling for C. albicans | |
Ren et al. | Efficient preparation of nitrogen-doped fluorescent carbon dots for highly sensitive detection of metronidazole and live cell imaging | |
Cui et al. | Highly sensitive and selective detection of mercury ions based on up-conversion FRET from NaYF 4: Yb 3+/Er 3+ nanophosphors to CdTe quantum dots | |
CN118406496B (zh) | 用于肌酐检测的荧光-比色双模态纳米探针、生物传感器 | |
CN113817469B (zh) | 一种生物窗口内激发/发射的超亮单色上转换纳米探针及其制备方法和应用 | |
Zhou et al. | Red-emitting carbon dots as luminescent agent in wide-range water detection in organic solvents and polarity-selective zebrafish imaging | |
Omer et al. | Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions | |
Zhang et al. | Rapid microwave synthesis of N-doped carbon nanodots with high fluorescence brightness for cell imaging and sensitive detection of iron (III) | |
Xu et al. | Synthesis of multi-functional green fluorescence carbon dots and their applications as a fluorescent probe for Hg 2+ detection and zebrafish imaging | |
CN103616363B (zh) | 以甲硫氨酸保护的金纳米团簇为荧光探针的铜离子快速测定方法 | |
Liu et al. | Polyethylenimine-functionalized nitrogen and sulfur co-doped carbon dots as effective fluorescent probes for detection of Hg2+ ions | |
Liu et al. | Hydrothermal synthesis of a highly photoluminescent molecule from citric acid and cysteamine for the efficient detection of Au3+ in aqueous solution | |
Yang et al. | Liquid-liquid extraction and purification of oil red O derived nitrogen-doped highly photoluminescent carbon dots and their application as multi-functional sensing platform for Cu2+ and tetracycline antibiotics | |
Wang et al. | Robust solvatochromic carbon quantum dots for selective detection of water and Sn4+ and specific lipid imaging | |
Yan et al. | Fluorescent filter paper with pH-responsive carbon dots for the on-site detection of biogenic amines in food |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141126 Termination date: 20150918 |
|
EXPY | Termination of patent right or utility model |