CN102869778A - 重组毒素蛋白的高水平表达 - Google Patents

重组毒素蛋白的高水平表达 Download PDF

Info

Publication number
CN102869778A
CN102869778A CN2011800181497A CN201180018149A CN102869778A CN 102869778 A CN102869778 A CN 102869778A CN 2011800181497 A CN2011800181497 A CN 2011800181497A CN 201180018149 A CN201180018149 A CN 201180018149A CN 102869778 A CN102869778 A CN 102869778A
Authority
CN
China
Prior art keywords
expression
toxin
pseudomonas
host cell
albumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800181497A
Other languages
English (en)
Other versions
CN102869778B (zh
Inventor
D·M·雷奥尔阿克
L·丘
H·金
H·W·塔尔伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peliken Technology Holdings Ltd
Original Assignee
Phonex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44763483&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102869778(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2010/030573 external-priority patent/WO2011123139A1/en
Application filed by Phonex Corp filed Critical Phonex Corp
Publication of CN102869778A publication Critical patent/CN102869778A/zh
Application granted granted Critical
Publication of CN102869778B publication Critical patent/CN102869778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/235Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bordetella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/28Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Vibrionaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/036Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02036NAD(+)--diphthamide ADP-ribosyltransferase (2.4.2.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24068Tentoxilysin (3.4.24.68), i.e. tetanus neurotoxin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及在细菌宿主中生产重组毒素蛋白的领域。本发明尤其涉及从细菌宿主中获得高水平重组CRM 197、白喉毒素、百日咳毒素、破伤风类毒素C片段、霍乱毒素B、霍乱全毒素和假单胞菌外毒素A的生产方法。

Description

重组毒素蛋白的高水平表达
优先权要求
本申请根据35 U.S.C.$119(e)要求2010年4月16日提交的美国临时申请系列号61/325,235、2010年4月9日提交的PCT/US 10/30573和2010年3月30日提交的美国临时申请系列号61/319,152的优先权。这些申请的内容特此通过引用整体并入本文。
序列表
本申请包含通过EFS-Web以ASCII格式提交的序列表,该序列表特此通过引用整体并入本文。创建于2011年3月16日的所述ASCII拷贝被命名为38194201.txt,其大小为156,975个字节。
发明背景
微生物毒素蛋白在医学中用作针对产生毒素的微生物的疫苗接种的免疫原以及用作其他疫苗的载体蛋白质和佐剂,并且在科学研究中用作研究分子途径的工具。
白喉毒素(DT)是由白喉杆菌(Corynebacterium diphtheriae)的产毒菌株合成和分泌的蛋白质性毒素。产毒菌株含有携带毒素基因的噬菌体溶素原。DT被合成为535个氨基酸的多肽,其经历蛋白水解以形成成熟的毒素。成熟的毒素包含由二硫键连接的两个亚基A和B。由完整DT的C末端部分形成的B亚基使DT能够结合细胞膜并通过细胞膜进入到胞质中。一旦进入细胞,由完整DT的N末端部分形成的酶的A亚基催化延伸因子2(EF-2)的ADP核糖基化。其结果是,EF-2被灭活、蛋白质合成停止和细胞死亡。白喉毒素是高度细胞毒性的,单个分子可以致死细胞,且10ng/kg的剂量可以杀死动物和人。
CRM197蛋白是DT的无毒的、免疫学交叉反应的形式。已研究了其作为DT增强剂或疫苗抗原的潜在用途。CRM197是通过由产毒的β棒状杆菌噬菌体的亚硝基胍诱变构建的非产毒噬菌体β197tox-感染的白喉杆菌产生的。CRM197蛋白具有与DT相同的分子量,但在A亚基中有单碱基变化(鸟嘌呤变为腺嘌呤)的差异。这一单碱基变化导致氨基酸置换(谷氨酸置换为甘氨酸),并消除了DT的毒性性质。
使用CRM197作为载体蛋白的结合多糖疫苗已批准人体使用。疫苗包括:Menveo(Novartis Vaccines and Diagnostics)(标明用于预防由脑膜炎球菌亚群A、C、Y和W-135引起的侵袭性脑膜炎球菌疾病的疫苗)、Menjugate(Novartis Vaccines)(脑膜炎双球菌C群结合疫苗)、和Prevnar
Figure BPA00001624092500022
(Wyeth Pharmaceuticals,Inc.)(靶向于肺炎链球菌的七种血清型的儿童肺炎疫苗)和HibTITER
Figure BPA00001624092500023
(Wyeth)(流感嗜血杆菌b型疫苗)。此外,CRM197具有用作白喉杆菌疫苗接种的增强抗原的潜力并正在研究作为用于其它疫苗中的载体蛋白。
用于批准的治疗和研究用途的CRM197高水平表达的方法尚未见报道。CRM197已在例如白喉杆菌、枯草芽孢杆菌和大肠杆菌中以数十mg/L的水平表达。单剂Prevnar结合疫苗含有大约20μgCRM197。因此,用于经济地以约1g/L或以上的水平生产CRM197的方法将极大地促进疫苗研究和生产。
由霍乱弧菌(Vibrio cholera)产生的霍乱毒素(CTX)是一种导致以腹泻和呕吐为特征的感染的细菌性病原体,也是一种ADP-核糖基化毒素。CTX是由六个蛋白质亚基组成的低聚复合物:单一拷贝的霍乱毒素A亚基(CTA)和五个拷贝的霍乱毒素B亚基(CTB)。这五个各重12kDa的B亚基形成了一个五元环。A亚基具有A1部分CTA1和A2链CTA2,CTA1是将G蛋白进行ADP-核糖基化的球状酶,而CTA2形成紧靠地位于B亚基环中心孔中的伸展的α螺旋。该环结合到宿主细胞表面上的GM1神经节苷脂受体上,导致整个复合物的内化。一旦内化,CTA1链通过二硫键的还原释放。然后CTA1被激活并且催化腺苷酸环化酶的ADP核糖基化。由此导致的腺苷酸环化酶活性的增强提高了环AMP的合成,这导致大量的流体和电解质流出并且导致腹泻。
CTX的B亚基尽管是相对无害的,但仍保留了其结合到GM1神经节苷脂受体上的能力。因此,CTB可用于促进化学地或遗传地偶联的外来抗原的粘膜摄取。已证实其诱导粘膜免疫和系统免疫,并且是用于可食用疫苗的生产的候选物。由于其结合偏好,CTB也可用作神经元示踪物。
百日咳毒素(PTX)是由导致百日咳病的人呼吸道细菌性病原体百日咳博德特氏菌(Bordetella pertussis)产生的外毒素和毒力因子。百日咳全毒素是具有AB 5结构的多亚基复合物。酶活性的A亚基(S1)是修饰哺乳动物细胞内几种异三聚体G蛋白的α亚基的ADP-核糖基转移酶,而B低聚物(S2、S3、两个拷贝的S4和S5)结合细胞上的糖结合物受体。该毒素的五个亚基由百日咳类毒素操纵子表达。
已研究了用于保护性疫苗和用作疫苗佐剂的百日咳毒素的无毒变异体。也需要百日咳毒素蛋白来用于研究,例如用于对G蛋白信号传导途径的研究。
由破伤风梭菌(Clostridium tetani)产生的破伤风毒素是具有150kDa分子量的神经毒素。它由以下两部分组成:100kDa重链或B-链和50kDa轻链或A-链。这些链通过二硫键连接。B链结合到位于神经元膜上的二唾液酸神经节苷脂(GD2和GDlb)上。A链(一种锌内肽酶)攻击囊泡相关膜蛋白(VAMP)。
A链的作用通过降解小突触泡蛋白阻止了受影响的神经元释放抑制性神经递质GABA(γ-氨基丁酸)和甘氨酸。其后果是最小刺激引起肌肉的危险的过度活动—感官刺激对运动反射的抑制失败。这导致主动肌和拮抗肌肌肉组织的全身性收缩,被称为强直性痉挛。
破伤风毒素C片段(Tet C或TTC)是通过破伤风毒素的蛋白酶切割(例如用木瓜蛋白酶)或通过片段的重组表达而产生的50kD的多肽。它对应于C-末端的451个氨基酸(氨基酸位置865-1315)。
C片段已表明为无毒性的。因为它以高特异性和亲和力与神经元结合,TTC可用作神经元药物递送的靶向分子或用于研究目的。TTC蛋白也可潜在地用作疫苗载体蛋白并且在疫苗中用来避免破伤风梭菌感染。
艰难梭菌(Clostridium difficile)毒素B(TcdB)是由艰难梭菌产生的毒力因子,它导致医院获得性腹泻和假膜性结肠炎。TcdB和第二大梭菌毒素TcdA参与了假膜性结肠炎的发生。
TcdB是约270kD的葡糖基化毒素,且可分成酶、易位和受体结合域。TcdB的前546个氨基酸包含酶区域,接着是推定的易位和受体结合域。TcdB具有作为艰难梭菌感染的保护性疫苗以及用于诊断检验及其开发的潜在用途。
铜绿假单胞菌(Pseudomonas aeruginosa)的外毒素A(ETA或PE)是一种II型ADPRT。就像它的家族成员白喉毒素和霍乱毒素一样,它通过细胞延伸因子2的ADP-核糖基化来抑制蛋白质合成。铜绿假单胞菌外毒素A作为单体存在,由613个氨基酸的单一多肽链(66kd)组成。
ETA可潜在地用作疫苗偶联物。ETA的无毒性突变体已作为用于防御金黄色葡萄球菌(Staphylococcus aureus)、疟疾和伤寒沙门氏菌(Salmonella Typhi)的疫苗接种的疫苗偶联物进行了研究。
以足够满足不断扩大的需求的量来生产这些毒素已成为重大的挑战。当在常规蛋白质过表达系统中生产时,由于降解、不正确的折叠或这两者,取决于毒素的具体特征,例如大小和二级结构,毒素蛋白仅以非常低的浓度以活性形式回收。因此,需要以低成本生产大量可溶性和/或活性形式的这些毒素的方法。
发明内容
本发明涉及在假单胞菌宿主细胞中生产重组毒素蛋白的方法,所述方法包括:将编码毒素蛋白的核苷酸序列接合到表达载体中;用该表达载体转化假单胞菌宿主细胞;和在适合重组毒素蛋白表达的培养基中培养已转化的假单胞菌宿主细胞;其中该重组毒素蛋白是CRM197、白喉毒素、霍乱全毒素、霍乱毒素B、百日咳毒素、破伤风毒素C片段、艰难梭菌毒素B或铜绿假单胞菌外毒素A。
在实施方式中,重组毒素蛋白是霍乱毒素B、霍乱全毒素、百日咳毒素、破伤风毒素C片段、艰难梭菌毒素B或铜绿假单胞菌外毒素A。
在其他实施方式中,重组毒素蛋白是霍乱毒素B、霍乱全毒素、百日咳毒素、破伤风毒素C片段或艰难梭菌毒素B。
在其他实施方式中,重组毒素蛋白是CRM197、白喉毒素、霍乱全毒素、霍乱毒素B、百日咳毒素、破伤风毒素C片段或艰难梭菌毒素B。
在某些实施方式中,重组蛋白以约0.2克/升至约12克/升的可溶性和/或活性毒素蛋白的产率生产。在特定实施方式中,可溶性和/或活性毒素蛋白的产率为约0.2g/L、约0.3g/L、约0.4g/L、约0.5g/L、约0.6g/L、约0.7g/L、约0.8g/L、约0.9g/L、约1g/L、约1.5g/L、约2g/L、约2.5g/L、约3g/L、约3.5g/L、约4g/L、约4.5g/L、约5g/L、约5.5g/L、约6g/L、约6.5g/L、约7g/L、约7.5g/L、约8g/L、约8.5g/L、约9g/L、约9.5g/L、约10g/L、约10.5g/L、约11g/L、约12g/L、约0.2g/L-约0.5g/L、约0.2g/L-约1g/L、约0.2-约2g/L、约0.3g/L-约0.6g/L、约0.3g/L-约1g/L、约0.3-约2g/L、约0.4-约0.7g/L、约0.4-约1g/L约0.4-约2g/L、约0.4-约3g/L、约0.5g/L-约1g/L、约0.5g/L-约2g/L、约0.5g/L-约3g/L、约0.5g/L-约4g/L、约0.5g/L-约5g/L、约0.5g/L-约6g/L、约0.5g/L-约7g/L、约0.5g/L-约8g/L、约0.5g/L-约9g/L、约0.5g/L-约10g/L、约0.5g/L-约11g/L、约0.5g/L-约12g/L、约1g/L-约2g/L、约1g/L-约3g/L、约1g/L-约4g/L、约1g/L-约5g/L、约1g/L-约6g/L、约1g/L-约7g/L、约1g/L-约8g/L、约1g/L-约9g/L、约1g/L-约10g/L、约1g/L-约11g/L、约1g/L-约12g/L、约2g/L-约3g/L、约2g/L-约4g/L、约2g/L-约5g/L、约2g/L-约6g/L、约2g/L-约7g/L、约2g/L-约8g/L、约2g/L-约9g/L、约2g/L-约10g/L、约2g/L-约11g/L、约2g/L-约12g/L、约3g/L-约4g/L、约3g/L-约5g/L、约3g/L-约6g/L、约3g/L-约7g/L、约3g/L-约8g/L、约3g/L-约9g/L、约3g/L-约10g/L、约3g/L-约11g/L、约3g/L-约12g/L、约4g/L-约5g/L、约4g/L-约6g/L、约4g/L-约7g/L、约4g/L-约8g/L、约4g/L-约9g/L、约4g/L-约10g/L、约4g/L-约11g/L、约4g/L-约12g/L、约5g/L-约6g/L、约5g/L-约7g/L、约5g/L-约8g/L、约5g/L-约9g/L、约5g/L-约10g/L、约5g/L-约11g/L、约5g/L-约12g/L、约6g/L-约7g/L、约6g/L-约8g/L、约6g/L-约9g/L、约6g/L-约10g/L、约6g/L-约11g/L、约6g/L-约12g/L、约7g/L-约8g/L、约7g/L-约9g/L、约7g/L-约10g/L、约7g/L-约11g/L、约7g/L-约12g/L、约8g/L-约9g/L、约8g/L-约10g/L、约8g/L-约11g/L、约8g/L-约12g/L、约9g/L-约10g/L、约9g/L-约11g/L、约9g/L-约12g/L、约10g/L-约11g/L、约10g/L-约12g/L或约11g/L-约12g/L。
在实施方式中,将编码毒素蛋白的核苷酸序列与分泌信号编码序列融合,分泌信号编码序列表达时指引毒素蛋白向周质转移。在实施方式中,宿主细胞在至少一种蛋白酶的表达上存在缺陷或者宿主细胞过表达至少一种折叠调节因子,或它们的组合。
在实施方式中,重组毒素蛋白是CRM197,和宿主细胞在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上存在缺陷。在相关实施方式中,重组毒素蛋白与分泌前导序列即Azu、IbpS31 A、CupA2、PbpA20V或Pbp融合。在实施方式中,重组毒素蛋白是CRM197,且宿主细胞在HslU和HslV或Prc1或DegP1或DegP2或AprA的表达上存在缺陷。在特定实施方式中,重组毒素蛋白是CRM197,且宿主细胞在沙雷氏菌溶素(Serralysin)、HslU、HslV、Prc1、DegP1、DegP2或AprA的表达上存在缺陷,或者宿主细胞过表达DsbA、DsbB、DsbC和DsbD。在实施方式中,宿主细胞过表达DsbA、DsbB、DsbC和DsbD,且重组毒素蛋白与分泌前导序列Azu融合。在实施方式中,宿主细胞在沙雷氏菌溶素的表达上存在缺陷,且重组毒素蛋白与分泌前导序列Pbp或Azu融合。在实施方式中,宿主细胞在HslU和HslV的表达上存在缺陷,且重组毒素蛋白与分泌前导序列Pbp或Azu融合。在实施方式中,重组毒素蛋白是CRM197,且宿主细胞是野生型,其中重组毒素蛋白与分泌前导序列Pbp或Azu融合。在实施方式中,重组毒素蛋白是CRM197并且重组毒素蛋白与分泌前导序列Azu、Pbp、IbpS31A、CupA2或PbpA20V融合。
在其他实施方式中,重组毒素蛋白是霍乱毒素B,且宿主细胞在Lon、La和AprA的表达上存在缺陷,或者宿主细胞在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上存在缺陷。在相关实施方式中,宿主细胞在Lon、La和AprA的表达上存在缺陷,而且其中重组毒素蛋白与分泌前导序列Pbp A20V融合。
在其他实施方式中,重组毒素蛋白是百日咳毒素SI E129A R9K,且宿主细胞在以下的表达上存在缺陷:Lon、La和AprA;GrpE、DnaK和DnaJ;HtpX;RXF01590;或ppiB(RXF05345)。在相关实施方式中,重组毒素蛋白与它的天然分泌前导序列融合。
在其他实施方式中,重组毒素蛋白是破伤风毒素C,且宿主细胞在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上存在缺陷。在相关实施方式中,重组毒素蛋白与分泌前导序列DsbC、Pbp A20V或CupA2融合。
在其他实施方式中,重组毒素蛋白是破伤风毒素C,且宿主细胞在Lon、La和AprA的表达上存在缺陷。在相关实施方式中,重组毒素蛋白与分泌前导序列DspA融合。
在其他实施方式中,重组毒素蛋白是破伤风毒素C,且宿主细胞在GrpE、DnaK和DnaJ的表达上存在缺陷。在相关实施方式中,重组毒素蛋白与分泌前导序列NikA融合。
在其他实施方式中,重组毒素蛋白是艰难杆菌毒素B,且宿主细胞在以下的表达上存在缺陷:HtpX;DegP1;HslU、HslV、Prc1和Prc2;或Lon和DegP2,或者宿主细胞既在Lon、Prc1、DegP2和AprA的表达上存在缺陷又过表达DegP2 S219A。
在实施方式中,在活性测定中测定重组毒素蛋白的活性,其中所生产的可溶性毒素蛋白中约40%至约60%确定为有活性。在相关实施方式中,活性测定为免疫学测定、受体结合测定或酶测定。
在本发明的实施方式中,表达载体包含可操作地连接到蛋白质编码序列上的lac衍生启动子,而且其中培养包括用浓度为约0.02至约1.0mM的IPTG诱导该启动子,诱导时细胞密度是约40至约200吸光度单位(AU)的光密度,培养物的pH值为约6至约7.5,生长温度为约20至约35摄氏度。
在实施方式中,宿主细胞是假单胞菌细胞。在相关实施方式中,宿主细胞是荧光假单胞菌(Pseudomonas fluorescens)。
在本发明的实施方式中,为了在假单胞菌宿主细胞中表达而对核苷酸序列进行了优化。在相关实施方式中,为了在假单胞菌属宿主细胞中表达而对核苷酸序列进行了优化。在其他相关实施方式中,为了在荧光假单胞菌宿主细胞中表达而对核苷酸序列进行了优化。
在实施方式中,百日咳毒素是野生型或S1 E129A R9K。在实施方式中,铜绿假单胞菌外毒素A是野生型、CRM66或rERA。
在本发明的实施方式中,表达载体进一步包含邻近分泌信号的编码序列的标签序列。在实施方式中,表达载体进一步包含邻近毒素蛋白的编码序列的标签序列。
本发明还提供根据本文所述方法生产的重组毒素蛋白。在实施方式中,重组毒素蛋白是CRM197、白喉毒素、霍乱全毒素、霍乱毒素B、百日咳毒素、破伤风毒素C片段、艰难梭菌毒素B或铜绿假单胞菌外毒素A。在实施方式中,外毒素A是野生型、CRM66或rERA。在某些实施方式中,重组毒素蛋白在荧光假单胞菌的菌株中生产,该菌株在本文中确认为生产高产率的毒素或生产高质量的毒素。在某些实施方式中,重组毒素蛋白在荧光假单胞菌的菌株中生产,该菌株在本文中描述为生产最高产率的毒素蛋白。在其他实施方式中,重组毒素蛋白在本文描述为用于毒素发酵生产的菌株的菌株中生产。
援引并入
本说明书中提到的所有公开、专利和专利申请通过引用并入本文,其程度如同特别地和单独地指示各单个公开、专利或专利申请通过引用并入本文。
附图说明
本发明的新特征在所附的权利要求书中具体阐述。通过参考以下对在其中利用到本发明原理的说明性实施方式加以阐述的详细描述和附图,将获得对本发明的特征和优点的更好的理解。
图1.CRM197的高通量表达分析。利用毛细管凝胶电泳(SDS-CGE)分析利用图1B所示的DNA序列表达的CRM197蛋白。在由SDS-CGE数据生成的凝胶样图像中显示了所测试的40个CRM197表达菌株的可溶性部分。如表10所述的菌株名称列于各个泳道上方。荧光假单胞菌表达的CMR197在SDS-CGE上作为~58kDa的单一条带(左侧箭头)迁移。第一个和最后一个泳道内的分子量标记是16、20、29、48、69和119kDa。
图2.霍乱毒素B的高通量表达分析。利用毛细管凝胶电泳(SDS-CGE)分析应用SEQ ID NO:23中所示的DNA序列表达的霍乱毒素B蛋白。在由SDS-CGE数据生成的凝胶样图像中显示了所测试的40个霍乱毒素表达菌株的可溶性部分。如表11所述的菌株名称列于各个泳道上方。诱导的CTB在SDS-CGE上作为~11.5kDa的单一条带(左侧箭头)迁移。第一个和最后一个泳道内的分子量标记是16、20、29、48、69和119kDa。
图3.百日咳类毒素操纵子。显示了具有4210个碱基对的BPETOX_S1-R9K & E129A。
图4.百日咳类毒素的DNA序列。图中显示了带翻译结果的百日咳毒素S1 R9K E129A DNA序列(SEQ ID NO:24)。该序列来源于Genebank项目M13223。亚基S1-S5和信号序列在序列上方标明。S1中的R9K和E129A突变用下划线标注。编码的蛋白质按出现顺序分别披露为SEQ ID NO:25、26、28、29和27。
图5.百日咳类毒素亚基的氨基酸序列。分泌信号用下划线标注。A.S1亚基(R9K E129A)(SEQ ID NO:25)。B.S2亚基(SEQ ID NO:26)。C.S3亚基(SEQ ID NO:27)。D.S4亚基(SEQ ID NO:28)。E.S5亚基(SEQ ID NO:29)。
图6.百日咳类毒素表达样品的Western印迹分析。菌株名称已列于各个泳道上方。诱导的Ptx以11-26kDa范围内的多个条带(S1:26.1Kda,S2:20.9Kda,S3:21.8KDa,S4(2x):12KDa,S5:11KDa)进行迁移。A.还原的样品。B.非还原的样品。两个图面:泳道1-分子量标记(15、20、25、37、50、75、100、150、250kDa);泳道2-空的;泳道3-菌株321;泳道4-菌株322;泳道5-菌株323;泳道6-菌株324;泳道7-菌株325;泳道8-菌株326;泳道9-菌株327;泳道10-菌株328。
图7.破伤风毒素C片段表达。利用毛细管凝胶电泳(SDS-CGE)分析在荧光假单胞菌中表达的破伤风毒素C片段。在由SDS-CGE数据生成的凝胶样图像中显示了来自所测试的40个破伤风毒素表达菌株的可溶性部分。如表15所述的菌株名称列于各个泳道上方。诱导的破伤风毒素C片段在SDS-CGE上以~51.6kDa的单一条带(左侧箭头)迁移。第一个和最后一个泳道内的分子量标记是16、20、29、48、69和119kDa。
图8.TcdB表达。利用毛细管凝胶电泳(SDS-CGE)分析在荧光假单胞菌中表达的TcdB。在由SDS-CGE数据生成的凝胶样图像中显示了来自所测试的24个TcdB表达菌株的可溶性部分。如表18所述的菌株名称以及空提取物和参考标准(List Biologicals)都列于各个泳道上方。诱导的TcdB在SDS-CGE上以~300kDa的单一条带(左侧箭头)迁移。第一个和最后一个泳道内的分子量标记是16、20、29、48、69和119kDa。
图9.外毒素A氨基酸序列。图中显示了铜绿假单胞菌外毒素A的氨基酸序列(SEQ ID NO:34)。图中显示了三种外毒素A蛋白:野生型、CRM66和rEPA。在变异体CRM66中,His426(粗体,下划线标注的文字)如序列上方所示被Tyr取代。在rEPA中,Glu553(粗体,下划线标注的文字)如序列上方所示缺失。
图10.可溶性破伤风毒素C和霍乱毒素B在荧光假单胞菌发酵培养物中的产生。SDS-CGE分析。泳道1-16、20、29、48、69和119kDa分子量标记。泳道2和4-分别是表达霍乱毒素B的PS538-088U5和U6发酵物的诱导前样品,泳道3和5分别是表达霍乱毒素B的PS538-088U5和U6发酵物的诱导后样品,通过右侧箭头指示。
图11.可溶性破伤风毒素C片段在荧光假单胞菌发酵培养物中的产生。A.SDS-CGE分析。泳道1-16、20、29、48、69和119kDa分子量标记。泳道2、3和4分别是表达破伤风毒素C片段的PS538-529U1、PS538-546U5和PS538-547U7发酵物的诱导后样品,通过右侧箭头指示。B.Western印迹分析。通过Western印迹法评估来自菌株PS538-538(U1和U2)、PS538-548(U3和U4)、PS538-558(U5和U6)和PS538-568(U7和U8)的发酵样品。发酵单位和诱导后小时数(I0、I8、I24)已在各个泳道上方标出。分子量(MW)标准显示在印迹左侧,破伤风毒素C参考标准(Std;List Biological,Cat# 193)显示在右侧。先用源自兔的多克隆抗破伤风毒素C片段(Abcam,Cat#:ab34890),然后用源自山羊的抗兔IgG过氧化物酶(Pierce,Cat#:31460)探测印迹。免疫纯金属强化DAB(Immunopure Metal EnhancedDAB)(Pierce 34065)用于检测。
图12.可溶性艰难梭菌B毒素蛋白在荧光假单胞菌发酵培养物中的产生。泳道1-16、20、29、48、69和119kDa分子量标记。标记大小也根据它们在泳道1中的迁移显示在右侧相对应的位置上。泳道2、3和4分别是表达艰难梭菌B毒素蛋白的PS538-671 U5和PS538-647 U7发酵物的诱导后样品,通过右侧箭头指示。
图13.野生型百日咳类毒素的DNA序列。图中显示了带翻译结果的野生型百日咳毒素的DNA序列(SEQ ID NO:35)。序列来自Genebank项目M13223。亚基S1-S5和信号序列已显示在序列上方。编码的蛋白质按出现顺序分别显示为SEQ ID NO:41-45。
图14.霍乱全毒素的氨基酸序列和DNA序列。A.CTA氨基酸序列(SEQ ID NO:38),具有分泌前导序列(下划线标注)(AE003852;蛋白质ID AAF94614.1)。B.CTB氨基酸序列(SEQ ID NO:39),具有分泌前导序列(下划线标注)(GeneBank AE003852;蛋白质IDAAF94613.1)。C.CTX DNA序列(SEQ ID NO:40),显示了A和B亚基,并显示出翻译结果(Genbank AE003852)。编码的蛋白质按出现顺序分别显示为SEQ ID NO:38和39。
图15.在荧光假单胞菌发酵培养物中的可溶性rEPA生产的SDS-CGE凝胶样图像。利用毛细管凝胶电泳(SDS-CGE)分析在荧光假单胞菌发酵培养物中表达的可溶性rEPA。在由SDS-CGE数据生成的凝胶样图像中显示了所测试的在诱导后0和24小时由表达菌株PS538-1633(u1和u2)、PS538-1640(u3和u5)和PS538-1670(u6、u7和u8)发酵产生的可溶性部分。Mw=分子量标准(16、20、29、48和69千道尔顿)。
图16.在荧光假单胞菌发酵培养物中的可溶性rEPA产生趋势。通过对处于各自发酵物(u1、u2、u3、u6、u7和u8)中的菌株(PS538-1633、PS538-1640和PS538-1670)进行SDS-CGE分析而确定的可溶性rEPA表达水平对诱导后时间作图。
图17.在荧光假单胞菌发酵培养物中的可溶性rEPA产生的Western印迹分析。利用Western印迹分析来分析在荧光假单胞菌发酵培养物中表达的可溶性rEPA。利用对于铜绿假单胞菌外毒素A特异性的抗体在Western印迹分析中显示诱导后0和24小时来自表达菌株PS538-1633(u1)、PS538-1640(u3和u5)和PS538-1670(u6和u8)发酵物的可溶性部分。Mw=分子量标准。std=rEPA标准品。
图18.在荧光假单胞菌发酵培养物中的可溶性CRM197产生的SDS-CGE凝胶样图像。利用毛细管凝胶电泳(SDS-CGE)来分析在荧光假单胞菌发酵培养物中表达的CRM197。在由SDS-CGE数据生成的凝胶样图像中显示了在所测试的诱导后各个不同时间(0、16、21和23小时)由表达菌株PS538-772(u1和u2)、PS538-776(u3和u5)和PS538-782(u6和u7)的各种发酵物所产生的可溶性部分。Mw=分子量标准(16、20、29、48、68和119千道尔顿)。
图19.在荧光假单胞菌发酵培养物中的可溶性CRM197产生趋势。如通过对处于各自发酵物(u1、u2、u3、u6和u7)中的不同菌株(PS538-772、PS538-776和PS538-782)进行SDS-CGE所确定的可溶性CRM197表达水平对诱导后时间作图。
图20.在荧光假单胞菌发酵培养物中的可溶性CRM197产生的Western印迹分析。利用Western印迹分析来分析在荧光假单胞菌发酵培养物中表达的CRM197。利用白喉毒素特异性抗体在Western印迹分析中显示在所测试的诱导后各个不同时间(0、16、21和23小时)由表达菌株PS538-772(u1和u2)、PS538-776(u3和u5)和PS538-782(u6和u7)的各种发酵物的可溶性部分。Mw=分子量标准(37、50、75、100、150和250千道尔顿)。STD=CRM197标准。
发明详述
毒素
ADP-核糖基化毒素
ADP-核糖基化毒素(ADPRT)促进烟酰胺和NAD的N-核糖之间的N-糖基键切割并且将ADP-核糖部分转移至靶蛋白。ADPRT根据他们各自的靶标分类为四个家族。I型ADPRT以异聚GTP-结合蛋白为靶标。它们包括霍乱毒素(CTX)、百日咳毒素(PTX)和大肠杆菌不耐热肠毒素(LT)。II型ADPRT(白喉毒素和假单胞菌外毒素A)修饰延伸因子2(EF2)。III型ADPRT(肉毒梭菌(Clostridiumbotulinum)C3胞外酶)使小GTP-结合蛋白ADP-核糖基化。IV型ADPRT使肌动蛋白ADP-核糖基化。这些肌动蛋白特异性的ADPRT包括二元毒素家族,该家族包括肉毒梭菌C2毒素、产气荚膜梭菌(C.perfringens)ι-毒素、艰难梭菌毒素(一种不同于TcdA和TcdB的毒素,由Popoff等人,1988,“Actin-specific ADP-ribosyltransferaseproduced by a Clostridium difficile strain,”Infection and Immunity56(9):2299-2306描述,其通过引用并入本文)、螺状梭菌(C.spiroforme)毒素和蜡状芽孢杆菌(Bacillus cereus)营养期杀虫蛋白(VIP)。
已经确定来自各类型的ADPRT的数个酶组分的结构带有或不带有NAD,并且在例如通过引用并入本文的Tsuge等人,2008,“Structural basis of actin recognition and arginine ADP-ribosylation byClostridium perfringens-toxin,”PNAS 105(21):7399-7404中讨论。典型的肌动蛋白特异性ADPRT具有两个相似的结构域:对催化活性至关重要的C结构域;以及对与结合和易位亚基的相互作用很重要的N结构域。相比之下,来自沙门氏菌的SpvB和III型ADPRT C3仅具有一个ADP-核糖基转移酶结构域并且缺乏N末端衔接子结构域。在所有的IV型ADPRT中,包括两个关键的谷氨酸残基的EXE基序存在于催化中心处。EXE基序的前一谷氨酸被认为是ADP-核糖基转移酶的关键残基,它在肌动蛋白中由Arg-177去质子化。后一谷氨酸与N-核糖上的O’2形成氢键,这被认为稳定了羰基碳鎓(oxocarbenium)阳离子。
Barth等人,2004,“Binary Bacterial Toxins:Biochemistry,Biology,and Application of Common Clostridium and Bacillus Proteins,”Microbiology and Molecular Biology Reviews 68(3):373-402;Mueller-Dieckmann等人,“Structure of mouse ADP-ribosylhydrolase 3(mARH3),”Acta Cryst F64:156-162;Kulich等人,1995,“Expression ofRecombinant Exoenzyme S of Pseudomonas aeruginosa,”Infection andImmunity 63(1):1-8;Sakurai等人,2009,“Clostridium perfringensIota-Toxin:Structure and Function,”Toxins 1:208-228;以及Schirmer等人,2002,“The ADP-ribosylating Mosquitocidal Toxin from Bacillussphaericus,”The Journal of Biological Chemistry 277(14):11941-11948进一步描述了ADPRT,它们全部通过引用并入本文。
在本发明的实施方式中,产生选自包括ADPRT的组的重组毒素蛋白。在实施方式中,ADPRT的组由CTX(CTA和/或CTB)、PTX、DT(CRM197和/或WT)和假单胞菌外毒素A组成。在实施方式中,ADPRT的组由CTX(CTA和/或CTB)、PTX和假单胞菌外毒素A组成。在其他实施方式中,产生选自包括I型ADPRT的组的重组毒素蛋白。在实施方式中,I型ADPRT的组由CTX(CTA和/或CTB)和PTX组成。在其他实施方式中,产生选自包括II型ADPRT的组的重组毒素蛋白。在实施方式中,II型ADPRT的组由DT(CRM197和/或WT)和假单胞菌外毒素A组成。在其他实施方式中,产生选自包括IV型ADPRT的组的重组毒素蛋白。在实施方式中,IV型ADPRT是TcdB。
CRM197和DT
交叉反应物质197(CRM197)是由具有错义突变的DT基因产生的白喉毒素(DT)变异体。DT是一种ADP-核糖基化毒素;CRM197缺乏DT的ADP-核糖基转移酶(ADPRT)活性,且因此是无毒的。CMR197的基因具有单碱基置换,从而导致在残基52处引入谷氨酸而不是甘氨酸。(参见,例如,Bishai等人,1987,“High-Level Expressionof a Proteolytically Sensitive Diphtheria toxin Fragment in Escherichiacoli,”J.Bact.169(11):5140-51,Giannini等人,1984,“The Amino-AcidSequence of Two Non-Toxic Mutants of Diphtheria toxin:CRM45 andCRM197,”Nucleic Acids Research 12(10):4063-9,以及GenBank登录号1007216A,全部通过引用并入本文。)
CRM197蛋白可通过本领域已知的方法或通过在白喉杆菌或其他微生物中表达而低水平制备。天然存在的或野生型白喉毒素可从产毒素菌株获得,该产毒素菌株可从包括美国典型培养物保藏中心(American Type Culture Collection)在内的多种公共资源获得。用于在白喉杆菌中生产CRM197蛋白的质粒系统在例如美国专利号5,614,382,“Plasmid for Production of CRM Protein and Diphtheriatoxin”中有描述,其通过引用整体并入本文。
核苷酸序列可利用重组DNA技术(例如,Sambrook等人,Molecular Cloning,a Laboratory Manual,Cold Spring Harbor LaboratoryPress,1989描述)制备,且也基于棒状杆菌噬菌体β所携带的白喉毒素野生型结构基因的已知DT核苷酸序列,通过定点诱变来制备。(参见,例如,Greenfield等人,1993,“Nucleotide Sequence of the StructuralGene for Diphtheria toxin Carried by Corynebacteriophage 18,”Proc NatAcad Sci 80:6953-7,通过引用并入本文。)如本文别处所述,核苷酸序列可以进行优化。
在本发明的实施方式中,利用实施例1中所述的任何宿主菌株结合实施例1中所述的任何表达载体(质粒)来生产CRM197或DT。在实施方式中,为了在假单胞菌宿主细胞中表达而优化核酸序列。在实施方式中,所用的表达载体包含表达与重组CRM197或DT蛋白融合的表8和表3中所述的任何分泌前导序列的构建体。在实施方式中,使用天然分泌前导序列。在某些实施方式中,CRM197或DT蛋白表达有标签,例如,纯化标签。在实施方式中,本发明的方法用于以约0.5g/L至至少约12g/L的产率生产CRM197或DT。
霍乱毒素
由霍乱弧菌产生的霍乱毒素(CTX)也是一种ADP-核糖基化毒素。霍乱毒素(CTX)是由六个蛋白质亚基组成的低聚复合物:单一拷贝的霍乱毒素A亚基(CTA)和五个拷贝的霍乱毒素B亚基(CTB)。五个各重12kDa的B亚基形成五元环。A亚基具有A1部分CTA1和A2链CTA2,CTA1是使G蛋白ADP-核糖基化的球状酶,而CTA2形成了一个紧贴地位于B亚基环中心孔中的伸展的α螺旋。该环结合到位于宿主细胞表面上的GM1神经节苷脂受体上,从而导致整个复合物的内化。一旦内化,CTA1链由于二硫键的还原而释放。随后CTA1被激活并且催化腺苷酸环化酶的ADP核糖基化。由此导致的腺苷酸环化酶活性的增强提高了环AMP的合成,这导致大量的流体和电解质流出并且导致腹泻。
CTX的B亚基尽管是相对无害的,但保留了其结合到GM1神经节苷脂受体上的能力。因此,CTB可用于促进化学地或遗传地偶联的外来抗原的粘膜摄取。已证实其诱导粘膜免疫和系统免疫,并且是用于可食用疫苗生产的候选物。由于其结合偏好,CTB也可用作神经元示踪物。
CTB的应用及其结构特征在例如Nozoye等人,2009,“Productionof Ascaris suum As14 Protein and Its Fusion Protein with Cholera ToxinB Subunit in Rice Seeds,”Parasitology 995-1000;Harakuni等人,2005,“Heteropentameric Cholera Toxin B Subunit Chimeric MoleculesGenetically Fused to a Vaccine Antigen Induce Systemic and MucosalImmune Responses:a Potential New Strategy to Target RecombinantVaccine Antigens to Mucosal Immune Systems,”Infection and Immunity73(9):5654-5665;Price等人,2005,“Intranasal Administration ofRecombinant Neisseria gonorrhoeae Transferrin Binding Proteins A andB Conjugated to the Cholera Toxin B Subunit Induces Systemic andVaginal Antibodies in Mice,”Infection and Immunity 73(7):3945-3953;和Sun等人,1999,“Intranasal Administration of a Schistosoma mansoniGlutathione S-Transferase-Cholera Toxoid Conjugate Vaccine EvokesAntiparasitic and Antipathological Immunity in Mice,”J.Immunol.163:1045-1052中已有描述,它们全部通过引用并入本文。
在本发明的实施方式中,利用本文实施例1中所述的任何宿主菌株结合实施例3中所述的任何表达载体来生产CTB或CTX。在实施方式中,为了在假单胞菌宿主细胞中表达而优化了核酸序列。在实施方式中,所用的表达载体包含表达与重组CTB或CTX蛋白融合的表8和表3中所述的任何分泌前导序列的构建体。在实施方式中,使用天然分泌前导序列。在某些实施方式中,CTB或CTX蛋白表达有标签,例如,纯化标签。在实施方式中,本发明的方法用于以约0.2g/L至至少约5g/L的产率生产CTB或CTX。
百日咳毒素
百日咳毒素是由导致百日咳病的人呼吸道细菌性病原体百日咳博德特菌产生的外毒素和毒力因子。百日咳全毒素是具有AB 5结构的多亚基复合物。酶活性的A亚基(S1)是修饰哺乳动物细胞内的几种异源三聚体G蛋白(主要是Gi蛋白)的α亚基的ADP-核糖基转移酶,和B低聚物(S2、S3、两个拷贝的S4和S5)结合细胞上的糖结合物受体。S1在进入细胞后被蛋白水解加工。通过引用并入本文的Carbonetti等人,2005,“Proteolytic Cleavage of Pertussis Toxin S1Subunit is Not Essential for Its Activity in Mammalian Cells,”BMCMicrobiology 5:7报告,S1的加工对它在哺乳动物细胞中的细胞毒性活性并非必不可少的。
已研究百日咳毒素的无毒性变异体以供在疫苗中使用。利用本发明的方法生产的百日咳毒素蛋白预期用于疫苗中以对抗百日咳。百日咳毒素也作为疫苗佐剂进行了测试,例如,如Roberts等人,1995,“AMutant Pertussis Toxin Molecule That Lacks ADP-RibosyltransferaseActivity,PT-9K/129G,Is an Effective Mucosal Adjuvant for IntranasallyDelivered Proteins”Infection and Immunity 63(6):2100-2108所述,其通过引用并入本文。此外,百日咳毒素也可用于研究目的,例如用于G蛋白信号传导途径的研究(例如,McCoy等人,2010,“PAR1 and PAR2couple to overlapping and distinct sets of G proteins and linked signalingpathways to differentially regulate cell physiology,”MolecularPharmacology Fast Forward MOL 62018,通过引用并入本文),以及用作佐剂来强化对诸如实验性自身免疫性脑脊髓炎(EAE)、实验性自身免疫性睾丸炎、实验性自身免疫性葡萄膜炎等自身免疫性疾病的诱导。(Su等人,2001,“Pertussis Toxin Inhibits Induction ofTissue-Specific Autoimmine Disease by Disrupting G Protein-CoupledSignals,”J Immunol 167:250-256,通过引用并入本文)。
如图3所示,该毒素的五个亚基由百日咳类毒素操纵子表达。包括某些变异体在内的百日咳毒素蛋白的表达和结构在以上引用的报告中以及由Burnette等人,1992,“Properties of Pertussis Toxin BOligomer Assembled In Vitro from Recombinant Polypeptides Producedby Escherichia coli,”Infection and Immunity 60(6):2252-2256;美国专利号5,085,862,“Genetic detoxification of pertussis toxin;”和Kaslow等人,1987,“Structure-Activity Analysis of the Activation of PertussisToxin,”Biochemistry 26(1):123-7描述;它们全部通过引用整体并入本文。
如本文所用的百日咳毒素或PTX指百日咳毒素突变体S1 R9KE129A或野生型蛋白质。野生型百日咳毒素和百日咳毒素突变体S1R9K E129A在例如以下文献中描述:Roberts等人,1995(以上引用);美国专利号7,427,404和美国专利号7,666,436,名称均为“PertussisToxin Mutants,Bordetella Strains Capable of Producing Such Mutantsand Their Use in the Development of Antipertussis Vaccines;”美国专利号5,935,580,“Recombinant Mutants for Inducing Specific ImmuneResponses;”美国专利号7,169,399,“Non-Toxic Double Mutant Formsof Pertussis Toxin as Adjuvants;”美国专利号5,785,971和美国专利号5,427,788,名称均为“Pertussis Toxin and Use in Vaccines;”和美国专利号5,773,600,“DNA Encoding Pertussis Toxin Muteins”,它们全部通过引用整体并入本文。
在本发明的实施方式中,利用本文实施例1、5和7中所述的任何宿主菌株生产百日咳毒素突变体S1 E129A或野生型百日咳毒素。在实施方式中,所用的表达载体包含表达与重组PTX蛋白融合的表8和表3中所述的任何分泌前导序列的构建体。在实施方式中,使用天然分泌前导序列。在实施方式中,如本文别处所述,为了在选定的假单胞菌宿主中表达而优化任何或所有亚基编码序列。在某些实施方式中,亚基由两个或多个构建体表达,例如,通过根据本领域公知的方法亚克隆单个序列。在某些实施方式中,PTX蛋白表达有标签,例如纯化标签。在实施方式中,本发明的方法用于以约0.2g/L至至少约5g/L的产率生产PTX或PTX的各单个亚基。
破伤风毒素C片段
由破伤风梭菌产生的破伤风毒素是具有150kDa的分子量的神经毒素。它由两部分组成:100kDa重链或B-链和50kDa的轻链或A-链。这些链由二硫键连接。B链结合到位于神经元膜上的二唾液酸神经节苷脂(GD2和GDlb)上。A链(一种锌内肽酶)攻击囊泡相关膜蛋白(VAMP)。
A链的作用通过降解小突触泡蛋白来阻止受影响的神经元释放出抑制性神经递质GABA(γ-氨基丁酸)和甘氨酸。其后果是最小的刺激引起危险的肌肉过度活动—感官刺激对运动反射的抑制失败。这导致主动肌和拮抗肌肌肉组织的全身性收缩,被称为强直性痉挛。
破伤风毒素C片段(Tet C或TTC)是通过破伤风毒素的蛋白酶裂解(例如,用木瓜蛋白酶)或通过该片段的重组表达而产生的50kD多肽。它对应于C-末端的451个氨基酸(氨基酸位置865-1315)。C片段的重组表达已在例如美国专利号5,443,966,“Expression ofTetanus Toxin Fragment C,”WO/2005/000346,“Carrier Proteins forVaccines,”和6,010,871,“Modification of Peptide and Protein”中公开,它们全部通过引用整体并入本文。
已证明C片段是无毒性的并且能够在小鼠和豚鼠中刺激保护性免疫应答。美国专利号5,443,966描述了破伤风毒素的序列以及C片段在大肠杆菌中的生产。重组TTC在酵母中的表达已在例如美国专利号5,571,694,“Expression of Tetanus Toxin Fragment C in Yeast”中描述,其通过引用整体并入本文。
因为TTC以高特异性和亲和力结合神经元,TTC可用作神经元药物递送的靶向分子或用于研究目的。此类用途在例如Townsend等人,2007,“Tetanus toxin C fragment conjugated nanoparticles fortargeted drug delivery to neurons,”Biomaterials 28(34):5176-5184中描述,其通过引用并入本文。
TTC蛋白也可潜在地用作疫苗载体蛋白,如例如WO/2005/000346中所述,并且已研究在疫苗中使用以避免破伤风梭菌感染。
在本发明的实施方式中,利用本文实施例1中所述的任何宿主菌株结合实施例8中所述的任何表达载体生产TTC。在实施方式中,为了在假单胞菌宿主细胞中表达而优化核酸序列。在实施方式中,所用的表达载体具有表达与重组TTC蛋白融合的表8和表3中所述的任何分泌前导序列的构建体。在某些实施方式中,TTC蛋白表达有标签,例如,纯化标签。在实施方式中,使用天然分泌前导序列。在实施方式中,本发明的方法用于以约0.5g/L至至少约12g/L的产率生产TTC。
艰难梭菌毒素B
艰难梭菌毒素B(TcdB)是由导致医院获得性腹泻和假膜性结肠炎的艰难梭菌产生的毒力因子。TcdB和第二大梭菌毒素TcdA参与了假膜性结肠炎的发生。
TcdB是约270kD的糖基化毒素,可分成酶结构域、易位结构域和受体结合结构域。TcdB的前546个氨基酸含有酶区域,之后是推定的易位和受体结合结构域。已报道酶活性需要氨基末端的546个残基,因为该片段的氨基或羧基末端缺失降低了活性。在该酶区域内,已证明色氨酸102对UDP-葡萄糖结合至关重要。LCT内的保守的DXD基序对LCT葡萄糖基转移酶活性至关重要。涉及TcdB和TcsL酶结构域的嵌合体分析的研究提示残基364至516赋予了底物特异性。
TcdB的结构及其表达以及作为针对艰难梭菌感染的保护性疫苗的潜在用途在例如以下文献中讨论:美国专利号7,226,597,“Mutantsof Clostridium Difficile Toxin B and Methods of Use;”Jank等人,2008,“Structure and mode of action of clostridial glucosylating toxins:theABCD model,”Trends in Microbiology 16(5):222-229;Sullivan等人,1982,“Purification and Characterization of Toxins A and B ofClostridium difficile,”Infection and Immunity 35(3):1032-1040;和Yang等人,2008,“Expression of recombinant Clostridium difficile toxinA and B in Bacillus megaterium,”BMC Microbiology 8:192,它们全部通过引用整体并入本文。
在本发明的实施方式中,利用本文实施例1、5和7中所述的任何宿主菌株来生产TcdB。在实施方式中,为了在假单胞菌宿主细胞中表达而优化核酸序列。在实施方式中,所用的表达载体包含表达与重组TcdB蛋白融合的表8和表3中所述的任何分泌前导序列的构建体。在实施方式中,使用天然分泌前导序列。在某些实施方式中,TcdB蛋白表达有标签,例如,纯化标签。在实施方式中,本发明的方法用于以约0.5g/L至至少约10g/L的产率生产TcdB。
铜绿假单胞菌外毒素A
铜绿假单胞菌的外毒素A(ETA或PE)是II型ADPRT。它是能够将催化结构域转位至哺乳动物细胞中并且通过细胞延伸因子2的ADP-核糖基化抑制蛋白质合成的分泌的细菌毒素家族的成员。该蛋白质作为单体存在,由613个氨基酸(66Kd)的单一多肽链组成。以3.0-A分辨率确定的外毒素A的X射线晶体结构显示出主要由反平行的β结构组成并且包含该分子的大约一半的氨基末端结构域;由α螺旋组成的中间结构域;以及包含该分子的大约三分之一的羧基末端结构域。羧基末端结构域是毒素的ADP-核糖基转移酶。其他两个结构域推测参与细胞受体结合和膜转位。
该毒素通过位于细胞表面上的特定受体结合到细胞上,然后毒素-受体复合物内化到细胞中。最后,ETA被转移到细胞溶质,在其中它酶促抑制蛋白质合成。由于弱碱比如NH4+(它提高酸性囊泡中的pH)防止细胞中毒,据认为转移过程从酸性区室发生。一旦暴露在酸性条件下,PE的疏水结构域进入膜内,从而导致通道的形成,酶结构域以伸展形式通过该通道进入细胞溶质中。PE的活性和毒性减弱的突变体在例如以下文献中描述:美国专利号4,892,827,“RecombinantPseudomonas Exotoxins:Construction of an Active Immunotoxin withLow Side Effects”和Lukac等人,1988,“Toxoid of Pseudomonasaeruginosa Exotoxin A Generated by Deletion of an Active-SiteResidue”Infection and Immunity 56(12):3095-3098,二者通过引用整体并入本文。
外毒素A突变体rEPA作为疫苗偶联物的应用在例如以下文献中描述:Fattom等人,1993,“Laboratory and Clinical Evaluation ofConjugate Vaccines Composed of Staphylococcus aureus Type 5 andType 8 Capsular Polysaccharides Bound to Pseudomonas aeruginosaRecombinant Exoprotein A”Infection and Immunity 61(3):1023-1032;Qian等人,2007,“Conjugating recombinant proteins to Pseudomonasaeruginosa ExoProtein A:a strategy for enhancing immunogenicity ofmalaria vaccine candidates”Vaccine 25(20):3923-3933;以及Lin等人,2001.“The Efficacy of a Salmonella Typhi Vi Conjugate Vaccine inTwo-To-Five-Year-Old Children”N Engl J Med 344(17):1263-1269,均通过引用并入本文。
本文中使用的铜绿假单胞菌外毒素A指铜绿假单胞菌外毒素A突变体CRM66、缺失rEPA或野生型蛋白质。在本发明的实施方式中,利用本文实施例1、5和7中所述的任何宿主菌株并且利用具有表达与重组外毒素A蛋白融合的表8和表3中所述的任何分泌前导序列的构建体的表达载体来生产外毒素A。在实施方式中,为了在假单胞菌宿主细胞中表达而优化核酸序列。在实施方式中,使用天然分泌前导序列。在某些实施方式中,ETA蛋白表达有标签,例如,纯化标签。在实施方式中,本发明的方法用于以约0.5g/L至至少约12g/L的产率生产外毒素A。
用本发明的方法生产的示例性毒素蛋白在表1中列出。可以理解,这个列表不是限制性的。在本发明的实施方式中,为了在选择的假单胞菌宿主细胞中表达,可以优化在此用于利用本发明方法生产本文所述的毒素的任何核酸序列。如本文别处所述,任何给定序列的优化存在多种选择。所述的任何选项预期用于优化利用本发明方法生产的毒素的序列。本文提供的优化序列是在本发明方法中有用的优化序列的非限制性实例。
表1.示例性毒素蛋白
Figure BPA00001624092500231
Figure BPA00001624092500241
密码子优化
在异源表达系统中,优化步骤可以提高宿主产生外源蛋白的能力。蛋白质表达是由一系列包括那些影响转录、mRNA加工及翻译的稳定性和起始的因素的许多因素控制的。多核苷酸优化步骤可以包括提高宿主产生外源蛋白能力的步骤,以及辅助研究人员有效地设计表达构建体的步骤。优化策略可以包括,例如,翻译起始区的修饰、mRNA结构元件的改变和不同密码子偏倚性的使用。优化核酸序列以提高在细菌宿主中异源蛋白的表达的方法在本领域中是已知的,并在文献中描述。例如,用于假单胞菌宿主菌株中表达的密码子优化描述在美国专利申请公开号2007/0292918,“Codon Optimization Method”中,其全部内容通过引用并入本文。
因此,优化可以处理异源基因的多种序列特征中的任意一种。作为具体的实例,稀有密码子引起的翻译中止可导致异源蛋白表达的降低。稀有密码子引起的翻译中止包括在目标多核苷酸中存在很少在宿主生物体中使用的密码子可能对蛋白质的翻译有负面影响,因为它们在可用的tRNA池中的缺少。提高宿主生物体中最佳翻译的方法包括可导致稀有宿主密码子从合成的多核苷酸序列中去除的密码子优化。
替代的翻译起始也可以导致异源蛋白表达的降低。替代的翻译起始可包含偶然地包含能够作为核糖体结合位点(RBS)发挥功能的基序的合成多核苷酸序列。这些位点可引起从基因内部位点起始截短蛋白的翻译。降低产生截短蛋白(其可能难以在纯化过程中去除)的可能性的一种方法包括从优化的多核苷酸序列中消除推定的内部RBS序列。
重复引起的聚合酶滑脱可以导致异源蛋白表达的下降。重复引起的聚合酶滑脱涉及表明会引起可产生移码突变的DNA聚合酶的滑脱或口吃(stuttering)的核苷酸序列重复。这样的重复序列也能引起RNA聚合酶的滑脱。在具有高G+C含量偏倚性的生物体中,可以有更高程度的由G或C核苷酸重复构成的重复序列。因此,降低引起RNA聚合酶滑脱的可能性的一种方法包括改变G或C核苷酸的延伸重复序列。
干扰二级结构也可能导致异源蛋白表达的下降。二级结构可以隔离RBS序列或起始密码子,且与蛋白质表达的下降相关。茎-环结构也可以参与转录中止和减弱。优化的多核苷酸序列在核苷酸序列的RBS和基因编码区中可以含有最少的二级结构以允许转录和翻译的改善。
另一种可能影响异源蛋白表达的特征是限制性位点的存在。可以通过除去可能干扰随后转录单位亚克隆到宿主表达载体中的限制性位点优化多核苷酸序列。
例如,可以通过识别由宿主异源表达所需的氨基酸序列开始优化过程。可以从该氨基酸序列设计候选多核苷酸或DNA序列。在设计合成DNA序列时,密码子选择的频率可以与宿主表达有机体的密码子选择进行比较和稀有宿主密码子可以从合成序列中除去。此外,合成的候选DNA序列可以被修饰以除去不想要的限制性酶切位点,以及添加或移除任何所需的信号序列、接头或非翻译区。可以分析合成DNA序列中可能会干扰的翻译过程的二级结构的存在,如G/C重复序列和茎-环结构。在候选DNA序列合成之前,可以检验优化的序列设计以确认该序列正确编码所需的氨基酸序列。最后,可以使用DNA合成技术合成候选DNA序列,如本领域中已知的那些合成技术。
在本发明的另一个实施方式中,可以使用宿主生物体如荧光假单胞菌中的通用密码子选择来优化异源多核苷酸序列的表达。可以评估在宿主表达系统中被视为对于特定氨基酸优选的稀有密码子的百分比和分布。5%和10%的选择率值可作为确定稀有密码子的临界值。例如,表1中列出的密码子在荧光假单胞菌MB214基因组中的计算出现率小于5%,因而通常避免用于在荧光假单胞菌宿主中表达的优化基因中。
表2.在荧光假单胞菌MB214中出现率低于5%的密码子
本发明考虑使用所产生毒素的任何编码序列,包括已针对在所使用的假单胞菌宿主细胞中表达进行优化的任何序列。预想使用的序列可以进行任何程度的优化,包括,但不限于,优化以消除:在假单胞菌宿主细胞中出现率小于5%的密码子、在假单胞菌宿主细胞中出现率小于10%的密码子、稀有密码子引起的翻译中止、推定的内部RBS序列、G或C核苷酸的延伸重复序列、干扰性二级结构、限制性位点或它们的组合。
此外,在本发明的实施中任何有用的分泌前导序列的氨基酸序列可以由任何合适的核酸序列编码。
表达系统
用于在假单胞菌宿主细胞以及可用于本发明的方法中的宿主细胞中表达异源蛋白质的方法(包括可用的调控序列(例如,启动子、分泌前导序列和核糖体结合位点))在下列文献中有描述,例如,题目均为“Method for Rapidly Screening Microbial Hosts to IdentifyCertain Strains with Improved Yield and/or Quality in the Expression ofHeterologous Proteins”的美国专利申请公开号2008/0269070和美国专利申请系列号12/610,207、题目为“Expression of Mammalian Proteinsin Pseudomonas Fluorescens”的美国专利申请公开号2006/0040352和题目为“Process for Improved Protein Expression by Strain Engineering”的美国专利申请公开号2006/0110747,通过引用将所有这些文献全文引入。这些出版物中,还描述了可用于实施本发明方法的细菌宿主菌株,其已被工程化以过表达折叠调节因子或其中为了增加异源蛋白质的表达,已引入蛋白酶突变(包括缺失)。
前导序列
前导序列在下列文献中有详细描述:美国专利申请公开号2008/0193974和2010/0048864,题目均为“Bacterial Leader Sequencesfor Increased Expression”及美国专利申请公开号2006/0008877,题目为“Expression systems with Sec-secretion”,其全部通过引用引入本文,以及美国专利申请公开号2008/0269070和美国专利申请系列号12/610,207。
在实施方式中,编码分泌前导序列的序列与编码毒素蛋白的序列融合。在实施方式中,分泌前导序列是周质分泌前导序列。在实施方式中,分泌前导序列是天然分泌前导序列。
表3.示例性分泌前导序列
Figure BPA00001624092500271
Figure BPA00001624092500281
应该了解,可用于本发明方法中的分泌前导序列并不限于在表2中所公开的那些。
在实施方式中,分泌前导序列是Azu、IbpS31A、CupA2或PbpA20V。在其它实施方式中,分泌前导序列是Azu、IbpS31A、CupA2、PbpA20V或Pbp。
天然CRM197通过分泌前导序列从白喉杆菌转运到细胞外间隙,该分泌前导序列被切割以留下GADD的氨基末端序列(SEQ IDNO:21)。为了在荧光假单胞菌中表达后保持CRM197的天然氨基酸末端并确保形成二硫键,将蛋白质靶向于周质间隙。
启动子
根据本发明使用的启动子可以是组成型启动子或调控启动子。常见的可用调控型启动子的实例包括那些源自lac启动子(即lacZ启动子)家族的启动子,尤其是在DeBoer的美国专利号4,551,433中描述的tac和trc启动子,以及Ptac16、Ptac17、PtacII、PlacUV5和T7lac启动子。在一个实施方式中,所述启动子不是源自于宿主细胞生物体。在某些实施方式中,所述启动子是源自于大肠杆菌生物体。
根据本发明的方法,诱导型启动子序列可用于调控毒素的表达。在实施方式中,可用于本发明方法中的诱导型启动子包括那些源自lac启动子(即lacZ启动子)家族的启动子,尤其是在DeBoer的美国专利号4,551,433中描述的tac和trc启动子,以及Ptac16、Ptac17、PtacII、PlacUV5和T7lac启动子。在一个实施方式中,所述启动子不是源自于宿主细胞生物体。在某些实施方式中,所述启动子是源自于大肠杆菌生物体。
可用于根据本发明的表达系统中非lac型启动子的常见实例包括,例如,表4中所列出的那些启动子。
表4.非lac启动子的实例
  启动子   诱导物
  PR   高温
  PL   高温
  Pm   烷基-或卤代-苯甲酸盐
  Pu   烷基-或卤代-甲苯
  Psal   水杨酸盐
参见,例如J.Sanchez-Romero & V.De Lorenzo(1999)Manual ofIndustrial Microbiology and Biotechnology(A.Demain & J.Davies,eds.)pp.460-74(ASM Press,Washington,D.C.);H.Schweizer(2001)CurrentOpinion in Biotechnology,12:439-445和R.Slater & R.Williams(2000Molecular Biology and Biotechnology(J.Walker & R.Rapley,eds.)pp.125-54(The Royal Society of Chemistry,Cambridge,UK))。对于所选择的细菌宿主细胞天然的启动子的核苷酸序列的启动子也可用于控制编码靶多肽的转基因的表达,例如,假单胞菌邻氨基苯甲酸或苯甲酸操纵子启动子(Pant,Pben)。也可使用串联启动子,其中超过一个启动子与另一个启动子共价连接,无论序列相同或不同,例如,Pant-Pben串联启动子(启动子间杂合体(interpromoter hybrid))或Plac-Plac串联启动子,或无论源自相同或不同的生物体。
为了控制启动子作为其部分的基因的转录,调控启动子利用了启动子调控蛋白。在本发明中使用调控启动子的情况下,相应的启动子调控蛋白也是根据本发明的表达系统的部分。启动子调控蛋白的实例包括:激活剂蛋白,例如,大肠杆菌分解代谢物激活剂蛋白、MalT蛋白;AraC家族转录激活因子;阻遏蛋白,例如,大肠杆菌LacI的蛋白;和双重功能的调控蛋白,如大肠杆菌NagC蛋白。本领域已知许多调控启动子/启动子调控蛋白对。在一个实施方式中,靶蛋白和目标异源蛋白的表达构建体是在相同调控元件的控制下。
启动子调控蛋白与效应子化合物(即,可逆或不可逆地与调控蛋白结合的化合物)相互作用,以使该蛋白质能够脱离或结合处于该启动子控制下的基因的至少一个DNA转录调控区域,从而允许或阻断启动基因转录的转录酶的作用。效应子化合物被分类为诱导物或共阻遏物,且这些化合物包括天然的效应子化合物和安慰诱导物化合物。本领域已知很多调控启动子/启动子调控蛋白/效应子化合物三元组合。虽然效应子化合物可以用在整个细胞培养或发酵过程中,但在其中在宿主细胞生物质生长到所需数量或密度后才使用调控启动子的优选实施方式中,将效应子化合物加到培养物中直接或间接导致编码目标蛋白质或多肽的所需基因的表达。
在其中利用lac家族启动子的实施方式中,lacI基因也可以存在于系统中。lacI基因(其正常情况下是组成型表达的基因)编码Lac阻遏蛋白LacI蛋白,其结合lac家族启动子的lac操纵子。因此,在使用lac家族启动子的的情况下,lacI基因也可以包括并在表达系统中表达。
在假单胞菌中可用的启动子系统被描述在文献中,例如,美国专利申请公开号2008/0269070,也在上引用献。
其他调控元件
在实施方式中,产生过程中可溶性蛋白质存在于细胞质或细胞周质中。用于蛋白靶向的分泌前导序列在本文其他地方及文献美国专利申请公开号2008/0193974、美国专利申请公开号2006/0008877和美国专利申请系列号12/610,207中进行了描述。
其他元件包括但不限于,转录增强子序列、翻译增强子序列、其他启动子、激活剂、转录起始和终止信号、转录终止子、顺反子调节子、多顺反子调节子、标签序列,比如核苷酸序列“标签”和“标签”多肽编码序列,它们促进了对所表达的多肽的鉴别、分离、纯化和/或离析。
在实施方式中,表达载体进一步包含与分泌信号的编码序列或与感兴趣的蛋白质或多肽的编码序列邻近的标签序列。在一个实施方式中,该标签序列允许蛋白质的纯化。此标签序列可以是亲和标签,比如六-组氨酸亲和标签(SEQ ID NO:46)。在另一个实施方式中,亲和标签可以是谷胱甘肽-S-转移酶分子。标签也可以是荧光分子,比如YFP或GFP,或此类荧光蛋白的类似物。标签也可以是抗体分子的一部分,或对于可用于纯化的已知结合伴体的已知抗原或配体。
除蛋白编码序列以外,可用于实施本发明方法的表达构建体还可以包括下列可操作地与其连接的调控元件:启动子、核糖体结合位点(RBS)、转录终止子和翻译起始信号和终止信号。根据,例如美国专利申请公开号2008/0269070和美国专利申请系列号12/610,207,可以从可用作表达系统中的宿主的任何物种获得有用的RBS。已知很多特定的和多样的共有RBS,例如D.Frishman等,Gene 234(2):257-65(8Jul.1999)和B.E.Suzek等,Bioinformatics 17(12):1123-30(2001年12月)中或其引用的文献中所描述的那些。此外,可以使用天然的或合成的RBS,例如,EP 0207459(合成的RBS);O.Ikehata等,Eur.J.Biochem.181(3):563-70(1989)(AAGGAAG的天然RBS序列)中所描述的那些。本领域已知可用于本发明中的方法、载体及翻译和转录元件以及其它元素的进一步实例,并在例如Gilroy等的美国专利号5,055,294和Gilroy等的美国专利号5,128,130;Rammler等的美国专利号5,281,532;Barnes等的美国专利号4,695,455和4,861,595;Gray等美国专利号4,755,465及Wilcox的美国专利号5,169,760,以及许多其它通过引用整体引入的出版物中有描述。
宿主菌株
设想细菌宿主(包括假单胞菌属)和密切相关的细菌生物体用来实施本发明的方法。在某些实施方式中,假单胞菌宿主细胞为荧光假单胞菌。宿主细胞也可以是大肠杆菌细胞。
在实施本发明方法中有用的宿主细胞和构建体可利用本领域已知的和在例如通过引用整体并入本文的美国专利申请公开号2009/0325230,″Protein Expression Systems″等文献中所述的试剂和方法来鉴别或制备。该公开描述了通过将核酸构建体引入到包含染色体lacI基因插入序列的营养缺陷型荧光假单胞菌宿主细胞内来产生重组多肽。该核酸构建体包含编码与能够引导核酸在宿主细胞内表达的启动子可操作地连接的重组多肽的核苷酸序列,且也包含编码营养缺陷型选择标记的核苷酸序列。营养缺陷型选择标记是将原养型恢复成营养缺陷型宿主细胞的多肽。在实施方式中,细胞对于脯氨酸、尿嘧啶或其组合是营养缺陷的。在实施方式中,宿主细胞来源于MB101(ATCC保藏号PTA-7841)。美国专利申请公开号2009/0325230,“Protein Expression Systems”和Schneider等人,2005,″Auxotrophicmarkers pyrF and proC can replace antibiotic markers on proteinproduction plasmids in high-cell-density Pseudomonas fluorescensfermentation″Biotechnol.Progress 21(2):343-8中描述了通过删除菌株MB101中的pyrF基因而构建的尿嘧啶营养缺陷型生产宿主菌株,这两篇文献通过引用整体并入本文。pyrF基因是从菌株MB214(ATCC保藏号PTA-7840)克隆而来以生成能弥补pyrF缺失而恢复原养型的质粒。在特定实施方式中,使用在荧光假单胞菌宿主细胞中的pyrF-proC双重营养缺陷选择标记系统。如所述的PyrF生产宿主菌株可用作引入其他期望的基因组改变(包括本文所述的可用于实施本发明方法的那些)的背景。
在实施方式中,宿主细胞是假单胞菌目的细胞。在宿主细胞是假单胞菌目细胞时,它可以是假单胞菌科的成员,包括假单胞菌属。γ变形杆菌宿主包括大肠杆菌种的成员和荧光假单胞菌种的成员。
其他假单胞菌生物体也可能是有用的。假单胞菌和密切相关的物种包括革兰氏阴性变形杆菌亚群I,该亚群I包括属于在R.E.Buchanan和N.E.Gibbons(编),Bergey′s Manual of DeterminativeBacteriology,pp.217-289(第8版,1974)(The Williams & Wilkins Co.,Baltimore,Md.,USA)(下文称为″Bergey(1974)″)中被描述为“革兰氏阴性需氧杆菌和球菌”的科和/或属的变形杆菌的组。表5显示了这些生物体的科和属。
表5.“革兰氏阴性需氧杆菌和球菌”部分列出的科和属(Bergey,1974)
假单胞菌和密切相关的细菌通常是定义为“革兰氏(-)蛋白菌亚群1”或“革兰氏阴性需氧杆菌和球菌”(Buchanan和Gibbons(编)(1974)Bergey′s Manual of Determinative Bacteriology,pp.217-289)的组的一部分。假单胞菌宿主菌株在例如上文引用的美国专利申请公开号2006/0040352等文献中有描述。
“革兰氏阴性变形杆菌亚群1”也包括根据分类中使用的标准而分类到该类别下的变形杆菌。该类别也包括以前归类到该部分但现已不再归入该部分的群,比如,食酸菌属(Acidovorax)、短波单胞菌属(Brevundimonas)、伯克霍尔德氏菌属(Burkholderia)、产氢噬胞菌属(Hydrogenophaga)、海洋单胞菌属(Oceanimonas)、雷尔氏菌属(Ralstonia)和寡养单胞菌属(Stenotrophomonas);通过重新分组属于黄单胞菌属(Xanthomonas)(之前称为其种)的生物体而建立的鞘氨醇单胞菌属(Sphingomonas)(和由其衍生的芽单胞菌属(Blastomonas));通过重新分组属于如Bergey(1974)所定义的醋杆菌属(Acetobacter)的生物体而建立的酸单胞菌属(Acidomonas)。另外,宿主可以包括来自假单胞菌属、Pseudomonas enalia(ATCC14393)、黑色假单胞菌(Pseudomonas nigrifaciensi)(ATCC 19375)和腐败假单胞菌(Pseudomonas putrefaciens)(ATCC 8071)(其已被分别重新分类为Alteromonas haloplanktis、产黑交替单胞菌(Alteromonasnigrifaciens)和腐败交替单胞菌(Alteromonas putrefaciens))的细胞。类似地,例如,食酸假单胞菌(Pseudomonas acidovorans)(ATCC 15668)和睾丸酮假单胞菌(Pseudomonas testosteroni)(ATCC 11996)之后被分别重新分类为食酸丛毛单胞菌(Comamonas acidovorans)和睾丸酮丛毛单胞菌(Comamonas testosteroni);黑色假单胞菌(ATCC 19375)和Pseudomonas piscicida(ATCC 15057)被分别重新分类为假交替单胞菌(Pseudoalteromonas nigrifaciens)和杀鱼假交替单胞菌(Pseudoalteromonas piscicida)。“革兰氏阴性变形杆菌亚群1”也包括被分类为属于任何以下科的变形杆菌:假单胞菌科、固氮菌科(现常被称为同义词—假单胞菌科的“固氮菌群”)、根瘤菌科和甲基单胞菌科(现常被称为同义词—“甲基球菌科”)。因此,除了本文另外描述的那些属以外,属于“革兰氏阴性变形杆菌亚群1”的更多变形杆菌属包括:1)嗜氮根瘤菌属的固氮菌群细菌;2)纤维弧菌属(Cellvibrio)、寡源杆菌属(Oligella)和Teredinibacter的假单胞菌科细菌;3)螯合杆菌属(Chelatobacter)、剑菌属(Ensifer)、韧皮部杆菌属(Liberibacter)(也称为“柑橘黄龙病菌(Candidatus Liberibacter)”)和中华根瘤菌属(Sinorhizobium)的根瘤菌科细菌;以及4)甲基杆菌属(Methylobacter)、喜热嗜甲基菌属(Methylocaldum)、甲基微菌属(Methylomicrobium)、甲基八迭球菌属(Methylosarcina)和甲基球菌属(Methylosphaera)的甲基球菌科细菌。
宿主细胞可以选自“革兰氏阴性变形菌亚群16”。“革兰氏阴性变形菌亚组16”被定义为以下的假单胞菌种(在括号中显示示例性菌株的ATCC或其它保藏号)的变形菌群:Pseudomonas abietaniphila(ATCC 700689)、铜绿假单胞菌(Pseudomonas aeruginosa)(ATCC10145)、产碱假单胞菌(Pseudomonas alcaligenes)(ATCC 14909)、鳗败血假单胞菌(Pseudomonas anguilliseptica)(ATCC 33660)、香矛醇假单胞菌(Pseudomonas citronellolis)(ATCC 13674)、变黄假单胞菌(Pseudomonas flavescens)(ATCC 51555)、门多萨假单胞菌(Pseudomonas mendocina)(ATCC 25411)、硝基还原假单胞菌(Pseudomonas nitroreducens)(ATCC 33634)、食油假单胞菌(Pseudomonas oleovorans)(ATCC 8062)、类产碱假单胞菌(Pseudomonas pseudoalcaligenes)(ATCC 17440)、食树脂假单胞菌(Pseudomonas resinovorans)(ATCC 14235)、稻草假单胞菌(Pseudomonas straminea)(ATCC 33636)、伞菊假单胞菌(Pseudomonasagarici)(ATCC 25941)、嗜碱假单胞菌(Pseudomonas alcaliphila)、Pseudomonas alginovora、Pseudomonas andersonii、铁角蕨假单胞菌(Pseudomonas asplenii)(ATCC 23835)、Pseudomonas azelaica(ATCC27162)、Pseudomonas beyerinckii(ATCC 19372)、Pseudomonasborealis、北城假单胞菌(Pseudomonas boreopolis)(ATCC 33662)、油菜假单胞菌(Pseudomonas brassicacearum)、Pseudomonas butanovora(ATCC 43655)、Pseudomonas cellulosa(ATCC 55703)、桔黄假单胞菌(Pseudomonas aurantiaca)(ATCC 33663)、绿针假单胞菌(Pseudomonaschlororaphis)(ATCC 9446、ATCC 13985、ATCC 17418、ATCC 17461)、莓实假单胞菌(Pseudomonas fragi)(ATCC 4973)、海雀假单胞菌(Pseudomonas lundensis)(ATCC 49968)、腐臭假单胞菌(Pseudomonastaetrolens)(ATCC 4683)、青紫菖假单胞菌(Pseudomonascissicola)(ATCC 33616)、晕斑假单胞菌(Pseudomonas coronafaciens)、Pseudomonas fiterpeniphila、伸长假单胞菌(Pseudomonaselongata)(ATCC 10144)、弯曲假单胞菌(Pseudomonas flectens)(ATCC12775)、生氮假单胞菌(Pseudomonas azotoformans)、布氏假单胞菌(Pseudomonas brenneri)、Pseudomonas cedrella、起皱假单胞菌(Pseudomonas corrugata)(ATCC 29736)、Pseudomonasextremorientalis、荧光假单胞菌(Pseudomonas fluorescens)(ATCC35858)、Pseudomonas gessardii、Pseudomonas libanensis、孟氏假单胞菌(Pseudomonas mandelii)(ATCC 700871)、边缘假单胞菌(Pseudomonas marginalis)(ATCC 10844)、米氏假单胞菌(Pseudomonasmigulae)、霉味假单胞菌(Pseudomonas mucidolens)(ATCC 4685)、Pseudomonas orientalis、罗氏假单胞菌(Pseudomonas rhodesiae)、类黄假单胞菌(Pseudomonas synxantha)(ATCC 9890)、托拉斯假单胞菌(Pseudomonas tolaasii)(ATCC 33618)、威隆假单胞菌(Pseudomonasveronii)(ATCC 700474)、弗雷德里克斯堡假单胞菌(Pseudomonasfrederiksbergensis)、弯曲假单胞菌(Pseudomonas geniculata)(ATCC19374)、Pseudomonas gingeri、Pseudomonas graminis、格氏假单胞菌(Pseudomonas grimontii)、Pseudomonas halodenitrificans、嗜盐假单胞菌(Pseudomonas halophila)、栖木槿假单胞菌(Pseudomonashibiscicola)(ATCC 19867)、赫替假单胞菌(Pseudomonashuttiensis)(ATCC 14670)、噬氢假单胞菌(Pseudomonashydrogenovora)、Pseudomonas jessenii(ATCC 700870)、Pseudomonaskilonensis、柳叶刀假单胞菌(Pseudomonas lanceolata)(ATCC 14669)、亚麻假单胞菌(Pseudomonas lini)、划界假单胞菌(Pseudomonasmarginata)(ATCC 25417)、臭味假单胞菌(Pseudomonasmephitica)(ATCC 33665)、脱氮假单胞菌(Pseudomonasdenitrificans)(ATCC 19244)、穿孔假单胞菌(Pseudomonaspertucinogena)(ATCC 190)、皮克特假单胞菌(Pseudomonaspictorum)(ATCC 23328)、Pseudomonas psychrophila、黄褐假单胞菌(Pseudomonas filva)(ATCC 31418)、蒙氏假单胞菌(Pseudomonasmonteilii)(ATCC 700476)、摩氏假单胞菌(Pseudomonas mosselii)、栖稻假单胞菌(Pseudomonas oryzihabitans)(ATCC 43272)、变形假单胞菌(Pseudomonas plecoglossicida)(ATCC 700383)、恶臭假单胞菌(Pseudomonas putida)(ATCC 12633)、Pseudomonas reactans、多刺假单胞菌(Pseudomonas spinosa)(ATCC 14606)、巴利阿里假单胞菌(Pseudomonas balearica)、浅黄假单胞菌(Pseudomonas luteola)(ATCC43273);.施氏假单胞菌(Pseudomonas stutzeri)(ATCC 17588)、扁桃假单胞菌(Pseudomonas amygdali)(ATCC 33614)、榛色假单胞菌(Pseudomonas avellanae)(ATCC 700331)、番木瓜假单胞菌(Pseudomonas caricapapayae)(ATCC 33615)、菊苣假单胞菌(Pseudomonas cichorii)(ATCC 10857)、天仙果假单胞菌(Pseudomonasficuserectae)(ATCC 35104)、褐鞘假单胞菌(Pseudomonasfuscovaginae)、苦楝假单胞菌(Pseudomonas meliae)(ATCC 33050)、丁香假单胞菌(Pseudomonas syringae)(ATCC 19310)、绿黄假单胞菌(Pseudomonas viridiflava)(ATCC 13223)、Pseudomonasthermocarboxydovorans(ATCC 35961)、耐热假单胞菌(Pseudomonasthermotolerans)、赛维瓦尔假单胞菌(Pseudomonas thivervalensis)、温哥华假单胞菌(Pseudomonas vancouverensis)(ATCC 700688)、Pseudomonas wisconsinensis和厦门假单胞菌(Pseudomonasxiamenensis)。在一个实施方式中,宿主细胞为荧光假单胞菌。
宿主细胞也可以选自“革兰氏阴性变形菌亚群17”。“革兰氏阴性变形菌亚群17”被定义为本领域中已知为“发荧光的假单胞菌”的变形菌群,包括,例如属于下列假单胞菌种的那些:生氮假单胞菌、布氏假单胞菌、Pseudomonas cedrella、起皱假单胞菌、Pseudomonasextremorientalis、荧光假单胞菌、Pseudomonas gessardii、Pseudomonaslibanensis、孟氏假单胞菌、边缘假单胞菌、米氏假单胞菌、霉味假单胞菌、Pseudomonas orientalis;Pseudomonas rhodesiae、产黄假单胞菌、托拉斯假单胞菌和威隆假单胞菌。
在实施方式中,假单胞菌宿主细胞为HslU、HslV、Prc1、DegP1、DegP2、AprA或它们的组合的表达缺陷的。在实施方式中,宿主细胞为蛋白酶HslU、HslV、Ppc1、DegP1、DegP2和AprA表达缺陷的,且过表达DegP2S219A。这种菌株的实例在本文中描述为宿主菌株2。这些蛋白酶在本领域中已知,并在例如美国专利申请公开号2006/0110747中有描述。AprA,一种细胞外serralysin型金属蛋白酶金属蛋白酶,由Maunsell等,2006,“Complex regulation of AprAmetalloprotease in Pseudomonas fluorescens M114:evidence for theinvolvement of iron,the ECF sigma factor,PbrA and pseudobactin M114siderophore,Microbiology 152(Pt 1):29-42及美国专利申请公开号2008/0193974和2010/0048864中有描述。
在其它实施方式中,假单胞菌宿主细胞过表达DsbA、DsbB、DsbC和DsbD。DsbA、B、C和D是二硫键异构酶,在例如美国专利申请公开号2008/0269070和美国专利申请序列号12/610,207中描述。
在其它实施方式中,假单胞菌的宿主细胞是野生型的,即没有蛋白酶表达缺陷,且也不过表达任何折叠调节因子。
蛋白酶表达缺陷的宿主细胞可以具有导致相对于野生型宿主,该蛋白酶的正常活性或表达水平下降的任何修饰。例如,错义或无义突变可导致非活性的蛋白质的表达,且基因缺失可以导致完全没有蛋白质的表达。该基因的上游调节区域的变化可以导致蛋白表达减少或不表达。其他的基因缺陷可影响蛋白质的翻译。蛋白酶的表达也可以是缺陷的,如果对于加工该蛋白酶所需的蛋白质的活性是缺陷的。
表6.荧光假单胞菌菌株MB214蛋白酶
Figure BPA00001624092500381
Figure BPA00001624092500401
Figure BPA00001624092500411
Figure BPA00001624092500421
Figure BPA00001624092500441
某些蛋白酶可以有蛋白酶和伴侣蛋白样活性。当这些蛋白酶对蛋白质的产率和/或质量造成负面影响时,删除他们可能是有利的,且当他们的伴侣蛋白活性对蛋白产率和/或质量产生正面影响时,可以将他们过表达。这些蛋白酶包括,但不限于:Hsp100(Clp/Hsl)家族成员RXF04587.1(clpA)、RXF08347.1、RXF04654.2(clpX)、RXF04663.1、RXF01957.2(hslU)、RXF01961.2(hslV);肽酰-脯氨酰-顺-反式异构酶家族成员RXF05345.2(ppiB);金属肽酶M20家族成员RXF04892.1(氨基水解酶);金属肽酶M24家族成员RXF04693.1(甲硫氨酸氨肽酶)和RXF03364.1(甲硫氨酸氨肽酶)及丝氨酸肽酶S26信号肽酶I家族成员RXF01181.1(信号肽酶)。
表7.荧光假单胞菌菌株MB214蛋白质折叠调节因子
Figure BPA00001624092500442
Figure BPA00001624092500451
Figure BPA00001624092500461
Figure BPA00001624092500471
Figure BPA00001624092500481
高通量筛选
在一些实施方式中,可进行高通量筛选以确定用于表达可溶性重组毒素蛋白的最佳条件。在筛选中可变的条件包括,例如,宿主细胞、宿主细胞的遗传背景(例如,不同蛋白酶的缺失)、表达构建体中的启动子类型、与编码重组蛋白的序列融合的分泌前导序列类型、生长温度、当使用诱导型启动子时进行诱导的OD、当使用lacZ启动子时用于诱导的IPTG浓度、蛋白质诱导的持续时间、向培养物中加入诱导剂后的生长温度、培养物搅拌速度、质粒保持的选择的方法、容器中的培养物体积和细胞裂解方法。
在一些实施方式中,提供了宿主菌株的文库(或“阵列”),其中文库中的各个菌株(或“宿主细胞群”)已进行遗传修饰以调节宿主细胞中的一个或多个靶基因的表达。与阵列中表型明显不同的宿主细胞的其他群体相比,可基于表达的目标蛋白质的数量、质量和/或位置来鉴定和或选择“最佳宿主菌株”或“最佳表达系统”。因此,最佳宿主菌株是根据期望的标准产生目标多肽的菌株。尽管期望的规格将根据所产生的多肽而变化,但是该规格包括蛋白质的质量和/或数量,例如,蛋白质是隔离的还是分泌的,数量如何,蛋白质是否适当地或期望地加工和/或折叠,等等。在实施方式中,提高的或期望的质量可以是具有分泌前导序列的高保真切割和低水平降解的毒素蛋白的产生。在实施方式中,最佳宿主菌株或最佳表达系统获得某一绝对水平的产率或相对于指示菌株(即用于对照的菌株)所获得的产率的某一水平的产率,其特征为可溶性异源蛋白质的量或数量、可回收的异源蛋白质的量或数量、适当加工的异源蛋白质的量或数量、适当折叠的异源蛋白质的量或数量、活性异源蛋白质的量或数量和/或异源蛋白质的总量和数量。
筛选微生物宿主以确定异源蛋白质表达的产率和/或数量提高的菌株的方法在例如美国专利申请公开号20080269070中有描述。
发酵形式
根据本发明的表达系统可以以任何发酵模式培养。例如,分批、补料分批、半连续和连续发酵模式可以用于本发明中。
在实施方式中,发酵培养基可以选自丰富培养基、基本培养基和矿物盐培养基。在其它实施方式中,可以选择基本培养基或矿物盐培养基。在某些实施方式中,可以选择矿物盐培养基。
矿物盐培养基由矿物盐和碳源组成,例如,葡萄糖、蔗糖或甘油。矿物盐培养基的实例包括,例如,M9培养基、假单胞菌培养基(ATCC179)及Davis和Mingioli培养基(见B D Davis & E S Mingioli(1950)J.Bact.60:17-28))。用于制备矿物盐培养基的矿物盐包括选自以下的那些:例如,磷酸钾、硫铵酸盐或氯化铵、硫酸镁或氯化镁及微量矿物质,如氯化钙、硼酸盐及铁、铜、锰和锌的硫酸盐。通常情况下,矿物盐培养基中没有有机氮源,如蛋白胨、胰蛋白胨、氨基酸或酵母提取物。相反,使用无机氮源,且其可以选自例如,铵盐、氨水以及气态氨。矿物盐培养基中通常会包含葡萄糖或甘油作为碳源。在矿物盐培养基相比,基本培养基也可以包含矿物盐和碳源,但可补充,例如,低水平的氨基酸、维生素、蛋白胨或其它成分,尽管这些成分以非常低的水平添加。可以使用本领域,例如,美国专利申请公开号2006/0040352、上述引用和引入的文献中描述的方法制备培养基。可用于本发明的方法中的培养过程和矿物盐培养基的细节见Riesenberg,D等,1991,″High cell density cultivation of Escherichia coli atcontrolled specific growth rate,″J.Biotechnol.20(1):17-27中的描述。
在实施方式中,可以在生物反应器培养中进行生产。通过添加氨,培养物可以在例如,含有矿物盐培养基的最多2升的生物反应器中生长,并维持温度为32℃和pH值为6.5。通过增加搅拌并进入到发酵罐中的鼓泡空气和氧气流使溶解氧保持过量。甘油可以在整个发酵过程中输送到培养基物以维持在过量水平。在实施方式中,保持这些条件直到达到用于诱导的培养细胞目标密度,例如,575nm(A575)的光密度,此时添加IPTG以开始靶蛋白生产。可以理解,可以各自改变诱导时的细胞密度、IPTG浓度、pH值和温度以确定最佳表达条件。在实施方式中,诱导时的细胞密度变化范围是40至200个吸光度单位(AU)的A575。IPTG浓度的变化范围为0.02至1.0mM、pH变化范围为6-7.5、温度变化范围为20到35℃。16-24小时后,通过离心从来自各生物反应器收获培养物,且细胞沉淀可以在-80℃下冷冻。可通过例如SDS-CGE分析样品的产物形成。
发酵可以以任何规模进行。根据本发明的表达系统可用于任何规模的重组蛋白表达。因此,可以使用,例如微升规模、毫升规模、厘升规模、分升规模的发酵体积,且可以使用1升规模和更大的发酵体积。
在实施方式中,发酵体积约为1升或大于1升。在实施方式中,发酵体积为约1升至约100升。在实施方式中,发酵体积为约1升、约2升、约3升、约4升、约5升、约6升、约7升、约8升、约9升或约10升。在实施方式中,发酵体积为约1升至约5升、约1升至约10升、约1升至约25升、约1升至约50升、约1升至约75升、约10升至约25升、约25升至约50升或约50升至约100升。在其它实施方式中,发酵体积大约为或大于5升、10升、15升、20升、25升、50升、75升、100升、200升、500升、1000升、2000升、5000升、10000升或50,000升。
细菌生长条件
可用于所提供的发明的方法中的生长条件可包括约4℃至约42℃的温度和约5.7至约8.8的pH。当使用具有lacZ启动子的表达构建体时,可通过向培养物中加IPTG至终浓度为约0.01mM至约1.0mM来诱导表达。
可以使用pH缓冲剂和本领域技术人员已知的方法来维持培养物的pH。在培养过程中对pH的控制也可使用氨水来实现。在实施方式中,培养物的pH为约5.7至约8.8。在某些实施方式中,pH为约5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8.0、8.1、8.2、8.3、8.4、8.5、8.6、8.7或8.8。在其他实施方式中,pH为约5.7至5.9、5.8至6.0、5.9至6.1、6.0至6.2、6.1至6.3、6.2至6.5、6.4至6.7、6.5至6.8、6.6至6.9、6.7至7.0、6.8至7.1、6.9至7.2、7.0至7.3、7.1至7.4、7.2至7.5、7.3至7.6、7.4至7.7、7.5至7.8、7.6至7.9、7.7至8.0、7.8至8.1、7.9至8.2、8.0至8.3、8.1至8.4、8.2至8.5、8.3至8.6、8.4至8.7或8.5至8.8。在另外其它的实施方式中,pH为约5.7至6.0、5.8至6.1、5.9至6.2、6.0至6.3、6.1至6.4或6.2至6.5。在某些实施方式中,pH为约5.7至约6.25。
在实施方式中,生长温度维持在约4℃至约42℃。在某些实施方式中,生长温度为约4℃、约5℃、约6℃、约7℃、约8℃、约9℃、约10℃、约11℃、约12℃、约13℃、约14℃、约15℃、约16℃、约17℃、约18℃、约19℃、约20℃、约21℃、约22℃、约23℃、约24℃、约25℃、约26℃、约27℃、约28℃、约29℃、约30℃、约31℃、约32℃、约33℃、约34℃、约35℃、约36℃、约37℃、约38℃、约39℃、约40℃、约41℃或约42℃。在其他实施方式中,生长温度维持在约25℃至约27℃、约25℃至约28℃、约25℃至约29℃、约25℃至约30℃、约25℃至约31℃、约25℃至约32℃、约25℃至约33℃、约26℃至约28℃、约26℃至约29℃、约26℃至约30℃、约26℃至约31℃、约26℃至约32℃、约27℃至约29℃、约27℃至约30℃、约27℃至约31℃、约27℃至约32℃、约26℃至约33℃、约28℃至约30℃、约28℃至约31℃、约28℃至约32℃、约29℃至约31℃、约29℃至约32℃、约29℃至约33℃、约30℃至约32℃、约30℃至约33℃、约31℃至约33℃、约31℃至约32℃、约30℃至约33℃或约32℃至约33℃。在其他实施方式中,温度在培养过程中改变。在一个实施方式中,在向培养物中加入用于诱导构建体表达的试剂例如IPTG之前,温度维持在约30℃。在加入诱导剂后,温度降至约25℃。
诱导
如本文别处所述,诱导型启动子可用于表达构建体中以控制重组毒素蛋白的表达,例如,lac启动子。在lac启动子衍生物或家族成员例如tac启动子的情况下,效应化合物是诱导物,比如像IPTG(异丙基-β-D-1-硫代吡喃半乳糖苷,也称为“异丙基硫代半乳糖苷”)的安慰诱导物。在实施方式中,使用lac启动子衍生物,并且当细胞密度达到由约80至约160的OD575确定的水平时,通过加入IPTG至终浓度为约0.01mM至约1.0mM来诱导重组蛋白的表达。在实施方式中,在重组蛋白的培养物诱导时,OD575可以为约80、约90、约100、约110、约120、约130、约140、约150、约160、约170、约180。在其他实施方式中,OD575为约80至约100、约100至约120、约120至约140、约140至约160。在其他实施方式中,OD575为约80至约120、约100至约140或约120至约160。在其他实施方式中,OD575为约80至约140或约100至约160。细胞密度可通过其他方法测量并且以其他单位表示,例如,每单位体积的细胞。例如,荧光假单胞菌培养物的约80至约160的OD575等同于约8x 1010至约1.6x 1011菌落形成单位/mL或35-70g/L细胞干重。在实施方式中,培养物诱导时的细胞密度等同于如本文所述根据OD575的吸光度而得出的细胞密度,与用于测定细胞密度的方法或测量单位无关。本领域技术人员将知道如何为任何细胞培养物进行适当的转换。
在实施方式中,培养物的最终IPTG浓度为约0.01mM、约0.02mM、约0.03mM、约0.04mM、约0.05mM、约0.06mM、约0.07mM、约0.08mM、约0.09mM、约0.1mM、约0.2mM、约0.3mM、约0.4mM、约0.5mM、约0.6mM、约0.7mM、约0.8mM、约0.9mM或约1mM。在其他实施方式中,培养物的最终IPTG浓度为约0.08mM至约0.1mM、约0.1mM至约0.2mM、约0.2mM至约0.3mM、约0.3mM至约0.4mM、约0.2mM至约0.4mM、约0.08至约0.2mM或约0.1至1mM。
在其中使用非lac型启动子的实施方式中,如本文中和文献中所述,可使用其他诱导物或效应物。在一个实施方式中,该启动子是组成型启动子。
在加入诱导剂后,培养物可以生长一段时间,例如约24小时,在这段时间内重组蛋白得到表达。在加入诱导剂后,培养物可以生长约1小时、约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约11小时、约12小时、约13小时、约14小时、约15小时、约16小时、约17小时、约18小时、约19小时、约20小时、约21小时、约22小时、约23小时、约24小时、约36小时或约48小时。在向培养物中加入诱导剂后,培养物可以生长约1至48小时、约1至24小时、约10至24小时、约15至24小时或约20至24小时。可通过离心浓缩细胞培养物,并且将培养物沉淀再悬浮在适合后续裂解程序的缓冲液或溶液中。
在实施方式中,利用用于高压机械细胞破碎的设备(其可商购,例如,Microfluidics微射流器(Microfluidics Microfluidizer)、Constant细胞破碎机(Constant Cell Disruptor)、Niro-Soavi匀浆器或APV-Gaulin匀浆器)将细胞破碎。例如,可以利用超声处理使表达重组蛋白的细胞破碎。任何本领域已知的适合于裂解细胞的方法可用于释放可溶性部分。例如,在实施方式中,可使用化学和/或酶细胞裂解试剂,比如细胞壁分解酶和EDTA。本发明的方法中也设想使用冷冻的或事先储存的培养物。培养物在裂解之前可以进行OD-标准化。例如,可以将细胞标准化为约10、约11、约12、约13、约14、约15、约16、约17、约18、约19或约20的OD600。
可利用任何合适的设备和方法来进行离心。为了将可溶性部分与不溶性部分中分离而对细胞培养物或裂解产物进行离心在本领域中是众所周知的。例如,已裂解的细胞可以在20,800x g下离心20分钟(4℃下),并用手动的或自动的液体处理来除去上清液。沉淀(不溶性)部分再悬浮于缓冲溶液例如pH 7.4的磷酸盐缓冲盐水(PBS)中。例如,可利用诸如连接到悬臂式搅拌器上的叶轮、磁力搅拌棒、摇摆振荡器等设备来进行再悬浮。
“可溶性部分”,即裂解液离心后获得的可溶性上清液,以及“不溶性部分”,即裂解液离心后获得的沉淀物,是通过培养物的裂解和离心而获得的。这两部分也可分别称作“第一可溶性部分”和“第一不溶性部分”。
产物的评估
本领域中已知许多用于表征蛋白质的测定方法。本文中预期任何用于表征重组毒素蛋白的产率或质量的合适方法的使用。
蛋白质产率
可以通过本领域技术人员已知的方法测定本文所述的任何纯化部分中的蛋白质产率,例如,通过毛细管凝胶电泳(CGE)和Western印迹分析。如本文所述的和本领域中已知的,活性测定也可以提供涉及蛋白质产率的信息。在实施方式中,本领域已知的这些方法或任何其他方法用于评价蛋白质的适当加工,例如,适当的分泌前导序列切割。
可用的蛋白质产率的量度包括,例如,每体积培养物的重组蛋白质量(例如,克或毫克蛋白质/升培养物)、细胞裂解后得到的不溶性沉淀中测定的重组蛋白质的百分比或分数(例如,提取的上清液中重组蛋白质的量/不溶性成分中蛋白质的量)、活性蛋白的百分比或分数(例如,活性蛋白的量/分析中使用的蛋白质量)、总细胞蛋白质(tcp)的百分比或分数、蛋白质量/细胞和干生物质的百分比或比例。在实施方式中,如本文所述的蛋白质产率的测量基于所获得的可溶性蛋白质的量或活性蛋白质的量或此两者。
在其中产率用培养物体积表示的实施方式中,可以考虑培养物细胞密度,尤其是在不同培养物之间进行产率比较时。
在实施方式中,本发明的方法可用于获得约0.2克/升至约12克/升的可溶性和/或活性和/或适当加工的(例如,分泌前导序列正确切割的)重组毒素蛋白或亚基蛋白质产率。在实施方式中,产率为约0.5克/升至约12克/升。在某些实施方式中,重组蛋白或亚基蛋白质产率为约0.2g/L、约0.3g/L、约0.4g/L、约0.5g/L、约0.6g/L、约0.7g/L、约0.8g/L、约0.9g/L、约1g/L、约1.5g/L、约2g/L、约2.5g/L、约3g/L、约3.5g/L、约4g/L、约4.5g/L、约5g/L、约5.5g/L、约6g/L、约6.5g/L、约7g/L、约7.5g/L、约8g/L、约8.5g/L、约9g/L、约9.5g/L、约10g/L、约10.5g/L、约11g/L、约12g/L、约0.2g/L至约0.5g/L、约0.2g/L至约1g/L、约0.2至约2g/L、约0.3g/L至约0.6g/L、约0.3g/L至约1g/L、约0.3至约2g/L、约0.4至约0.7g/L、约0.4至约1g/L约0.4至约2g/L、约0.4至约3g/L、约0.5g/L至约1g/L、约0.5g/L至约1g/L、约0.5g/L至约2g/L、约0.5g/L至约3g/L、约0.5g/L至约4g/L、约0.5g/L至约5g/L、约0.5g/L至约6g/L、约0.5g/L至约7g/L、约0.5g/L至约8g/L、约0.5g/L至约9g/L、约0.5g/L至约10g/L、约0.5g/L至约11g/L、约0.5g/L至约12g/L、约1g/L至约2g/L、约1g/L至约3g/L、约1g/L至约4g/L、约1g/L至约5g/L、约1g/L至约6g/L、约1g/L至约7g/L、约1g/L至约8g/L、约1g/L至约9g/L、约1g/L至约10g/L、约1g/L至约11g/L、约1g/L至约12g/L、约2g/L至约3g/L、约2g/L至约4g/L、约2g/L至约5g/L、约2g/L至约6g/L、约2g/L至约7g/L、约2g/L至约8g/L、约2g/L至约9g/L、约2g/L至约10g/L、约2g/L至约11g/L、约2g/L至约12g/L、约3g/L至约4g/L、约3g/L至约5g/L、约3g/L至约6g/L、约3g/L至约7g/L、约3g/L至约8g/L、约3g/L至约9g/L、约3g/L至约10g/L、约3g/L至约11g/L、约3g/L至约12g/L、约4g/L至约5g/L、约4g/L至约6g/L、约4g/L至约7g/L、约4g/L至约8g/L、约4g/L至约9g/L、约4g/L至约10g/L、约4g/L至约11g/L、约4g/L至约12g/L、约5g/L至约6g/L、约5g/L至约7g/L、约5g/L至约8g/L、约5g/L至约9g/L、约5g/L至约10g/L、约5g/L至约11g/L、约5g/L至约12g/L、约6g/L至约7g/L、约6g/L至约8g/L、约6g/L至约9g/L、约6g/L至约10g/L、约6g/L至约11g/L、约6g/L至约12g/L、约7g/L至约8g/L、约7g/L至约9g/L、约7g/L至约10g/L、约7g/L至约11g/L、约7g/L至约12g/L、约8g/L至约9g/L、约8g/L至约10g/L、约8g/L至约11g/L、约8g/L至约12g/L、约9g/L至约10g/L、约9g/L至约11g/L、约9g/L至约12g/L、约10g/L至约11g/L、约10g/L至约12g/L、或约11g/L至约12g/L。
在实施方式中,所产生的重组毒素蛋白或亚基蛋白质的量为总细胞蛋白质的约1%至75%。在某些实施方式中,所产生的毒素蛋白或亚基蛋白质的量为总细胞蛋白质的约1%、约2%、约3%、约4%、约5%、约10%、约15%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约55%、约60%、约65%、约70%、约75%、约1%至约5%、约1%至约10%、约1%至约20%、约1%至约30%、约1%至约40%、约1%至约50%、约1%至约60%、约1%至约75%、约2%至约5%、约2%至约10%、约2%至约20%、约2%至约30%、约2%至约40%、约2%至约50%、约2%至约60%、约2%至约75%、约3%至约5%、约3%至约10%、约3%至约20%、约3%至约30%、约3%至约40%、约3%至约50%、约3%至约60%、约3%至约75%、约4%至约10%、约4%至约20%、约4%至约30%、约4%至约40%、约4%至约50%、约4%至约60%、约4%至约75%、约5%至约10%、约5%至约20%、约5%至约30%、约5%至约40%、约5%至约50%、约5%至约60%、约5%至约75%、约10%至约20%、约10%至约30%、约10%至约40%、约10%至约50%、约10%至约60%、约10%至约75%、约20%至约30%、约20%至约40%、约20%至约50%、约20%至约60%、约20%至约75%、约30%至约40%、约30%至约50%、约30%至约60%、约30%至约75%、约40%至约50%、约40%至约60%、约40%至约75%、约50%至约60%、约50%至约75%、约60%至约75%或约70%至约75%。
在某些实施方式中,多种蛋白质可产自相同宿主细胞。例如,在实施方式中,百日咳毒素的所有五个亚基由在单一培养物中生长的相同宿主细胞产生。在这样的实施方式中,所观测的浓度、%总细胞蛋白质或活性是针对各单个毒素亚基或针对结合在一起的所有亚基的。也就是说,在实施方式中,本发明的方法用于获得约1克/升至约12克/升的百日咳毒素蛋白S1、S2、S3、S4或S5亚基的产率。在实施方式中,所产生的S1、S2、S3、S4或S5亚基蛋白质的量为总细胞蛋白质的1%-75%。或者,本发明的方法用于获得约1克/升至约12克/升的S1、S2、S3、S4和S5亚基蛋白质的产率。在实施方式中,所产生的S1、S2、S3、S4或S5亚基蛋白质的量为总细胞蛋白质的1%-75%。在某些实施方式中,所获得的各亚基的量,以克/升或%总细胞蛋白质表示,大致是相同的。
虽然与质量相关,蛋白质的“溶解性”和“活性”一般通过不同的方式来测定。蛋白质的溶解性,特别是疏水蛋白,通常与蛋白质的折叠相关;不溶性表示疏水性氨基酸残基不适当地位于折叠蛋白的外侧。蛋白质的活性(它可以使用例如,下面所描述的方法进行评价)是适当蛋白质构象的另一个指标。本文所用“可溶性的、活性的或这两者”或者“可溶性的和/或活性的”是指通过本领域技术人员已知的和本文中描述的方法确定为可溶的、活性的或同时为可溶的和活性的蛋白质。给定蛋白质的“活性”可以包括结合活性,例如,以与受体、特异性抗体或另一已知底物结合或通过酶活性(如果相关)表现的活性。活性水平可以例如,就绝对或相对意义来描述,如相比于标准或对照样品或作为基准使用的任何样品的活性时。
用于评价毒素的活性分析在本领域中已知并且在文献中描述。活性分析包括免疫学或抗体结合分析,例如,Western印迹分析和ELISA,以及受体结合分析,例如,可通过白喉毒素受体(proHB-EGF)结合分析来评估CRM197。在这些分析中有用的抗体可以商购。活性分析也包括酶活性分析。利用本领域已知的且在本文别处针对铜绿假单胞菌外毒素A描述的方法,可通过免疫学方法和也可通过ADP核糖基化活性来测定野生型DT。
例如,可以按照例如通过引用并入本文的美国专利号6,140,082,“Expression of Gene Products from Genetically Manipulated Strains ofBordetella”所述来进行CTB的Western印迹分析。该专利描述了CTB在博德特菌中的表达。来自培养上清液的蛋白质通过SDS-PAGE解析,或者在解析前煮沸以使CTB五聚体转化成单体形式。将蛋白质转移到尼龙膜上,并用山羊抗类霍乱原IgG抗体(抗-CTB,ListBiologicals #GAC-01C)进行探测。采用dig化学发光(BoehringerMannheim),使用碱性磷酸酶偶联的驴抗山羊IgG进行检测。既包含CTA又包含CTB的霍乱毒素标准品(Sigma)用于比较。
PTX的Western印迹分析可如本文实施例中所述,利用市售的抗体来进行。单克隆抗体可获自,例如,Abcam,Cambridge,MA。
破伤风毒素C片段可如例如通过引用并入本文的美国专利号5,443,966,“Expression of tetanus toxin fragment C”中所述,通过Western印迹分析或通过ELISA进行评价。抗体可从多种商业来源获得,例如,Abcam,Cambridge,MA。
如本领域所述,TcdB活性可通过Western印迹分析或其他检测分析进行评价。例如,可以利用本领域中描述的,例如在通过引用整体并入本文的美国专利号7,226,597中所描述的葡糖基水解酶/葡糖基化分析方法测定酶活性。具体地,葡糖基化反应可在含有50mM n-2羟乙基哌嗪-n′-2-乙烷磺酸、100mM KCl、1mM MnCl2、1mM MgCl2、100μg/ml BSA、0.2mM GDP、40μM[14C]UDP-葡萄糖(303Ci/mol;ICN Pharmaceuticals)、100μM UDP-葡萄糖和3pmol TcdB或10pmol的各融合蛋白的反应混合物中进行。使该试验在37℃下孵育过夜,和用AG1-X2阴离子交换树脂分离切割的葡萄糖,并且在液体闪烁计数仪中计数。
铜绿假单胞菌外毒素A的活性可用免疫学方法,例如,Western印迹分析进行评估。由于ETA是一种ADP-核糖基化毒素,例如,如通过引用并入本文的美国专利号4,892,827中所述,可测定其ADP-核糖基化活性。具体地,富含延伸因子(EF-2)的兔网织红细胞制剂或小麦胚芽提取物用作EF-2的来源。试验(500μl总体积)包含约10pmol EF-2、37pmol 14C-NAD(0.06μCi)、0.25-1.25μg ETA和缓冲液(40mM DTT、1mM EDTA和50mM Tris,pH 8.1)。将活性测定为30分钟内转移到EF-2上的NAD的pmol数。建立已知浓度的PE的标准曲线,并用来确定大肠杆菌提取物中PE的活性。在37℃下孵育30分钟后,向各个测定混合物中加入0.5ml 12%TCA。然后将测定混合物置于冰浴中15分钟,紧接着在4℃下以3,000x g离心10分钟。用1ml的6%TCA洗涤沉淀物,并如上所述离心。然后在液体闪烁计数仪中测定沉淀物的14C放射性作为ADP-核糖基化活性的指标。
因此,活性的测量值可表示,例如,抗体或受体结合能力、底物结合能力(关于柱材料)或酶活性。
在实施方式中,活性表示为与分析的总量相比,提取物上清液中活性重组毒素蛋白的%。这是基于相对于在分析中使用的重组毒素蛋白的总量,确定为活性的重组毒素蛋白的量。在其它实施方式中,活性以与标准品(例如,天然蛋白质)相比该蛋白质的%活性水平表示。这是基于相对于标准样品中活性蛋白质的量,上清提取物样品中活性重组毒素蛋白的量(其中,来自各样品的相同量的蛋白质被用于分析中)。
在实施方式中,约40%至约100%的毒素蛋白或亚基被确定为活性的。在实施方式中,约40%、约50%、约60%、约70%、约80%、约90%或约100%的重组毒素蛋白或亚基确定为活性的。在实施方案中、约40%至约50%、约50%至约60%、约60%至约70%、约70%至约80%、约80%至约90%、约90%至约100%、约50%至约100%、约60%至约100%、约70%至约100%、约80%至约100%、约40%至约90%、约40%至约95%、约50%至约90%、约50%至约95%、约50%至约100%、约60%至约90%、约60%至约95%、约60%至约100%、约70%的至约90%、约70%至约95%、约70%至约100%或约70%至约100%的重组毒素蛋白或亚基被确定为活性的。
在其它实施方式中,约75%至约100%的重组毒素蛋白或亚基确定为活性的。在实施方式中,约75%至约80%、约75%至约85%、约75%至约90%、约75%至约95%、约80%至约85%、约80%至约90%、约80%至约95%、约80%至约100%、约85%至约90%、约85%至约95%、约85%至约100%、约90%至约95%、约90%至约100%或约95%至约100%的重组毒素蛋白或亚基确定为活性的。
确认诱导的蛋白质的身份的方法在本领域中也是已知的。例如,蛋白质可以通过使用MALDI-TOF质谱仪的肽质量指纹图谱、N-末端测序分析或肽谱法进行分析。
虽然本发明的优选实施方式中已经显示和描述,本领域技术人员将会很明白,这些实施方式仅作为实施例的方式提供。在不脱离本发明的情况下,本领域的技术人员将会想到多种变化、改变和替换。应当了解在本发明的实施过程中,对本文描述的本发明的实施方式可以进行各种改动。意图的是下面的权利要求限定本发明的范围,从而涵盖这些权利要求及其等同物范围内的方法和结构。
实施例
实施例1:重组CRM197蛋白的高通量表达
构建CRM197表达菌株,并利用毛细管凝胶电泳(SDS-CGE)分析该菌株产生的可溶性CRM197蛋白的量。根据获得的数据,选择某些菌株用于大规模表达。
CRM197表达菌株的构建和生长
使用荧光假单胞菌优先的密码子构建CRM197编码序列以编码CRM197氨基酸序列。SEQ ID NO:1显示了由表达的合成优化CRM197基因编码的氨基酸序列,SEQ ID NO:2显示了所表达的合成优化CRM197基因的DNA序列。
构建携带已优化的CRM197序列的质粒,该CRM197序列与表8中所示的10种荧光假单胞菌分泌前导序列融合。CRM197编码序列与荧光假单胞菌分泌前导序列的编码序列同框地融合,以使蛋白质靶向至周质以便以正确折叠的和活性的形式回收。
表8.用于CRM197表达筛选的分泌前导序列
  分泌前导序列
  1   DsbA
  2   Azu
  3   Ibp-S31A
  4   Tpr
  5   CupB2
  6   CupA2
  7   NikA
  8   Pbp A20V
  9   DsbC
  10   TolB
在荧光假单胞菌宿主中测试包含与重组CRM197编码序列融合的十种分泌前导序列的构建体。列于表9中的四种宿主用各表达质粒进行测试。用所示质粒对宿主细胞进行电穿孔,并使宿主细胞再悬浮于含有微量矿物质和5%甘油的HTP生长培养基中,然后转移至含有400μl M9盐1%葡萄糖培养基和微量元素的96孔深孔板中。96孔板在30℃下振摇孵育48小时。将各10微升的四十种种子培养物一式三份转移到96孔深孔板内,各孔含有500μl补充有微量元素和5%甘油的HTP培养基,并如前所述孵育24小时。
表9.用于CRM197表达筛选的宿主菌株
Figure BPA00001624092500621
PD=蛋白酶缺失(所列的蛋白酶缺失);FMO=折叠调节因子过表达子(所列的折叠调节因子是过表达的)。
向各孔中加入异丙基-β-D-硫代吡喃半乳糖苷(IPTG)达到终浓度0.3mM以诱导靶蛋白的表达。向各孔中加入甘露醇(Sigma,M1902)达到终浓度1%以在折叠调节因子过表达菌株中诱导折叠调节因子的表达,且温度下降至25℃。诱导后24小时,使用PBS以400μl的体积将细胞标准化至OD600=15。冷冻样品用于通过超声和离心进行后续处理,以生成可溶性和不溶性部分。
样品制备和SDS-CGE分析
通过超声处理OD标准化的培养物后进行离心来制备可溶性和不溶性细胞部分。解冻冷冻的标准化的培养液(400μL),并超声处理3.5分钟。以20,800×g离心裂解物20分钟(4℃),并用手动或自动液体处理除去上清液(可溶性部分)。冷冻沉淀(不溶性部分),然后解冻以用20,080xg在4℃下再离心20分钟,从而除去残留的上清液。然后再将沉淀重悬于400μL的1X磷酸盐缓冲盐水(PBS),pH值为7.4中。在pH值为7.4的1X磷酸盐缓冲盐水(PBS)中进一步稀释可溶性和不溶性样品用于SDS-CGE分析。在二硫苏糖醇(DTT)存在下制备可溶性和不溶性样品用于SDS毛细管凝胶电泳(CGE)(Caliper Life Sciences,Protein Express LabChip Kit,Part 760301)。
图1显示了表明来自各种菌株的可溶性部分的还原性SDS-CGE分析结果的代表性凝胶样图像。表10显示了构建的各CRM197表达菌株的3个重复的平均可溶性CRM197产率和标准差。也示出了宿主菌株和对各菌株进行筛选的分泌前导序列。
分泌前导序列和宿主菌株都显示出对CRM197表达的显著影响。在0.5mL规模下的表达从没有可检测到的产率到超过1.2g/L不等,在宿主菌株2的背景下观察到最高表达水平。在PS538-776中观察到的产率为1263mg/L,在PS538-772中为1241mg/L,两者都大大超过平均产率340mg/L。在相同宿主菌种中既观察到高产率又观察到低产率,这取决于所使用的前导序列,且在不同宿主菌株中使用相同前导序列既观察到高产率又观察到低产率。
选择PS538-772、PS538-773、PS538-776、PS538-778、PS538-782用于在大规模发酵中评价。
表10.CRM197表达菌株的平均CRM197产率
Figure BPA00001624092500641
实施例2:重组CRM197蛋白的大规模表达
在2升发酵罐中由荧光假单胞菌菌株PS538-772、PS538-776和PS538-782生产重组CRM197蛋白。如本文所述以及如Riesenberg,D.等人,1991所述,培养物在含有矿物盐培养基的2升发酵罐中生长,并通过加入氨维持在32℃和pH 6.5。通过增强搅拌和喷射空气和氧到发酵罐内的流动使溶解氧维持过量。在整个发酵过程中,将甘油递送到培养物中以维持过量水平。维持这些条件,直到达到用于诱导的目标培养细胞密度(575nm下的光密度(A575)),此时加入IPTG以启动CRM197的产生。诱导时的细胞密度可以在40-200吸光度单位(AU)的A575范围内变化。IPTG浓度可在0.02-0.4mM的范围内变化。pH为6-7.5,温度为20-35℃。16-24小时后,通过离心收集各个生物反应器的培养物,将细胞沉淀在-80℃下冷冻。通过SDS-CGE分析样品的产物形成。
对多种发酵条件进行评价,得出通过SDS-CGE确定的1-2g/L的最高CRM197表达(见图18和图19)。利用白喉毒素特异性抗体,通过Western印迹分析来确认被诱导的蛋白质的身份(图20)。
实施例3:重组白喉毒素B蛋白的高通量表达
白喉毒素B表达菌株的构建和生长
使用荧光假单胞菌优先的密码子构建白喉毒素B编码序列以编码白喉毒素B氨基酸序列。SEQ ID NO:22显示了由表达的合成的白喉毒素B基因编码的氨基酸序列,和SEQ ID NO:23显示了所表达的合成的优化白喉毒素B基因的DNA序列。
构建了携带已优化的白喉毒素B序列的质粒,该序列与用于CRM197的相同的10种荧光假单胞菌分泌前导序列编码序列(在表8中示出)融合。包含分泌前导序列,以使蛋白质靶向至周质,以便以正确折叠的和活性的形式回收。
表达与重组白喉毒素B蛋白融合的十种分泌前导序列的构建体在荧光假单胞菌宿主中进行测试。用各表达质粒测试表9中列出的四种宿主。用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。制备样品,并如上文对于CRM197高通量表达样品所述通过SDS-CGE进行分析。
图2显示了显示来自各菌株的可溶性部分的还原性SDS-CGE分析结果的代表性凝胶样图像。表11显示了构建的各霍乱毒素B表达菌株的3个重复的平均可溶性霍乱毒素B产率和标准差。
分泌前导序列和宿主菌株都显示出对霍乱毒素B表达的显著影响。在0.5mL规模下的表达从没有可检测到的产率到超过0.2g/L不等,在hslUV prc1 degP1 degP2 aprA缺失/DegP2 S219A过表达宿主背景下观察到最高表达水平。与前导序列6(CupA2)和8(PbpA20V)融合的霍乱毒素B的表达在全部四种菌株中似乎一致地为高水平。
表11.霍乱毒素B表达总结
Figure BPA00001624092500661
Figure BPA00001624092500671
Figure BPA00001624092500681
实施例4:重组霍乱毒素B蛋白的大规模表达
在荧光假单胞菌Pfēnex Expression TechnologyTM菌株PS538-088和PS538-091中生产重组霍乱毒素B蛋白。如本文所述,以及如Riesenberg,D.等人,1991所述,选择的菌株在包含矿物盐培养基的2升发酵罐中生长,并通过加入氨维持在32℃和pH 6.5。通过增加搅拌和喷射空气和氧到发酵罐内的流动使溶解氧维持在过量水平。在整个发酵过程中,将甘油递送到培养物中以维持过量水平。维持这些条件,直到达到用于诱导的目标培养细胞密度(575nm下的光密度(A575)),此时加入IPTG以启动靶蛋白的生产。加入IPTG以启动CTB的生产。16-24小时后,通过离心收集各生物反应器的培养物,并将细胞沉淀在-80℃下冷冻。
对多种发酵条件进行评价,得出通过SDS-CGE确定的0.6-1.0g/L的最高CTB表达。表现最佳的发酵培养物在约80-160OD时在pH6.5-7.2和32℃的条件下用0.2mM IPTG进行诱导。通过SDS-CGE确定可溶性CTB浓度(见图14和表12)。利用MALDI-TOF质谱分析通过肽质量指纹证实被诱导的蛋白质的身份。
表12.可溶性霍乱毒素B滴度
菌株 发酵物   产物 产物浓度(g/L)
  PS538-088   U5   CTB   0.94±0.03
  PS538-088   U6   CTB   0.59±0.01
  PS538-091   U3   CTB   0.81±0.09
实施例5:重组百日咳毒素蛋白的高通量表达
百日咳类毒素S1 E129A R9K表达菌株的构建和生长
具有S1突变E129A和R9K的、编码亚基S1、S2、S3、S4和S5的百日咳类毒素操纵子的序列用于重组百日咳毒素的表达。图3显示了该操纵子的图谱。图4显示了带有翻译结果的该操纵子的DNA序列(SEQ ID NO:24)。图5显示了S1、S2、S3、S4和S5的单个氨基酸序列。
构建体在表13中所示的8种荧光假单胞菌宿主中表达。用p538-081对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。制备样品,并如上文对于CRM197高通量表达样品所述通过SDS-CGE进行分析。
表13.百日咳毒素S1 E129A R9K表达菌株
Figure BPA00001624092500691
PD=蛋白酶缺失(所列出的蛋白酶缺失);FMO=折叠调节因子过表达子(所列出的折叠调节因子过表达)
表达的百日咳毒素的Western印迹分析
通过Western印迹法分析上述8种培养物的可溶性部分以评价百日咳类毒素的表达。20微升的可溶性部分(2X稀释,还原及非还原的)在Bio-Rad 12%Bis-Tris凝胶上在1X Bio Rad MES电泳缓冲液中电泳。对于还原性Western分析,加入1X XT还原剂。使用含有20%甲醇的1X NuPAGE转移缓冲液(Invitrogen,NP0006-1),在100V下经60分钟将蛋白质从SDS-PAGE转移到0.2μm硝酸纤维素膜上(Bio Rad,162 0232)。在室温下在PBS(Pierce,37528)中的BlockerTM1%酪蛋白中封闭膜1小时。为了检测,倒出稀释液,然后加入包含各1∶1000稀释的抗百日咳博德特菌毒素S4和S1单克隆抗体(Abcam,cat# ab37686和#37547)的组合的更多稀释液。将印迹在4℃振荡下孵育过夜。用PBS-Tween洗涤印迹3次,每次5分钟,然后在室温下在包含1∶5,000稀释的源自山羊的抗小鼠IgG-过氧化酶(Sigma,Cat#A4416)的更多稀释液中孵育1小时。用PBS-吐温(Sigma,P3563)洗涤印迹3次,每次5分钟,然后用免疫纯的金属强化的DAB底物(Pierce,34065)显色。在还原性和非还原性条件下,用抗S1和抗S4抗体检测多种亚基(图6)。所观察的表达类毒素的还原和非还原样品的带型与Sekura等人(J.Biological Chemistry 258:14647,1983)报道的对于从菌株165纯化的百日咳毒素所观察的带型一致。
实施例6:重组百日咳毒素蛋白的大规模表达
重组百日咳毒素蛋白在荧光假单胞菌Pfēnex ExpressionTechnologyTM菌株PS538-321、PS538-324、PS538-325、PS538-326和PS538-328中生产。如以上对于CTB大规模表达所述,选择的菌株在2升发酵罐中生长,用IPTG诱导,并制备样品用于分析。通过SDS-CGE分析样品的产物形成,并通过Western印迹分析其活性。
实施例7:重组野生型百日咳类毒素的高通量表达
百日咳类毒素表达菌株的构建和生长
编码亚基S1、S2、S3、S4和S5的野生型百日咳毒素操纵子的序列与S1一起用于重组百日咳类毒素的表达。图13显示了带有翻译结果的野生型操纵的DNA序列(SEQ ID NO:35)。
构建体在表14中所示的荧光假单胞菌宿主中表达。检测所列出的不具有过表达质粒的各种菌株:a)如前所述(不具有过表达质粒);b)包含GrpE DnaKJ过表达质粒;以及c)包含DsbABCD过表达质粒。用PTX WT表达质粒对宿主细胞进行电穿孔,并如上文对于PTXS1 R9K E129A高通量表达所述以96孔格式生长和诱导。同样如上所述制备样品并通过SDS-CGE对其进行分析。
表14.百日咳类毒素野生型表达菌株
Figure BPA00001624092500711
Figure BPA00001624092500721
Figure BPA00001624092500731
*检测所列出的不具有过表达质粒的各菌株:a)如前所述(不具有过表达质粒);b)包含GrpE DnaKJ过表达质粒;以及c)包含DsbABCD过表达质粒。PD=蛋白酶缺失(所列出的蛋白缺失);FMO=折叠调节因子过表达子(所列出的折叠调节因子过表达)。
分泌过多的菌株,又称为过囊泡化菌株,例如在WO2010/008764,“Pseudomonas Fluorescens Strains for Production of ExtracellularRecombinant Protein”中描述,其通过引用整体并入本文。
实施例8:重组破伤风毒素C片段蛋白的高通量表达
破伤风毒素C表达菌株的构建和生长
用荧光假单胞菌优先的密码子构建破伤风毒素C编码序列以编码破伤风毒素C氨基酸序列。SEQ ID NO:30显示了由表达的合成破伤风毒素C基因编码的氨基酸序列,和SEQ ID NO:31显示了表达的合成优化破伤风毒素C基因的DNA序列。
构建携带已优化的破伤风毒素C序列的质粒,该序列与用于CRM197相同的10种荧光假单胞菌分泌前导序列编码序列(表8所示)融合。包含分泌前导序列,以将蛋白质靶向至周质,以便以正确折叠的和活性的形式回收。
在荧光假单胞菌宿主中测试表达与重组破伤风毒素C蛋白融合的这10种分泌前导序列的构建体。用各前导区测试表9中列出的四种宿主。用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。如上文对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。
图7显示了表明来自各菌株的可溶性部分的还原性SDS-CGE分析结果的代表性凝胶样图像。表15显示了构建的各种破伤风毒素C表达菌株的3个重复的平均可溶性破伤风毒素C产率和标准差。破伤风毒素C片段似乎在所测试的大多数菌株中都很好地表达,在hslUVprc1 degP1 degP2 aprA缺失/DegP2 S219A过表达宿主中有高达600mg/L的最高产率。选择菌株PS538-529、PS538-538、PS538-544、PS538-546、PS538-547、PS538-548、PS538-558、PS538-565和PS538-568用于进一步评价。
表15.破伤风毒素C表达总结
Figure BPA00001624092500751
Figure BPA00001624092500761
实施例9:重组破伤风毒素C片段蛋白的大规模表达
重组破伤风毒素C蛋白在荧光假单胞菌Pfēnex ExpressionTechnologyTM菌株PS538-529、PS538-538、PS538-544、PS538-546、PS538-547、PS538-548、PS538-558、PS538-565和PS538-568中生产。如以上对于CRM197所述,选择的菌株在包含矿物盐培养基的2升发酵罐中生长。
对多种发酵条件进行评价,获得通过SDS-CGE确定的来自菌株PS538-529、PS538-546和PS538-547的6-10g/L的最高可溶性TTC表达(见图11A和表16)。表现最佳的发酵培养物在约160OD时在pH 7.2和32℃下用0.2mM IPTG诱导。利用MALDI-TOF质谱法和Western印迹分析,通过肽质量指纹来确认被诱导的蛋白质的身份。质谱和Western印迹分析表明,在这些表达条件下,PS538-529、PS538-546和PS538-547的分泌前导序列(分别为DsbA、Pbp A20V和DsbC)并非由100%的表达的蛋白质加工。然而,TolB前导序列被确定为由分泌的蛋白质精确切割(数据未显示)。利用以上概述的条件,以2L发酵规模筛选TolB-TTC表达菌株PS538-538、PS538-548、PS538-558和PS538-568,以鉴定能够以分泌前导序列的高保真切割和低水平降解产生TTC的菌株。通过Western印迹分析观察到菌株PS538-538、PS538-548和PS538-558产生相似质量和产率的材料(图11B)。
表16.可溶性破伤风毒素C(TTC)滴度
  菌株   发酵物   产物   产物浓度(g/L)
  PS538-529   U1-图11A   TTC   5.7±1.3
  PS538-546   U7-图11A   TTC   9.5±1.1
  PS538-547   U5-图11A   TTC   6.2±1.9
  PS538-538   U1-图11B   TTC   2.5±0.09
  PS538-538   U2-图11B   TTC   1.8±0.2
  PS538-548   U3-图11B   TTC   5.3±0.6
  PS538-548   U4-图11B   TTC   4.5±0.2
  PS538-558   U5-图11B   TTC   1.1±0.8
  PS538-558   U6-图11B   TTC   1.9±0.1
  PS538-568   U7-图11B   TTC   0.2±0.01
  PS538-568   U8-图11B   TTC   0.2±0.01
实施例10:重组艰难梭菌B蛋白的高通量表达
TcdB表达菌株的构建和生长
用荧光假单胞菌优先的密码子构建TcdB编码序列以编码TcdB氨基酸序列。SEQ ID NO:32显示了由表达的合成TcdB基因编码的氨基酸序列,和SEQ ID NO:33显示了表达的合成优化TcdB基因的DNA序列。
携带已优化的TcdB序列的质粒在具有表17中所列出的基因型的荧光假单胞菌宿主中进行测试。用细胞质表达质粒p538-211对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。如以上对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。
表17.TcdB宿主菌株
Figure BPA00001624092500781
Figure BPA00001624092500791
图8显示了显示来自24种测试的菌株中每一种的可溶性部分的还原性SDS-CGE分析结果的代表性凝胶样图像。表18显示了构建的各TcdB表达菌株的3个重复的平均可溶性TcdB产率和标准差。选择菌种PS538-654、PS538-659、PS538-669、PS538-671和PS538-674用于进一步评价。
表18.TcdB表达总结
Figure BPA00001624092500792
Figure BPA00001624092500801
实施例11:重组艰难梭菌毒素B蛋白的大规模表达
重组艰难梭菌毒素B蛋白在荧光假单胞菌Pfēnex ExpressionTechnologyTM菌株PS538-654、PS538-659、PS538-669、PS538-671和PS538-674中生产。如以上对于CTB大规模表达所述,选择的菌株在2升发酵罐中生长,用IPTG进行诱导,并制备样品以供分析。
对多种发酵条件进行评价,得到通过SDS-CGE确定的接近2g/L的最高艰难梭菌B毒素表达。表现最佳的发酵培养物在约160OD时在pH 6.5和32℃下用0.08mM IPTG进行诱导。通过SDS-CGE确定可溶性艰难梭菌B毒素的浓度(见图12和表19)。通过Western印迹法确认诱导的蛋白的身份。
表19.可溶性艰难梭菌B毒素(TcdB)滴度
  菌株 发酵物 产物 产物浓度(g/L)
  PS538-671   U5   TcdB   1.6±0.4
  PS538-671   U6   TcdB   2.1±0.2
  PS538-674   U7   TcdB   1.8±0.2
实施例12:重组外毒素A蛋白的高通量表达
铜绿假单胞菌外毒素A表达菌株的构建和生长
用铜绿假单胞菌优先的密码子构建铜绿假单胞菌外毒素A突变rEPA编码序列以编码rEPA氨基酸序列。图13显示了表达的合成rEPA基因的氨基酸序列和DNA序列。
构建编码如图13所示的携带任一缺失突变rEPA的优化序列的质粒,该序列与用于CRM197的相同的10种荧光假单胞菌分泌前导序列编码序列(表8所示)融合。包含分泌前导序列编码序列,以将蛋白质靶向至周质,以便以正确折叠的和活性的形式回收。
在表20中所列出的8种荧光假单胞菌宿主中测试表达与rEPA蛋白融合的10种分泌前导序列的构建体。用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。如上文对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。最高产率范围为4.7-6.7g/L可溶性rEPA。
表20.外毒素A宿主菌株
Figure BPA00001624092500811
用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。如上文对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。最高产率范围为1.6-2.2g/L可溶性外毒素A蛋白。表21显示了为进一步测试而选择的各种表达菌株的可溶性rEPA产率。
表21.rEPA HTP表达总结
菌株编号 宿主   质粒 分泌前导序列 容积产率(g/L)
  PS538-1670   3   p538-250   DsbC   6.7
  PS538-1663   3   p538-243   Ibp-s31a   5.7
  PS538-1633   1   p538-243   Ibp-s31a   5.7
  PS538-1640   1   p538-249   Pbp-A20V   4.7
  PS538-1662   3   p538-242   Azu   4.2
  PS538-1632   1   p538-242   Azu   3.2
  PS538-1671   4   p538-241   DsbA   2.9
  PS538-1665   3   p538-245   Tpr   2.7
  PS538-1667   3   p538-247   CupA2   2.6
  PS538-1674   4   p538-244   TolB   2.3
  PS538-1672   4   p538-242   Azu   2.2
  PS538-1676   4   p538-246   CupB2   2.2
  PS538-1677   4   p538-247   CupA2   2.1
  PS538-1635   1   p538-245   Tpr   2.0
  PS538-1675   4   p538-245   Tpr   2.0
  PS538-1673   4   p538-243   Ibp-s31a   2.0
  PS538-1680   4   p538-250   DsbC   1.9
  PS538-1679   4   p538-249   Pbp-A20V   1.7
  PS538-1669   3   p538-249   Pbp-A20V   1.6
  PS538-1678   4   p538-248   NikA   1.5
  PS538-1652   2   p538-242   Azu   1.5
  PS538-1653   2   p538-243   Ibp-s31a   1.4
  PS538-1660   2   p538-250   DsbC   1.4
  PS538-1637   1   p538-247   CupA2   1.3
  PS538-1666   3   p538-246   CupB2   1.1
  PS538-1636   1   p538-246   CupB2   1.0
  PS538-1634   1   p538-244   TolB   1.0
  PS538-1627   8   p538-247   CupA2   0.8
  PS538-1631   1   p538-241   DsbA   0.8
  PS538-1622   8   p538-242   Azu   0.8
  PS538-1661   3   p538-241   DsbA   0.7
  PS538-1603   5   p538-243   Ibp-s31a   0.6
  PS538-1630   8   p538-250   DsbC   0.6
  PS538-1602   5   p538-242   Azu   0.6
  PS538-1605   5   p538-245   Tpr   0.6
  PS538-1623   8   p538-243   Ibp-s31a   0.6
  PS538-1664   3   p538-244   TolB   0.5
  PS538-1668   3   p538-248   NikA   0.5
  PS538-1610   5   p538-250   DsbC   0.5
  PS538-1606   5   p538-246   CupB2   0.4
  PS538-1659   2   p538-249   Pbp-A20V   0.4
  PS538-1607   5   p538-247   CupA2   0.4
  PS538-1626   8   p538-246   CupB2   0.4
  PS538-1625   8   p538-245   Tpr   0.4
  PS538-1638   1   p538-248   NikA   0.3
  PS538-1609   5   p538-249   Pbp-A20V   0.3
  PS538-1604   5   p538-244   TolB   0.3
  PS538-1629   8   p538-249   Pbp-A20V   0.3
  PS538-1657   2   p538-247   CupA2   0.2
  PS538-1651   2   p538-241   DsbA   0.2
  PS538-1601   5   p538-241   DsbA   0.2
  PS538-1624   8   p538-244   TolB   0.2
  PS538-1621   5   p538-241   DsbA   0.2
  PS538-1608   5   p538-248   NikA   0.2
  PS538-1654   2   p538-244   TolB   0.2
  PS538-1628   8   p538-248   NikA   0.1
  PS538-1658   2   p538-248   NikA   0.1
  PS538-1655   2   p538-245   Tpr   0.1
  PS538-1641   7   p538-241   DsbA   0.1
  PS538-1611   6   p538-241   DsbA   NQ
  PS538-1612   6   p538-242   Azu   NQ
  PS538-1613   6   p538-243   Ibp-s31a   NQ
  PS538-1614   6   p538-244   TolB   NQ
  PS538-1615   6   p538-245   Tpr   NQ
  PS538-1616   6   p538-246   CupB2   NQ
  PS538-1617   6   p538-247   CupA2   NQ
  PS538-1618   6   p538-248   NikA   NQ
  PS538-1619   6   p538-249   Pbp-A20V   NQ
  PS538-1620   6   p538-250   DsbC   NQ
  PS538-1642   7   p538-242   Azu   NQ
  PS538-1643   7   p538-243   Ibp-s31a   NQ
  PS538-1644   7   p538-244   TolB   NQ
  PS538-1645   7   p538-245   Tpr   NQ
  PS538-1646   7   p538-246   CupB2   NQ
  PS538-1647   7   p538-247   CupA2   NQ
  PS538-1648   7   p538-248   NikA   NQ
  PS538-1649   7   p538-249   Pbp-A20V   NQ
  PS538-1650   7   p538-250   DsbC   NQ
  PS538-1656   2   p538-246   CupB2   NQ
NQ=不可量化
实施例13:重组铜绿假单胞菌外毒素A蛋白的大规模表达
重组铜绿假单胞菌外毒素A蛋白(rEPA)在2升发酵罐中在荧光假单胞菌菌株PS538-1633、PS538-1640和PS538-1670生产。如本文所述以及在例如Riesenberg,D.等人,1991中所述,培养物在包含矿物盐培养基的2升发酵罐中生长,并通过加入氨使其维持在32℃和pH 6.5。通过增加搅拌和喷射空气和氧向发酵罐内的流动使溶解氧维持在过量水平。在整个发酵过程中,将甘油递送到培养物中以维持过量水平。维持这些条件,直到达到用于诱导的目标培养细胞密度(575nm下的光密度(A575)),此时加入IPTG以启动rEPA的生产。诱导时的细胞密度可从40到200吸光度单位(AU)的A575下变化。IPTG浓度可在0.02-0.4mM的范围内变化。pH为6-7.5,和温度为20-35℃。16-24小时后,通过离心收集各生物反应器的培养物,并将细胞沉淀物在-80℃下冷冻。通过SDS-CGE分析样品的产物形成。
对多种发酵条件进行评价,得到通过SDS-CGE确定的高达32g/L的最佳rEPA表达(图15和图16)。利用铜绿假单胞菌外毒素A特异性抗体通过Western印迹分析确认诱导的蛋白质的身份(图17)。表22显示了所获得的产率。
表22.rEPA发酵分析
菌株编号   发酵物   产率(g/L)
  PS538-1633   U1   15.5+/-0.7
  PS538-1633   U2   11.1+/-0.6
  PS538-1640   U3   20.1+/-1.7
  PS538-1640   U5   31.9+/-1.6
  PS538-1670   U6   20.0+/-0.7
  PS538-1670   U7   14.6+/-1.1
  PS538-1670   U8   31.0+/-1.7
实施例14.重组野生型白喉毒素蛋白的高通量表达
野生型白喉毒素表达菌株的构建和生长
利用荧光假单胞菌优先的密码子构建白喉毒素编码序列以编码野生型白喉毒素氨基酸序列。SEQ ID NO:36显示了表达的合成白喉毒素基因的氨基酸序列,和SEQ ID NO:37显示了表达的合成优化白喉毒素基因的DNA序列。
构建携带编码白喉毒素的优化序列的质粒,该序列与用于CRM197的10种荧光假单胞菌分泌前导序列编码序列(表8所示)融合。包含分泌前导序列编码序列,以将蛋白质靶向至周质,以便以正确折叠的和活性的形式回收。
在荧光假单胞菌宿主中测试表达与重组白喉毒素蛋白融合的10种分泌前导序列的构建体。用各前导序列测试表9中所列出的4种宿主。用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述以96孔格式生长和诱导。如上文对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。
实施例15:重组野生型白喉毒素蛋白的大规模表达
重组野生型白喉毒素蛋白在选择的荧光假单胞菌PfēnexExpression TechnologyTM菌株中生产。如以上对于CRM197大规模表达所述,选择的菌株在2升发酵罐中生长,用IPTG诱导,并制备样品以供分析。通过SDS-CGE分析样品。
实施例16:重组霍乱全毒素蛋白的高通量表达
CTX表达菌株的构建和生长
利用荧光假单胞菌优先的密码子构建CTX编码序列以编码CTX氨基酸序列。编码序列基于图14中所示的CTX基因的氨基酸序列和DNA序列。
构建携带已优化的CTX序列的质粒,该CTX序列与用于CRM197的10种荧光假单胞菌分泌前导序列编码序列(在表8中示出)融合。包含分泌前导序列以将蛋白质靶向至周质,以便以正确折叠的和活性的形式回收。
在荧光假单胞菌宿主中测试表达与重组CTX蛋白融合的10种分泌前导序列的构建体。用各表达质粒测试表9中所列出的4种宿主。用所示质粒对宿主细胞进行电穿孔,并如上文对于CRM197高通量表达所述使宿主细胞以96孔格式生长和诱导。如上文对于CRM197高通量表达样品所述制备样品并通过SDS-CGE对其进行分析。
实施例17:重组霍乱全毒素蛋白的大规模表达
重组霍乱全毒素蛋白在选择的荧光假单胞菌Pfēnex ExpressionTechnologyTM菌株中生产。如以上对于CRM197大规模表达所述,选择的菌株在2升发酵罐中生长,用IPTG诱导,并制备样品以供分析。通过SDS-CGE分析样品。
表23.序列表
Figure BPA00001624092500881
Figure IPA00001624091900011
Figure IPA00001624091900021
Figure IPA00001624091900031
Figure IPA00001624091900051
Figure IPA00001624091900061
Figure IPA00001624091900071
Figure IPA00001624091900081
Figure IPA00001624091900091
Figure IPA00001624091900101
Figure IPA00001624091900111
Figure IPA00001624091900121
Figure IPA00001624091900131
Figure IPA00001624091900161
Figure IPA00001624091900171
Figure IPA00001624091900181
Figure IPA00001624091900191
Figure IPA00001624091900201
Figure IPA00001624091900221
Figure IPA00001624091900231
Figure IPA00001624091900241
Figure IPA00001624091900261
Figure IPA00001624091900271
Figure IPA00001624091900281
Figure IPA00001624091900291
Figure IPA00001624091900301
Figure IPA00001624091900311
Figure IPA00001624091900321
Figure IPA00001624091900331
Figure IPA00001624091900341
Figure IPA00001624091900351
Figure IPA00001624091900361
Figure IPA00001624091900381
Figure IPA00001624091900391
Figure IPA00001624091900401
Figure IPA00001624091900411
Figure IPA00001624091900421
Figure IPA00001624091900431
Figure IPA00001624091900441
Figure IPA00001624091900451
Figure IPA00001624091900471
Figure IPA00001624091900481
Figure IPA00001624091900491
Figure IPA00001624091900501
Figure IPA00001624091900511
Figure IPA00001624091900521
Figure IPA00001624091900531

Claims (36)

1.一种在假单胞菌宿主细胞中生产重组毒素蛋白的方法,所述方法包括:
将编码毒素蛋白的核苷酸序列连接到表达载体中;
用该表达载体转化假单胞菌宿主细胞;以及
在适合重组毒素蛋白表达的培养基中培养已转化的假单胞菌宿主细胞;
其中所述重组毒素蛋白选自CRM197、白喉毒素、霍乱全毒素、霍乱毒素B、百日咳毒素、破伤风毒素C片段、艰难梭菌毒素B和铜绿假单胞菌外毒素A,或者
其中所述重组毒素蛋白选自霍乱毒素B、霍乱全毒素、百日咳毒素、破伤风毒素C片段、艰难梭菌毒素B和铜绿假单胞菌外毒素A,或者
其中所述重组毒素蛋白选自霍乱毒素B、霍乱全毒素、百日咳毒素、破伤风毒素C片段和艰难梭菌毒素B。
2.权利要求1的方法,其中所述重组蛋白以0.2克/升至约12克/升的可溶性和/或活性毒素蛋白的产率生产。
3.权利要求2的方法,其中可溶性和/或活性毒素蛋白的产率为约0.2克/升至约12克/升,为约0.2g/L、约0.3g/L、约0.4g/L、约0.5g/L、约0.6g/L、约0.7g/L、约0.8g/L、约0.9g/L、约1g/L、约1.5g/L、约2g/L、约2.5g/L、约3g/L、约3.5g/L、约4g/L、约4.5g/L、约5g/L、约5.5g/L、约6g/L、约6.5g/L、约7g/L、约7.5g/L、约8g/L、约8.5g/L、约9g/L、约9.5g/L、约10g/L、约10.5g/L、约11g/L、约12g/L、约0.2g/L至约0.5g/L、约0.2g/L至约1g/L、约0.2至约2g/L、约0.3g/L至约0.6g/L、约0.3g/L至约1g/L、约0.3至约2g/L、约0.4至约0.7g/L、约0.4至约1g/L约0.4至约2g/L、约0.4至约3g/L、约0.5g/L至约1g/L、约0.5g/L至约2g/L、约0.5g/L至约3g/L、约0.5g/L至约4g/L、约0.5g/L至约5g/L、约0.5g/L至约6g/L、约0.5g/L至约7g/L、约0.5g/L至约8g/L、约0.5g/L至约9g/L、约0.5g/L至约10g/L、约0.5g/L至约11g/L、约0.5g/L至约12g/L、约1g/L至约2g/L、约1g/L至约3g/L、约1g/L至约4g/L、约1g/L至约5g/L、约1g/L至约6g/L、约1g/L至约7g/L、约1g/L至约8g/L、约1g/L至约9g/L、约1g/L至约10g/L、约1g/L至约11g/L、约1g/L至约12g/L、约2g/L至约3g/L、约2g/L至约4g/L、约2g/L至约5g/L、约2g/L至约6g/L、约2g/L至约7g/L、约2g/L至约8g/L、约2g/L至约9g/L、约2g/L至约10g/L、约2g/L至约11g/L、约2g/L至约12g/L、约3g/L至约4g/L、约3g/L至约5g/L、约3g/L至约6g/L、约3g/L至约7g/L、约3g/L至约8g/L、约3g/L至约9g/L、约3g/L至约10g/L、约3g/L至约11g/L、约3g/L至约12g/L、约4g/L至约5g/L、约4g/L至约6g/L、约4g/L至约7g/L、约4g/L至约8g/L、约4g/L至约9g/L、约4g/L至约10g/L、约4g/L至约11g/L、约4g/L至约12g/L、约5g/L至约6g/L、约5g/L至约7g/L、约5g/L至约8g/L、约5g/L至约9g/L、约5g/L至约10g/L、约5g/L至约11g/L、约5g/L至约12g/L、约6g/L至约7g/L、约6g/L至约8g/L、约6g/L至约9g/L、约6g/L至约10g/L、约6g/L至约11g/L、约6g/L至约12g/L、约7g/L至约8g/L、约7g/L至约9g/L、约7g/L至约10g/L、约7g/L至约11g/L、约7g/L至约12g/L、约8g/L至约9g/L、约8g/L至约10g/L、约8g/L至约11g/L、约8g/L至约12g/L、约9g/L至约10g/L、约9g/L至约11g/L、约9g/L至约12g/L、约10g/L至约11g/L、约10g/L至约12g/L或约11g/L至约12g/L。
4.权利要求1-3中任一项的方法,其中所述编码毒素蛋白的核苷酸序列与分泌信号编码序列融合,当所述分泌信号编码序列表达时,指引所述毒素蛋白向周质转移。
5.权利要求1-4中任一项的方法,其中所述宿主细胞在至少一种蛋白酶的表达上有缺陷,或者其中所述宿主细胞过表达至少一种折叠调节因子,或者两者的组合。
6.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为CRM197,并且所述宿主细胞在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上有缺陷。
7.权利要求1-6中任一项的方法,其中所述重组毒素蛋白与分泌前导序列融合,所述分泌前导序列为Azu、IbpS31A、CupA2、PbpA20V或Pbp。
8.权利要求1-6中任一项的方法,其中所述重组毒素蛋白为CRM197,而且所述宿主细胞在沙雷氏菌溶素、HslU、HslV、Prc1、DegP1、DegP2、AprA或它们的任何组合的表达上有缺陷,或者其中所述宿主细胞过表达DsbA、DsbB、DsbC和DsbD,并且进一步地其中所述重组毒素蛋白与Azu、Pbp或天然分泌前导序列融合。
9.权利要求1-8中任一项的方法,其中所述宿主细胞过表达DsbA、DsbB、DsbC和DsbD,并且其中所述重组毒素蛋白与分泌前导序列Azu融合。
10.权利要求1-8中任一项的方法,其中所述宿主细胞在沙雷氏菌溶素的表达上有缺陷,并且其中所述重组毒素蛋白与分泌前导序列Pbp或Azu融合。
11.权利要求1-8中任一项的方法,其中所述宿主细胞在HslU和HslV的表达上有缺陷,并且其中所述重组毒素蛋白与分泌前导序列Pbp或Azu融合。
12.权利要求1-4中任一项的方法,其中所述重组毒素蛋白为CRM197,所述宿主细胞为野生型,并且其中所述重组毒素蛋白与分泌前导序列Pbp或Azu融合。
13.权利要求1-8中任一项的方法,其中所述重组毒素蛋白为CRM197,并且其中所述重组毒素蛋白与分泌前导序列Azu、Pbp、IbpS31A、CupA2或PbpA20V融合。
14.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为霍乱毒素B,并且所述宿主细胞:在Lon、La和AprA的表达上有缺陷,或者;在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上有缺陷,并且过表达DegP2S219A。
15.权利要求1-5中任一项或14的方法,其中所述宿主细胞:在Lon、La和AprA的表达上有缺陷,并且其中所述重组毒素蛋白与分泌前导序列Pbp A20V融合,或者;在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上有缺陷,过表达DegP2 S219A,并且其中所述重组毒素蛋白与分泌前导序列DsbA融合。
16.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为百日咳毒素S1 E129A R9K,并且所述宿主细胞:在Lon、La和AprA的表达上有缺陷;过表达GrpE、DnaK和DnaJ;在HtpX的表达上有缺陷;在RXF01590的表达上有缺陷;或者在ppiB(RXF05345)的表达上有缺陷。
17.权利要求1-5中任一项或16的方法,其中所述重组毒素蛋白与它的天然分泌前导序列融合。
18.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为破伤风毒素C,并且所述宿主细胞在Lon、La和AprA的表达上有缺陷,或者所述宿主细胞在HslU、HslV、Prc1、DegP1、DegP2和AprA的表达上有缺陷,或者所述宿主细胞过表达dsbABCD,或者所述宿主细胞过表达GrpE、DnaK和DnaJ。
19.权利要求1-5中任一项或18的方法,其中所述重组毒素蛋白与分泌前导序列TolB、DsbA、DsbC、Pbp A20V、NikA或CupA2融合。
20.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为破伤风毒素C,并且所述宿主细胞在Lon、La和AprA的表达上有缺陷。
21.权利要求1-5中任一项、18或20的方法,其中所述重组毒素蛋白与分泌前导序列DsbA融合。
22.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为破伤风毒素C,并且所述宿主细胞在GrpE、DnaK和DnaJ的表达上有缺陷。
23.权利要求1-5中任一项、18、20或22的方法,其中所述重组毒素蛋白与分泌前导序列NikA融合。
24.权利要求1-5中任一项的方法,其中所述重组毒素蛋白为艰难梭菌毒素B,并且所述宿主细胞:在HtpX的表达上有缺陷;在DegP1的表达上有缺陷;在HslU、HslV、Prc1和Prc2的表达上有缺陷;在Lon、la和DegP2的表达上有缺陷,或者;所述宿主细胞在Lon、Prc1、DegP2、AprA的表达上有缺陷并且过表达DegP2 S219A。
25.上述权利要求中任一项的方法,进一步包括在活性测定中测定所述重组毒素蛋白的活性,其中所生产的可溶性毒素蛋白中约40%至约100%经确定具有活性。
26.权利要求25的方法,其中所述活性测定为免疫学测定、受体结合测定或酶测定。
27.上述权利要求中任一项的方法,其中所述表达载体包含可操作地连接到蛋白质编码序列上的lac衍生启动子,而且其中所述培养包括用浓度为约0.02至约1.0mM的IPTG诱导该启动子,诱导时的细胞密度为约40-约200吸光度单位(AU)的光密度,培养物的pH为约6至约7.5,而且生长温度为约20℃至35℃。
28.上述权利要求中任一项的方法,其中所述宿主细胞是假单胞菌细胞。
29.上述权利要求中任一项的方法,其中所述宿主细胞是荧光假单胞菌。
30.上述权利要求中任一项的方法,其中所述核苷酸序列已为了在假单胞菌宿主细胞中表达而进行了优化。
31.权利要求28的方法,其中所述核苷酸序列已为了在假单胞菌属宿主细胞中表达而进行了优化。
32.权利要求29的方法,其中所述核苷酸序列已为了在荧光假单胞菌宿主细胞中表达而进行了优化。
33.权利要求1-4或25-32中任一项的方法,其中所述重组毒素蛋白为百日咳毒素,并且其中所述百日咳毒素为野生型或S1 E129A R9K。
34.权利要求1-4或25-32中任一项的方法,其中所述重组毒素蛋白为铜绿假单胞菌外毒素A,而且其中所述铜绿假单胞菌外毒素A为野生型、CRM66或rEPA。
35.权利要求4-34中任一项的方法,其中所述表达载体进一步包含邻近所述分泌信号的编码序列的标签序列。
36.上述权利要求中任一项的方法,其中所述表达载体进一步包含邻近所述毒素蛋白的编码序列的标签序列。
CN201180018149.7A 2010-03-30 2011-03-28 重组毒素蛋白的高水平表达 Active CN102869778B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US31915210P 2010-03-30 2010-03-30
US61/319,152 2010-03-30
USPCT/US2010/030573 2010-04-09
PCT/US2010/030573 WO2011123139A1 (en) 2010-03-30 2010-04-09 High level expression of recombinant crm197
US32523510P 2010-04-16 2010-04-16
US61/325,235 2010-04-16
PCT/US2011/030227 WO2011126811A2 (en) 2010-03-30 2011-03-28 High level expression of recombinant toxin proteins

Publications (2)

Publication Number Publication Date
CN102869778A true CN102869778A (zh) 2013-01-09
CN102869778B CN102869778B (zh) 2015-05-20

Family

ID=44763483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180018149.7A Active CN102869778B (zh) 2010-03-30 2011-03-28 重组毒素蛋白的高水平表达

Country Status (11)

Country Link
US (3) US8530171B2 (zh)
EP (1) EP2553102B1 (zh)
JP (1) JP5839411B2 (zh)
KR (1) KR20130072201A (zh)
CN (1) CN102869778B (zh)
AU (1) AU2011238711B2 (zh)
BR (1) BR112012024898A2 (zh)
CA (1) CA2793978C (zh)
MX (1) MX343356B (zh)
NZ (1) NZ602958A (zh)
WO (1) WO2011126811A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278852A (zh) * 2017-10-27 2020-06-12 菲尼克斯公司 重组欧氏杆菌天冬酰胺酶的生产方法
CN113201473A (zh) * 2021-04-22 2021-08-03 广东省科学院微生物研究所(广东省微生物分析检测中心) 香茅醇在制备促进铜绿假单胞菌毒力基因toxA表达的制剂中的应用

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527797B1 (en) 2000-09-01 2009-05-05 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vibrio cholerae 0139 conjugate vaccines
CA2793978C (en) 2010-03-30 2021-08-03 Pfenex Inc. High level expression of recombinant toxin proteins
PE20141029A1 (es) 2011-04-22 2014-09-04 Wyeth Llc Composiciones relacionadas con una toxina de clostridium difficile mutante y sus metodos
ES2704069T3 (es) 2011-12-08 2019-03-14 Glaxosmithkline Biologicals Sa Vacuna basada en toxinas de Clostridium difficile
US9169304B2 (en) 2012-05-01 2015-10-27 Pfenex Inc. Process for purifying recombinant Plasmodium falciparum circumsporozoite protein
EP2869838B1 (en) * 2012-07-05 2020-09-02 Children's Medical Center Corporation The bacterial biofilm matrix as a platform for protein delivery
BR122016023101B1 (pt) * 2012-10-21 2022-03-22 Pfizer Inc Polipeptídeo, composição imunogênica que o compreende, bem como célula recombinante derivada de clostridium difficile
CN104140972B (zh) * 2013-05-07 2018-01-23 上海惠盾生物技术有限公司 白喉毒素突变体crm197的制备方法
US9321834B2 (en) 2013-12-05 2016-04-26 Leidos, Inc. Anti-malarial compositions
US10093704B2 (en) * 2014-01-31 2018-10-09 Fina Biosolutions, Llc Expression and purification of CRM197 and related proteins
US11060123B2 (en) 2014-01-31 2021-07-13 Fina Biosolutions, Llc Production of soluble recombinant protein without n-terminal methionine
US10597664B2 (en) * 2014-01-31 2020-03-24 Fina Biosolutions, Llc Expression and purification of CRM proteins and related proteins, and protein domains
EA035117B1 (ru) 2014-11-20 2020-04-29 Байолоджикал И Лимитед Кодон-оптимизированный полинуклеотид для экспрессии crmна высоком уровне
WO2017176588A1 (en) * 2016-04-06 2017-10-12 Plant Health Care, Inc. Beneficial microbes for delivery of effector peptides or proteins and use thereof
US11071779B2 (en) 2016-06-17 2021-07-27 Children's Medical Center Corporation Biofilm matrix-boosted vaccine
RU2636346C1 (ru) * 2016-07-01 2017-11-22 Федеральное бюджетное учреждение науки Государственный научный центр прикладной микробиологии и биотехнологии (ФБУН ГНЦ ПМБ) Способ получения рекомбинантного экзопротеина А Pseudomonas aeruginosa
KR101908590B1 (ko) 2017-02-01 2018-10-16 (주)포바이오코리아 Crm197의 용해성 단백질 발현 및 정제 방법
EP3444269A1 (en) 2017-08-17 2019-02-20 National Research Council of Canada Systems and methods for the production of diphtheria toxin polypeptides
AU2018354069A1 (en) * 2017-10-27 2020-06-11 Pelican Technology Holdings, Inc. Bacterial leader sequences for periplasmic protein expression
JP7358347B2 (ja) * 2017-10-27 2023-10-10 フェネックス インク. 組み換えE.coliアスパラギナーゼの製造のための方法
EP3724212A4 (en) * 2018-01-19 2021-11-24 OBI Pharma, Inc. CRM197 PROTEIN EXPRESSION
US10829731B2 (en) * 2018-01-25 2020-11-10 Alliance For Sustainable Energy, Llc Biocatalysts for conversion of thermochemical waste streams
KR102475419B1 (ko) * 2018-07-16 2022-12-07 주식회사 유바이오로직스 Crm197을 고농도로 발현하는 코리네박테리움 균주
WO2020123824A1 (en) 2018-12-13 2020-06-18 Huya Bioscience International, Llc Sulcardine administration for treatment of acute atrial fibrillation
MX2022004434A (es) * 2019-10-14 2022-05-02 Syngenta Crop Protection Ag Proteinas insecticidas.
BE1029145B1 (fr) * 2021-02-26 2022-09-27 Curavac Europe Methode de production d'une forme periplasmique de la proteine crm197
WO2022211829A1 (en) 2021-03-30 2022-10-06 Jazz Pharmaceuticals Ireland Ltd. Dosing of recombinant l-asparaginase

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830962A (en) * 1984-02-09 1989-05-16 Cetus Corporation Recombinant diphtheria toxin fragments
CN101031655A (zh) * 2004-07-26 2007-09-05 陶氏环球技术公司 通过株工程改进蛋白表达的方法
CN101107361A (zh) * 2005-01-21 2008-01-16 比奥泰康医疗有限责任公司 二硫桥连双链形式的蛋白质的重组表达
US20080269070A1 (en) * 2007-04-27 2008-10-30 Dow Global Technologies, Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins
CN101641441A (zh) * 2007-01-31 2010-02-03 陶氏环球技术公司 用于提高表达的细菌前导序列

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551433A (en) 1981-05-18 1985-11-05 Genentech, Inc. Microbial hybrid promoters
CH660375A5 (it) 1983-02-08 1987-04-15 Sclavo Spa Procedimento per la produzione di proteine correlate alla tossina difterica.
US4755465A (en) 1983-04-25 1988-07-05 Genentech, Inc. Secretion of correctly processed human growth hormone in E. coli and Pseudomonas
US5281532A (en) 1983-07-27 1994-01-25 Mycogen Corporation Pseudomas hosts transformed with bacillus endotoxin genes
US4695462A (en) 1985-06-28 1987-09-22 Mycogen Corporation Cellular encapsulation of biological pesticides
US4695455A (en) 1985-01-22 1987-09-22 Mycogen Corporation Cellular encapsulation of pesticides produced by expression of heterologous genes
US4709017A (en) 1985-06-07 1987-11-24 President And Fellows Of Harvard College Modified toxic vaccines
GB8517071D0 (en) 1985-07-05 1985-08-14 Hoffmann La Roche Gram-positive expression control sequence
CA1340373C (en) * 1986-01-28 1999-02-02 Rino Rappuoli Cloning and sequencing of the dna fragment which codes for the five subunits of the pertussis toxin, a hybrid plasmid containing the dna fragment and micro-organisms transformed by the hybrid plasmid and capable of expressing all or some of the subunits of the pertussis toxin
US4892827A (en) 1986-09-24 1990-01-09 The United States Of America As Represented By The Department Of Health And Human Services Recombinant pseudomonas exotoxins: construction of an active immunotoxin with low side effects
KR0168039B1 (ko) 1987-09-04 1999-01-15 로버트 디. 웨스트 재조합 dna에서 유도한 보르데텔라 외독소 소단위체의 유사체 및 그를 포함하는 백신
US5792458A (en) 1987-10-05 1998-08-11 The United States Of America As Represented By The Department Of Health And Human Services Mutant diphtheria toxin conjugates
GB8727489D0 (en) 1987-11-24 1987-12-23 Connaught Lab Detoxification of pertussis toxin
US5128130A (en) 1988-01-22 1992-07-07 Mycogen Corporation Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens
US5055294A (en) 1988-03-03 1991-10-08 Mycogen Corporation Chimeric bacillus thuringiensis crystal protein gene comprising hd-73 and berliner 1715 toxin genes, transformed and expressed in pseudomonas fluorescens
US6043057A (en) 1988-09-16 2000-03-28 Vitec Aktiebolag Recombinant systems for expression of the cholera B-sub-unit with the aid of foreign promoters and/or leader peptides
AU5027890A (en) * 1989-02-10 1990-09-05 Genesit Oy A method for producing pertussis toxin subunits
US7232671B2 (en) 1989-02-15 2007-06-19 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Pertussis toxin gene: cloning and expression of protective antigen
ES2078258T3 (es) 1989-04-28 1995-12-16 Sclavo Spa Mutantes de toxina pertussica, cepas de bordetella capaces de producir tales mutantes y su uso en el desarrollo de vacunas antipertussicas.
GB8914122D0 (en) 1989-06-20 1989-08-09 Wellcome Found Polypeptide expression
US5169760A (en) 1989-07-27 1992-12-08 Mycogen Corporation Method, vectors, and host cells for the control of expression of heterologous genes from lac operated promoters
US5834246A (en) 1989-09-18 1998-11-10 Vitec Aktiebolag Recombinant systems for expression of cholera B-subunit with the aid of foreign promoters and/or leader peptides
US5389540A (en) * 1989-11-28 1995-02-14 Evans Medical Limited Expression of tetanus toxin fragment C in yeast
US5935580A (en) 1992-04-21 1999-08-10 Institut Pasteur Recombinant mutants for inducing specific immune responses
DE69434079T2 (de) * 1993-03-05 2005-02-24 Wyeth Holdings Corp. Plasmid zur Herstellung von CRM-Protein und Diphtherie-Toxin
AU7788194A (en) 1993-10-05 1995-05-01 Medeva Holdings B.V. Vaccine compositions
EP0785276A4 (en) 1994-09-29 2002-01-09 Ajinomoto Kk MODIFICATION OF A PEPTIDE AND A PROTEIN
US5932714A (en) 1995-02-23 1999-08-03 Connaught Laboratories Limited Expression of gene products from genetically manipulated strains of Bordetella
US5919463A (en) 1995-07-07 1999-07-06 Oravax, Inc. Clostridium difficle toxins as mucosal adjuvants
CN1195297A (zh) 1995-07-07 1998-10-07 奥拉瓦克斯有限公司 艰难梭菌毒素作为粘膜佐剂
GB9904582D0 (en) 1999-02-26 1999-04-21 Nycomed Imaging As Process
US6733760B1 (en) 1999-04-09 2004-05-11 Techlab, Inc. Recombinant toxin A/toxin B vaccine against Clostridium difficile
EP1343870A4 (en) 2000-11-09 2005-07-13 Univ Queensland BACTERIAL EXPRESSION SYSTEMS
WO2004041857A2 (en) 2002-06-17 2004-05-21 Ballard Jimmy D Mutant of clostridium difficile toxin b and methods of use
WO2004021992A2 (en) 2002-09-06 2004-03-18 The General Hospital Corporation Delivery of therapeutics to the brain and spinal cord
US9453251B2 (en) 2002-10-08 2016-09-27 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
JP4764820B2 (ja) 2003-06-23 2011-09-07 バクスター・インターナショナル・インコーポレイテッド ワクチン用担体タンパク質
ES2421538T3 (es) 2003-10-29 2013-09-03 Cystic Fibrosis Foundation Therapeutics Inc Proteasas no pancreáticas para controlar la concentración de colecistocinina (CCK) en plasma y para tratar el dolor
KR101237651B1 (ko) 2003-11-19 2013-02-27 다우 글로벌 테크놀로지스 엘엘씨 개선된 단백질 발현 시스템
EP2314602A1 (en) 2003-11-21 2011-04-27 Pfenex, Inc. Improved expression systems with SEC-system secretion
CA2546769A1 (en) 2003-12-12 2005-06-23 Sanofi Pasteur Limited Production of diphtheria toxin
AU2005206951B2 (en) * 2004-01-16 2010-08-19 Pfenex Inc. Expression of mammalian proteins in Pseudomonas fluorescens
KR20090018799A (ko) 2006-05-30 2009-02-23 다우 글로벌 테크놀로지스 인크. 코돈 최적화 방법
US8852600B2 (en) 2006-06-08 2014-10-07 The Rockefeller University Codon-optimized DNA molecules encoding the receptor binding domains of Clostridium difficile toxins A and B, and methods of use thereof
US9580719B2 (en) 2007-04-27 2017-02-28 Pfenex, Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins
WO2010008764A1 (en) * 2008-06-23 2010-01-21 Dow Global Technologies Inc. Pseudomonas fluorescens strains for production of extracellular recombinant protein
GB0917647D0 (en) * 2009-10-08 2009-11-25 Glaxosmithkline Biolog Sa Expression system
CA2793978C (en) 2010-03-30 2021-08-03 Pfenex Inc. High level expression of recombinant toxin proteins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830962A (en) * 1984-02-09 1989-05-16 Cetus Corporation Recombinant diphtheria toxin fragments
CN101031655A (zh) * 2004-07-26 2007-09-05 陶氏环球技术公司 通过株工程改进蛋白表达的方法
CN101107361A (zh) * 2005-01-21 2008-01-16 比奥泰康医疗有限责任公司 二硫桥连双链形式的蛋白质的重组表达
CN101641441A (zh) * 2007-01-31 2010-02-03 陶氏环球技术公司 用于提高表达的细菌前导序列
US20080269070A1 (en) * 2007-04-27 2008-10-30 Dow Global Technologies, Inc. Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIANE M. RETALLACK 等: "Transport of heterologous proteins to the periplasmic space of Pseudomonas fluorescens using a variety of native signal sequences", 《BIOTECHNOL LETT》 *
GUILIN YANG等: "Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium", 《BMC MICROBIOLOGY》 *
王春娥 等: "白喉毒素无毒变异体CRM197的表达及其载体作用", 《中国生物制品学杂志》 *
程宁宁 等: "破伤风毒素C片段基因的克隆及在大肠杆菌中的高效表达", 《中国预防兽医学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278852A (zh) * 2017-10-27 2020-06-12 菲尼克斯公司 重组欧氏杆菌天冬酰胺酶的生产方法
CN113201473A (zh) * 2021-04-22 2021-08-03 广东省科学院微生物研究所(广东省微生物分析检测中心) 香茅醇在制备促进铜绿假单胞菌毒力基因toxA表达的制剂中的应用
CN113201473B (zh) * 2021-04-22 2022-06-07 广东省科学院微生物研究所(广东省微生物分析检测中心) 香茅醇在制备促进铜绿假单胞菌毒力基因toxA表达的制剂中的应用

Also Published As

Publication number Publication date
EP2553102A2 (en) 2013-02-06
US20110287443A1 (en) 2011-11-24
AU2011238711A1 (en) 2012-11-08
US20150361405A1 (en) 2015-12-17
EP2553102A4 (en) 2013-10-23
JP2013529064A (ja) 2013-07-18
US20140051093A1 (en) 2014-02-20
BR112012024898A2 (pt) 2015-10-06
CN102869778B (zh) 2015-05-20
NZ602958A (en) 2014-07-25
MX343356B (es) 2016-11-03
EP2553102B1 (en) 2015-12-09
KR20130072201A (ko) 2013-07-01
WO2011126811A2 (en) 2011-10-13
CA2793978C (en) 2021-08-03
MX2012011103A (es) 2015-05-15
US8530171B2 (en) 2013-09-10
CA2793978A1 (en) 2011-10-13
JP5839411B2 (ja) 2016-01-06
AU2011238711B2 (en) 2015-06-18
US8906636B2 (en) 2014-12-09
WO2011126811A3 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
CN102869778B (zh) 重组毒素蛋白的高水平表达
Letek et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum
Calvio et al. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon
Gaspar et al. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae
Scholz et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42
Swierczynski et al. Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit
CN102858981B (zh) 重组crm197的高水平表达
CN1678624B (zh) 苯甲酸盐-和邻氨基苯甲酸盐-诱导的启动子
Ramos et al. Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum
Son et al. Lipase and protease double-deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production
EP2133416B1 (en) Recombinant microorganism
CN103975072A (zh) 蛋白酶缺陷性炭疽芽孢杆菌
Guo et al. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression
AU2008238982B2 (en) Recombinant microorganism
Hilbert et al. A Periplasmicd-Alanyl-d-Alanine Dipeptidase in the Gram-Negative Bacterium Salmonella enterica
Lunderberg et al. Bacillus anthracis tagO is required for vegetative growth and secondary cell wall polysaccharide synthesis
Yamamoto et al. Novel toxin-antitoxin system composed of serine protease and AAA-ATPase homologues determines the high level of stability and incompatibility of the tumor-inducing plasmid pTiC58
Beukes et al. Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon
Dryden et al. Identification of cis-acting regulatory regions upstream of the rRNA operons of Rhodobacter sphaeroides
Peters 3rd et al. Synthesis and fractionation properties of SpoIIGA, a protein essential for pro-sigma E processing in Bacillus subtilis
Vargas et al. Genetic tools for the manipulation of moderately halophilic bacteria of the family Halomonadaceae
KR101175725B1 (ko) 신규한 그람 양성균 박테리아 발현 시스템
Miksch et al. Secretion of homologous and heterologous recombinant proteins in Escherichia coli and other gram-negative bacteria by using a new secretion system
Plasmid pTiC58 Novel Toxin-Antitoxin System Composed of
JP2000125868A (ja) 異種宿主細菌における発現による細胞外タンパク質の生産方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240329

Address after: California, USA

Patentee after: Peliken Technology Holdings Ltd.

Country or region after: U.S.A.

Address before: California, USA

Patentee before: PHONEX Corp.

Country or region before: U.S.A.