CN102801190B - 用于电池的充电控制设备和充电控制方法 - Google Patents

用于电池的充电控制设备和充电控制方法 Download PDF

Info

Publication number
CN102801190B
CN102801190B CN201210164592.1A CN201210164592A CN102801190B CN 102801190 B CN102801190 B CN 102801190B CN 201210164592 A CN201210164592 A CN 201210164592A CN 102801190 B CN102801190 B CN 102801190B
Authority
CN
China
Prior art keywords
lim
battery
current value
charging
input current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210164592.1A
Other languages
English (en)
Other versions
CN102801190A (zh
Inventor
町田清仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102801190A publication Critical patent/CN102801190A/zh
Application granted granted Critical
Publication of CN102801190B publication Critical patent/CN102801190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于电池的充电控制设备,其包含控制器(20),所述控制器对由基于在车辆行驶期间进行的再生制动的电力进行充电以及由来自外部电源的电力进行充电的车载锂离子二次电池(20)的充电进行控制;确定电池(10)由来自外部电源的电力进行充电的外部充电还是车辆行驶正在进行中;当外部充电被判断为正在进行时,相对于车辆行驶被判断为正在进行中的情况,增大充电电流的上限值。

Description

用于电池的充电控制设备和充电控制方法
技术领域
本发明涉及用于电池的充电控制设备和充电控制方法。
背景技术
在电气车辆中,再生制动力被用于向连接到由电池驱动的电动机的驱动轮施加制动。此时,作为再生制动的结果由电动机产生的电力被充到电池并因此被收集。然而,当电池充电超过限制时,电池进入过度充电状态。为了抑制这种情况,已经提出了电池充电控制设备,其将电池电压与电池电压限制值进行比较,并对电池充电进行控制,以确保电池电压不超过电池电压限制值(例如日本特开No.6-153314(JP 6-153314A))。
锂离子二次电池具有高的能量密度,并且,与其他的二次电池相比,既具有较高的初始开路电压,又具有较高的平均运行电压。因此,锂离子二次电池适合用在用于需要大电池容量和高电压的混合动力汽车或类似车辆的电源系统中。另外,锂离子二次电池的库仑效率接近100%,因此,电池显示出优越的充电/放电效率。相应地,锂离子二次电池的能量能比其它二次电池相比得到更为有效的使用。
然而,取决于使用锂离子二次电池的方式(例如,以高速率充电,从高充电状态(SOC)充电,长时间连续充电,或在低温下充电(以高电阻状态充电)),锂(Li)金属可在锂离子二次电池的负电极表面上析出(deposite),结果,可能在锂离子二次电池内发生过热或性能劣化。
因此,希望抑制锂金属在负电极上析出。锂金属析出能通过大大限制充电量而得到抑制。然而,在这种情况下,不可能收集由再生制动产生的充足量的电力。另外,当电池由外部电源充电时,充电花费长的时间。
发明内容
本发明的第一实施形态为用于电池的充电控制设备,包含:控制器,其对由基于在车辆行驶期间进行的再生制动的电力进行充电以及由来自外部电源的电力进行充电的车载锂离子二次电池的充电进行控制,确定电池由来自外部电源的电力进行充电的外部充电还是车辆行驶正在进行中,当外部充电被判断为正在进行中时,相对于车辆行驶被判断为正在进行中的情况,增大充电电流上限值。
充电控制设备还可包含:电池电流检测单元,其检测电池的电流;电池温度检测单元,其检测电池温度。另外,控制器可:推定电池的充电状态;当外部充电被判断为正在进行时,基于电池电流、电池温度以及推定的充电状态,以与车辆行驶被判断为正在进行的情况相比较大的值计算可允许输入电流值;基于可允许输入电流值,确定充电电流的上限值。
控制器可使用下面的公式来计算每单位处理时间dt的可允许输入电流值Ilim(t):
I lim ( t ) = I lim ( t - 1 ) - α × IB ( t ) × dt - β × I l lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) × dt
其中,Ilim(0)为在初始充电期间使用的初始可允许输入电流值,Ilim(t-1)为在前一单位时间计算得出的、先前计算的可允许输入电流值,α、β为系数。在这种情况下,控制器可设置初始可允许输入电流值和系数α、β,使得在车辆行驶被判断为正在进行的情况下的初始可允许输入电流值和系数α、β不同于在外部充电被判断为正在进行的情况下的初始可允许输入电流值和系数α、β。
充电控制设备还可包含用于计算可允许输入电流值的第一映射图和第二映射图。另外,控制器可根据车辆行驶被判断为正在进行还是外部充电被判断为正在进行而在第一映射图和第二映射图之间切换。
控制器可判断充电电流是否不大于预定值,在外部充电正在进行的同时,当充电电流被判断为不大于预定值时,控制器可相对于车辆行驶被判断为正在进行的情况增大充电电流值的上限值。
本发明的第二实施形态为用于电池的充电控制方法,包含:对由基于在车辆行驶期间进行的再生制动的电力进行充电以及由来自外部电源的电力进行充电的车载锂离子二次电池的充电进行控制;判断电池由来自外部电源的电力充电的外部充电还是车辆行驶正在进行中;当外部充电被判断为正在进行时,相对于车辆行驶被判断为正在进行的情况,增大充电电流的上限值。
根据上面介绍的配置,在从外部电源进行充电期间,在抑制Li金属析出的同时,充电可更为迅速地进行。
附图说明
下面将参照附图介绍本发明的示例性实施例的特征、优点和技术以及工业显著性,在附图中,类似的标号表示类似的元件,且其中:
图1为一原理图,其示出了包含根据本发明一实施例的用于电池的充电控制设备的混合汽车的构造;
图2示出了锂离子二次电池的充电时间和正电极电位以及负电极电位的变化;
图3为一原理图,其示出了锂离子二次电池的构造的一个实例;
图4示出了在计算可允许输入电流值时将二次电池放置不管(unattended)而获得的电流恢复量;
图5示出了用于确定输入电力限制值的公式(4)的构造;
图6示出了与充电电流对应的锂金属析出的特性;
图7示出了用于在快速充电期间限制电流的构造;
图8为用于在快速充电期间计算可允许输入电流的流程图。
具体实施方式
下面将基于附图介绍本发明一实施例。
图1示出了车辆(电气车辆)的主要构造的示例,该车辆包含根据此实施例的用于电池的充电控制设备。根据本说明书的电池为锂离子二次电池。另外,根据本说明书的“锂离子二次电池”包括将电解质溶液用作电解质的锂离子二次电池以及将聚合物凝胶用作电解质的锂聚合物电池。包含用于电池的充电控制设备的充电/放电控制设备20将在下面介绍。
如图1所示,根据此实施例用于电池的充电/放电控制设备20包含:电池电子控制单元(ECU)22,其监视电池10的条件;SOC推定单元24,其推定电池10的充电状态(SOC);电动机ECU 28,其对电动机52进行驱动控制;电气车辆电子控制单元(EVECU)30,其进行动力输出设备的整体控制;可允许输入电力调节单元40,在充电/放电期间,其基于充电/放电历史对能输入到电池的可允许输入电力进行调节,以确保由锂离子二次电池构成的电池的负电极电位不下降到锂基准电位(referencepotential)。
如图2所示,当用作电池10的锂离子二次电池被连续充电时,正电极平均电位增大,同时,负电极平均电位减小,结果,正负电极之间的电位差(Vav)增大。当负电极电位下降到或低于锂基准电位(0V)时,锂金属在负电极的表面上析出。因此,当锂离子二次电池照惯常那样充电时,通过将正负电极之间的端子电压——即正负平均电位之间的电位差——抑制到预定电位(例如4.1V)内,负电极表面上的锂金属析出受到抑制。
然而,电池的电池单体内部(正负电极表面)中的反应发生变化,因此,即使在正负电极平均电位之间的电位差(Vav)在预定电压(Vlim)内时,如图2中从时刻t1向上所示,在负电极的部分位置上的负电极电位(将称为负电极局部电位)可能下降到或低于锂基准电位(0V),使得锂金属在对应的位置上在负电极表面上析出。另外,在以高速率充电(例如20C以上)、从高SOC充电、长时间连续充电、低温充电(在电池单体的内阻高的状态下)等等期间,锂金属析出通过上面介绍的过程类似地发生。
如图3所示,电池单体电压为锂离子二次电池的电池单体的正电极74和负电极76之间的电位差。负电极电位为负电极76和锂基准电极78(电位0V)之间的电位差。正电极电位为正电极74和锂基准电极78(电位0V)之间的电位差。通过减小正电极平均电位,可防止负电极电位下降到或低于锂基准电位,但在此情况下,可能不能满足要求的电池性能。
因此,根据此实施例的用于电池的充电/放电控制设备20包含可允许输入电力调节单元40,用于确保负电极电位不会即便是局部地到达锂基准电位0V。
图1还示出了:电流传感器14,其检测电池电流;温度传感器12,其设置在电池10中,检测电池温度;电压传感器16,其检测电池电压。如将在下面介绍的,为了使得可允许输入电力调节单元40能够计算能输入到电池的电力值,来自电流传感器14、温度传感器12、电压传感器16的检测值被输入到根据本实施例的用于电池的充电/放电控制设备20。
现在将详细介绍上面介绍的相应的构造。管理电池10需要的信号——例如来自布置在电池10输出端子之间的电压传感器16的电池电压,来自附着到连接到电池10的输出端子的电力线的电流传感器14的充电/放电电流(也称为“电池电流”),来自附着到电池10的温度传感器12的电池温度TB,等等——被输入到电池ECU 22被存储于其中。另外,通过对作为电流传感器14的实际测量值输入到电池ECU 22的电池电流值IB(t)进行积分,SOC推定单元24推定SOC(剩余容量)。注意,电池电流值IB(t)优选为使用根据实际测量得到的电池温度值TB(t)进行校正的推定电流值来积分。通过这样做,SOC能使用例如电池电动势电压等其它信息得到更为准确的推定。
EVECU 30由集中在中央处理单元(CPU)32中的微处理器构成。除了CPU 32以外,EVECU 30包含:只读存储器(ROM)34,其存储处理程序等;随机访问存储器(RAM)36,其临时存储数据,以及;输入/输出端口及附图未示出的通信端口。基于来自附图未示出的点火开关的点火信号、来自附图未示出的加速器传感器的信号以及来自其它传感器的信号,例如加速器按压量、制动器按压量以及车辆速度等的信息被输入到EVECU 30。基于例如加速器按压量、制动器按压量、车辆速度等的信息,在EVECU 30中确定转矩指令,且转矩指令从EVECU 30杯输出到电动机ECU 28。电动机52的驱动于是与转矩指令一致地受到控制。另外,经由通信端口,EVECU 30被连接到电动机ECU 28和电池ECU 22,以便与电动机ECU28、电池ECU 22交换多种控制信号及数据。另外,用于计算可允许输入电流值Ilim(t)、Ilim’(t)、电池输入电力限制值Win(t)——其在下面将要介绍的可允许输入电力调节单元40中计算——的程序被存储在ROM 34中。RAM 36临时存储从电池ECU 22输出的电池电流值和电池温度值以及由可允许输入电力调节单元40计算的可允许输入电流值Ilim(t)、随时间的(over time)可允许输入电流值Ilim’(t)以及电池输入电力限制值Win(t),还存储对于多种计算需要的数据。
可允许输入电力调节单元40包含可允许输入电流值计算单元42和输入电力限制值计算单元44。基于例如每100ms获得的电池输入电力限制值Win(t),可允许输入电力调节单元40调节能被输入电池10的可允许输入电力。
基于存储在EVECU 30的ROM 34中的程序,使用时刻t上的电池电流值IB(t)、时刻t上的电池温度值TB(t)以及时刻t上的充电容量值SOC(t),可允许输入电流值计算单元42确定充电期间的每单位时间可允许输入电流值减小量F或f,或是放电期间的每单位时间可允许输入电流值恢复量F’或f’,并确定通过将电池保持为未使用(随时间)的每单位时间的可允许输入电流值恢复量G或g。于是,基于充电期间的可允许输入电流值减小量F或f或放电期间的可允许输入电流值恢复量以及通过将电池保持为未使用的可允许输入电流值恢复量G或g,可允许输入电流值计算单元42计算能输入到电池的可允许输入电流值Ilim(t)。注意,时刻t的电池电流值IB(t)和时刻t的电池温度值TB(t)为从电池ECU 22输出的值,并临时存储在EVECU 30的RAM 36中。另外,时刻t的充电容量值SOC(t)为在SOC推定单元24中推定的值。可允许输入电流值Ilim(t)基于先前计算得到的、先前计算的可允许输入电流值Ilim(t-1)来计算,而仅仅对于第一次,使用所设置的可允许输入电流值Ilim(0)。所设置的可允许输入电流值Ilim(0)被确定为这样的最大电流值:在该值上,当充电从充电/放电历史没有影响的状态起进行时,在单位时间内不发生锂金属析出。
当从外部直流电源(充电器)进行充电时,根据电池确定合适的可允许充电电流,可允许充电电流值被设置为这样的值:其具有充分的灵活性,以确保即使在连续充电期间,也不会发生锂金属析出。因此,在充电从外部直流电源进行的情况下的所设置的可允许输入电流值Ilim(0)被设置为此可允许充电电流值,其为与假设充电正在使用再生电力进行时设置的最大可允许输入电流值Ilim(0)相比较小的值。
在此实施例中,在充电期间,使用下面的公式,可允许输入电流值计算单元42计算可允许输入电流值Ilim(t)。当不存在充电/放电历史时,或者,换句话说,仅仅对于第一次,可允许输入电流值Ilim(t)使用公式(1)来确定。具体而言,通过从所设置的可允许输入电流值Ilim(0)减去连续充电/放电期间的减小量F或恢复量F’以及通过将电池保持为未使用的恢复量G,确定可允许输入电流值Ilim(t)。
I lim ( T ) = I lim ( 0 ) - ∫ 0 T F ( IB ( t ) , TB ( t ) , SOC ( t ) ) dt - ∫ 0 T G ( t , TB ( t ) , SOC ( t ) ) dt - - - ( 1 )
其中,Ilim(0)≤Ilim(T)<0
在公式(1)中,右侧的相应项如下。
Ilim(0):当从充电/放电历史没有影响的状态开始进行充电时,在单位时间内不发生锂金属析出的最大电流值(所设置的可允许输入电流值)。
在从不存在历史的状态到时刻T连续进行充电时的可允许输入电流值减小项(在放电情况下,可允许输入电流值恢复项)。
通过将电池保持为未使用的可允许输入电流值恢复项。
另外,当在充电期间存在充电/放电历史时,使用公式(2)确定可允许输入电流值Ilim(t)。
I lim ( t ) = I lim ( t - 1 ) - f ( IB ( t ) , TB ( t ) , SOC ( t ) ) &times; dt - g ( TB ( t ) , SOC ( t ) ) &times; I lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) &times; dt - - - ( 2 )
在公式(1)、(2)中,Ilim(T)和Ilim(t)表示时刻T和t上的可允许输入电流值,IB(t)表示时刻t上的电池电流值,TB(t)表示时刻t上的电池温度值。SOC(t)表示时刻t上的电池SOC值,函数F、f表示充电期间的每单位时间可允许输入电流值减小项,函数G、g表示通过将电池保持为未使用的每单位时间可允许输入电流值恢复项。
当Ilim(t)=0时,二次电池的负电极活性材料的锂离子饱和,因此,Ilim(0)-Ilim(t)表示二次电池的负电极活性材料中的锂离子量。同时,当负电极活性材料中的锂离子的量减少时,获得通过如图4所示将电池保持为未使用的可允许输入电流值恢复量,其量值与锂离子的量成比例。因此,通过从时刻(t-1)——其以单位时间(dt)早于时刻(t)——的Ilim(t-1)将电池保持为未使用的可允许输入电流值恢复量与Ilim(0)和Ilim(t-1)之间的差成比例。在公式(2)中,将此差除以Ilim[0],以便使得该差无量纲。
通过基于实际测量结果创建具有温度TB轴和SOC轴的用于函数f(x)的三维映射图,确定系数α,f(x)被假设为电池电流的一次表达式。另外,通过基于实际测量结果创建具有温度TB轴和SOC轴的对于函数g(x)的三维映射图,确定系数β。另外,通过基于测量结果创建与TB(t)和SOC(t)有关的映射图,确定Ilim(0)。
由上可见,公式(2)可如公式(3)所示地表达。
I lim ( t ) = I lim ( t - 1 ) - &alpha; &times; IB ( t ) &times; dt - &beta; &times; I l lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) &times; dt - - - ( 3 )
注意,通过负电极活性材料移动的Li+的速度具有上限。因此,在公式(3)中,优选为,将限制施加到右侧的β与之相乘的第三项,以确保Ilim(t-1)的值不会达到或超过预定的上限值。
在放电情况下,公式(1)、(2)中的函数F和函数f的相应的符号从负切换为正,由此获得下面的公式。
I lim ( T ) = I lim ( 0 ) + &Integral; 0 T F ( IB ( t ) , TB ( t ) , SOC ( t ) ) dt - &Integral; 0 T G ( t , TB ( t ) , SOC ( t ) ) dt - - - ( 4 )
其中,Ilim(0)≤Ilim(T)<0
I lim ( t ) = I lim ( t - 1 ) + f ( IB ( t ) , TB ( t ) , SOC ( t ) ) &times; dt - g ( TB ( t ) , SOC ( t ) ) &times; I lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) &times; dt - - - ( 5 )
公式(4)、(5)类似于公式(1)和(2),除了函数F、f表示每单位时间的放电期间的可允许输入电流值恢复项以外,因此省略对公式(4)、(5)的介绍。
在电气车辆或混合动力车中,使用来自外部电源的电力,充电是可行的。当从外部电源进行充电时(下面称为快速充电),优选为,所需要的充电时间仅可能短。例如,在电气车辆的情况下,充电可在充电站或类似地点进行,快速充电在这种情况下特别受欢迎。
通过确定系数α、β以及所设置的可允许输入电流值Ilim(0),计算可允许输入电流值Ilim(t),使得即使在行驶期间由于再生制动产生大电流的情况下,Li金属析出不会发生。
然而,快速充电期间来自外部电源的充电电流被预先确定,因此不需要接收大的电流,例如在再生制动期间产生的。
图6示出了根据充电电流及其持续时间确定Li金属析出是否发生而执行的实验的结果。在图6中,横坐标表示充电电流,纵坐标表示通电时间。另外,图中的黑圈表示Li金属析出已经发生,而白圈表示Li金属析出尚未发生。根据这些实验结果,Li金属析出随着充电电流增大而发生,即使在持续时间短时。在基于这些结果、也将与再生电流对应的大充电电流考虑在内确定系数α、β以及所设置的可允许输入电流值Ilim(0)的情况下,可允许输入电流值Ilim(t)在图中用实线示出。
同时,在基于充电电流小于来自外部电源的充电期间的最大电流值的情况下的实验结果确定系数α、β以及所设置的可允许输入电流值Ilim(0)的情况下对于快速充电的可允许输入电流值Ilim(t)在图中用虚线示出。已经按照经验确定,通过以这样的方式设置对于来自外部电源的快速充电的最大电流值,即使在来自外部电源的快速充电期间施加对充电电流的限制得到缓和的可允许输入电流值(对于快速充电的可允许输入电流值Ilim(t)在图中由虚线示出),没有发生Li金属析出。
因此,在此实施例中,快速充电期间的可允许输入电流值Ilim(t)从行驶期间的可允许输入电流值Ilim(t)变更。通过这样做,在抑制锂金属析出的同时,快速充电可用对于快速充电的可允许输入电流值Ilim(t)进行,其被设置为大于对于行驶的可允许输入电流值Ilim(t)的值。
另外,通过切换存储系数α、β和所设置的可允许输入电流值Ilim(0)的映射图来改变可允许输入电流值Ilim(t),因此,充电控制能容易可靠简单地通过改变系数而不是改变充电控制方法自身执行。
图7示出了快速充电系统的构造的概略图。接收来自200V商用交流电源或类似物的电力供给的充电器100将交流电转换为直流电并输出直流电。充电器100具有恒定电流输出和恒定电压输出的能力。在正常情况下,充电通过恒定电流输出来进行,并在SOC达到预定的上限值时(例如大约70%)终止。然而,在此实施例中,车辆包含电流调节器104,因此,充电电流在车辆侧受到控制。因此,充电器100可输出恒定电压。
充电器100连接到设置在车辆上的连接器102。经由连接器102,充电电流被供到安装在车辆上的电池10。
电流调节器104设置在从连接器102延伸到电池10的路径上。电流调节器104调节充电电流。电流调节器104受到充电/放电控制设备20的控制,以便确保充电电流不超过可允许输入电流值Ilim(t)。
电流调节器104响应于来自充电/放电控制设备20的控制信号对充电电流进行控制。电流调节器104为从充电器100接收充电电流并对电池10的充电电流进行控制的电路。转换器/变换器50的转换器被用作电流调节器104。优选为,通过控制转换器来提供电流限制,以便确保电池10的充电电流不会超过对于快速充电的可允许输入电流值Ilim(t)。注意,可提供对于快速充电的专用电流调节器,充电电流可使用EVECU 30来控制。
因此,在行驶期间,充电/放电控制设备20基于用于行驶的系数α、β以及所设置的可允许输入电流值Ilim(0)——其存储在第一映射图106中——来控制转换器/变换器50,而在快速充电期间,充电/放电控制设备20基于用于快速充电的系数α、β以及所设置的可允许输入电流值Ilim(0)——其存储在第二映射图108中——来控制电流调节器104。
图8为一流程图,其示出了映射图切换处理。首先,作出快速充电是否正在进行的判断(S210)。关于快速充电是否正在进行的判断通过检测到外部充电器100被连接且电力正在被供给以及判断用于接收充电的准备是否完成来作出。用于接收充电的准备是否完成的判断可通过判断点火开关是否处于预定位置(例如OFF位置)、车辆是否静止等等来作出。
当在S210中的判断获得YES时,从第二映射图108读取用于快速充电的系数α2、β2和所设置的可允许输入电流值Ilim2(0),此时,计算对于快速充电的可允许输入电流值Ilim2(t),计算得到的用于快速充电的可允许输入电流值Ilim2(t)被设置为充电电流的上限值。于是,此上限值被设置为电流调节器104的上限电流。
接着,将当前的充电电流IB与预定的充电上限值进行比较(S214)。当充电电流不大于预定值时(即充电电流等于或小于预定值),程序返回到S212,在那里,充电在将电流调节器104的上限值设置为对于快速充电的可允许输入电流值之后继续。
另一方面,当S214中的判断指示充电电流大于预定值时,从第一映射图106读取对于行驶的系数α1、β1以及所设置的可允许输入电流值Ilim1(0),此后,计算用于行驶的可允许输入电流值Ilim1(t),将计算得到的用于行驶的可允许输入电流值Ilim1(t)设置为充电电流的上限值(S216)。如图6所示,用于快速充电的系数α2、β2以及所设置的可允许输入电流值Ilim2(0)在假设充电电流不大于预定值的情况下设置,当充电电流超过预定值时,作为代替地使用用于行驶的系数α1、β1以及所设置的可允许输入电流值Ilim1(0)。当快速充电在S210中没有正在进行时,程序进行到S216。
因此,在此实施例中,充电电流上的限制在快速充电期间比行驶期间更为放松。通过这样做,当车辆静止时对电池进行充电需要的充电时间能够缩短,结果,通过在充电站或类似位置以相对较短的时间进行充电,SOC能够充分恢复。
另外,在此实施例中,将通过使用造成的二次电池性能降低考虑在内,或者,换句话说,将二次电池的时间劣化考虑在内,可允许输入电流值计算单元42确定随时间的可允许输入电流值Ilim’[T]和Ilim’[t],以便抑制随着时间的锂金属析出。通过将劣化系数η乘以在上面的公式中获得的可允许输入电流值Ilim(T)和Ilim(t),确定随时间的可允许输入电流值Ilim’[T]和Ilim’[t]。
Ilim′(T)=Ilim(T)×η
Ilim′(t)=Ilim(t)×η                        (6)
劣化系数η可取固定值或多个值。当劣化系数η取多个值时,劣化系数η可使用这样的映射图来确定:其定义二次电池的劣化系数和充电/放电频率之间的关系,并预先存储在EVECU 30的RAM 36中。
将电池的劣化考虑在内,优选为,代替行驶和快速充电二者期间的可允许输入电流值Ilim(t)地使用随时间的可允许输入电流值Ilim’(t)。
另外,根据此实施例的输入电力限制值计算单元44计算电池输入限制值Win(t),以防止电池电流IB由于反馈控制期间的控制延迟等而超过随时间的可允许输入电流值Ilim’(t)地流动。具体而言,首先,输入电流限制目标值Itag基于时刻t的电池电流值IB(t)、在可允许输入电流值计算单元42中计算的随时间的可允许输入电流值Ilim’(t)来计算(见图5)。例如,输入电流限制目标值Itag被计算为从可允许输入电流值Ilim(t)偏移预定量。于是,根据公式(7),基于所获得的输入电流限制目标值Itag,计算电池输入限制值Win(t)。
如图5所示,通过使用在公式(7)中确定的输入电力限制值Win(t)控制充电,使得充电电流IB保持在或低于随时间的可允许输入电流值Ilim’(t),输入电力限制值计算单元44能抑制负电极上的锂金属析出。
Win(t)=SWin(t)-Kp×(IB(t)-Itag1(t))-Ki×∫(IB(t)-Itag2(t))dt    (7)
在公式(7)中,Win(t)表示时刻t的电池输入电力限制值,SWin(t)表示预设的电池输入电力限制规定值(电池的基本输入电力限制规定值,由例如电池温度来确定),Kp表示p项反馈增益,Ki表示i项反馈增益,Itag1(t)表示通过p项反馈控制获得的电流限制目标值,Itag2(t)表示通过i项反馈控制获得的电流限制目标值,IB(t)表示时刻t上的电池电流值。电池输入电力限制规定值SWin(t)由预设的映射图来确定,例如,该映射图定义了输入电力限制规定值和电池温度等之间的关系。
电流限制目标值Itag1(t)和Itag2(t)由公式(8)确定。
Itag1(t)=Fp(Ilim′(t))
Itag2(t)=Fi(Ilim′(t))                            (8)
在公式(8)中,如上所述,电流限制目标值Itag1(t)和Itag2(t)被确定为分别从随时间的可允许输入电流值Ilim’(t)偏移预定量的值。因此,优选为,电流限制目标值Itag1、Itag2和随时间的可允许输入电流值Ilim’(t)之间的关系以映射图的形式预先被存储在EVECU 30的RAM 36中,使得电流限制目标值Itag1、Itag2能通过参照映射图来确定。注意,当映射图将二次电池劣化和二次电池控制考虑在内创建时,由于负电极电位局部降低引起的锂金属析出也能得到抑制。
根据此实施例用于电池的充电/放电控制设备20可进一步包含上限电压控制单元,通过控制锂离子二次电池的上限电压以使其不超过预设的上限电压,其抑制由于使用导致的电池性能降低。例如,上限电压控制单元通过在EVECU 30中将预设的上限电压值与从电压传感器16输出的实际电池电压值进行比较来控制充电量。通过以这种方式设置充电电压上的上限值,能够避免过大电压被施加到电池单体的情况。

Claims (4)

1.一种用于电池的充电控制设备,其特征在于包含控制器(20),所述控制器(20):
对车载锂离子二次电池(10)的充电进行控制,其中,所述车载锂离子二次电池(10)由基于在车辆行驶期间进行的再生制动的电力进行充电,以及由来自外部电源的电力进行充电;
判断是所述电池(10)由来自所述外部电源的电力进行充电的外部充电正在进行中,还是所述车辆行驶正在进行中;以及
当判断为所述外部充电正在进行中时,相对于判断为所述车辆行驶正在进行中的情况,增大充电电流上限值,
所述充电控制设备还包含:
电池电流检测单元(14),其检测电池电流;以及
电池温度检测单元(12),其检测电池温度,
其中,所述控制器(20):
推定所述电池(10)的充电状态;
当判断为所述外部充电正在进行中时,基于所述电池电流、所述电池温度以及所推定的充电状态,以与判断为所述车辆行驶正在进行中的情况下相比较大的值来计算可允许输入电流值;以及
基于所述可允许输入电流值,确定所述充电电流上限值,
其中,所述控制器(20):
使用下面的公式计算每单位处理时间dt的可允许输入电流值Ilim(t): I lim ( t ) = I lim ( t - 1 ) - &alpha; &times; IB ( t ) &times; dt - &beta; &times; I lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) &times; dt ,
其中,Ilim(0)为在初始充电期间使用的初始可允许输入电流值,Ilim(t-1)为在前一单位时间计算的、先前计算的可允许输入电流值,α、β为系数,IB(t)表示时刻t上的电池电流值;以及
设置所述初始可允许输入电流值以及所述系数α、β,使得在判断为所述车辆行驶正在进行中的情况下的所述初始可允许输入电流值以及所述系数α、β不同于在判断为所述外部充电正在进行中的情况下的所述初始可允许输入电流值以及所述系数α、β。
2.根据权利要求1的充电控制设备,其还包含用于计算所述可允许输入电流值的第一映射图(106)和第二映射图(108),
其中,根据判断为所述车辆行驶正在进行中还是判断为所述外部充电正在进行中,所述控制器(20)在所述第一映射图(106)和所述第二映射图(108)之间进行切换。
3.根据权利要求1的充电控制设备,其中,所述控制器(20)判断所述充电电流是否不大于预定值,以及
在所述外部充电正在进行的同时,当判断为所述充电电流不大于所述预定值时,相对于判断为所述车辆行驶正在进行中的情况,所述控制器增大所述充电电流上限值。
4.一种用于电池的充电控制方法,其特征在于包含:
对车载锂离子二次电池(10)的充电进行控制,其中,所述车载锂离子二次电池(10)由基于在车辆行驶期间进行的再生制动的电力进行充电,以及由来自外部电源的电力进行充电;
判断是所述电池(10)由来自所述外部电源的电力进行充电的外部充电正在进行中,还是所述车辆行驶正在进行中;以及
当判断为所述外部充电正在进行中时,相对于判断为所述车辆行驶正在进行中的情况,增大充电电流上限值,
所述充电控制方法还包含:
检测电池电流;
检测电池温度;
推定所述电池(10)的充电状态;
当判断为所述外部充电正在进行中时,基于所述电池电流、所述电池温度以及所推定的充电状态,以与判断为所述车辆行驶正在进行中的情况下相比较大的值来计算可允许输入电流值;以及
基于所述可允许输入电流值,确定所述充电电流上限值,
其中,
使用下面的公式计算每单位处理时间dt的可允许输入电流值Ilim(t): I lim ( t ) = I lim ( t - 1 ) - &alpha; &times; IB ( t ) &times; dt - &beta; &times; I lim ( 0 ) - I lim ( t - 1 ) I lim ( 0 ) &times; dt ,
其中,Ilim(0)为在初始充电期间使用的初始可允许输入电流值,Ilim(t-1)为在前一单位时间计算的、先前计算的可允许输入电流值,α、β为系数,IB(t)表示时刻t上的电池电流值;以及
设置所述初始可允许输入电流值以及所述系数α、β,使得在判断为所述车辆行驶正在进行中的情况下的所述初始可允许输入电流值以及所述系数α、β不同于在判断为所述外部充电正在进行中的情况下的所述初始可允许输入电流值以及所述系数α、β。
CN201210164592.1A 2011-05-24 2012-05-24 用于电池的充电控制设备和充电控制方法 Active CN102801190B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116287A JP5304844B2 (ja) 2011-05-24 2011-05-24 バッテリの充電制御装置
JP116287/2011 2011-05-24

Publications (2)

Publication Number Publication Date
CN102801190A CN102801190A (zh) 2012-11-28
CN102801190B true CN102801190B (zh) 2015-02-25

Family

ID=47200204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210164592.1A Active CN102801190B (zh) 2011-05-24 2012-05-24 用于电池的充电控制设备和充电控制方法

Country Status (3)

Country Link
US (1) US8981729B2 (zh)
JP (1) JP5304844B2 (zh)
CN (1) CN102801190B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987512B2 (ja) * 2012-07-10 2016-09-07 三菱自動車工業株式会社 車両の電池制御装置
FR2994027B1 (fr) * 2012-07-27 2015-06-19 Renault Sa Vehicule comprenant une batterie et des moyens de determination d'une puissance maximale admissible pour la batterie, et procede correspondant
JP6088543B2 (ja) * 2012-12-14 2017-03-01 日立マクセル株式会社 蓄電装置及びその充電方法
FR3003100B1 (fr) * 2013-03-07 2015-02-27 Renault Sas Gestion de charge d'une batterie
WO2015064734A1 (ja) * 2013-11-01 2015-05-07 日本電気株式会社 充電装置、蓄電システム、充電方法及びプログラム
CN104833923B (zh) * 2014-12-18 2018-02-23 北汽福田汽车股份有限公司 动力电池过热的判断方法、装置及具有其的汽车
US20160294205A1 (en) * 2015-04-03 2016-10-06 Charles Zimnicki Hybrid Power Supply Unit For Audio Amplifier
CN104901386B (zh) * 2015-06-19 2018-11-30 深圳维普创新科技有限公司 一种快速充电系统
KR102331727B1 (ko) * 2015-06-29 2021-11-26 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 전기 자동차의 충전 제어 시스템
KR101985812B1 (ko) 2015-08-18 2019-06-04 주식회사 엘지화학 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
KR101755897B1 (ko) * 2015-11-25 2017-07-07 현대자동차주식회사 친환경 차량의 저전압 직류 변환 장치
US10224579B2 (en) 2015-12-31 2019-03-05 Robert Bosch Gmbh Evaluating capacity fade in dual insertion batteries using potential and temperature measurements
US10263447B2 (en) 2016-01-29 2019-04-16 Robert Bosch Gmbh Secondary battery management system
US10686321B2 (en) 2016-01-29 2020-06-16 Robert Bosch Gmbh Secondary battery management
US10243385B2 (en) 2016-01-29 2019-03-26 Robert Bosch Gmbh Secondary battery management system
KR20180005008A (ko) * 2016-07-05 2018-01-15 현대자동차주식회사 환경차량용 배터리 과충전 방지장치
US10447046B2 (en) 2016-09-22 2019-10-15 Robert Bosch Gmbh Secondary battery management system with remote parameter estimation
JP6583294B2 (ja) * 2017-01-17 2019-10-02 トヨタ自動車株式会社 電動車両
JP6674637B2 (ja) * 2017-03-17 2020-04-01 トヨタ自動車株式会社 電池制御装置および電池制御システム
KR102554151B1 (ko) * 2017-10-24 2023-07-12 삼성전자주식회사 배터리 충전 방법 및 장치
JP6947014B2 (ja) * 2017-12-25 2021-10-13 トヨタ自動車株式会社 二次電池システムおよび二次電池の制御方法
JP6901414B2 (ja) * 2018-01-19 2021-07-14 トヨタ自動車株式会社 二次電池システムおよびそれを備えた車両ならびにバッテリの制御方法
KR102541040B1 (ko) * 2018-12-06 2023-06-08 현대자동차주식회사 친환경 차량의 보조 배터리 보충전 시스템 및 방법
JP2022052846A (ja) 2020-09-24 2022-04-05 株式会社Subaru 充電制御装置
US11691531B2 (en) * 2020-10-29 2023-07-04 GM Global Technology Operations LLC Adaptation of charge current limits for a rechargeable energy storage system
CN112677806A (zh) * 2020-12-30 2021-04-20 上海雅迪信息技术有限公司 一种电动车充电系统及其控制方法
JP2022158378A (ja) * 2021-04-02 2022-10-17 トヨタ自動車株式会社 車両用熱マネージメントシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051185A1 (ja) * 2007-10-19 2009-04-23 Toyota Jidosha Kabushiki Kaisha 外部充電ev/hv自動車
CN101610932A (zh) * 2007-02-20 2009-12-23 丰田自动车株式会社 电动车辆、车辆充电装置及车辆充电系统
CN101682204A (zh) * 2007-06-15 2010-03-24 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及充放电控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153314A (ja) 1992-11-13 1994-05-31 Honda Motor Co Ltd 電動車両のバッテリ充電制御装置
US6963186B2 (en) * 2003-02-28 2005-11-08 Raymond Hobbs Battery charger and method of charging a battery
JP4488426B2 (ja) 2005-06-08 2010-06-23 富士重工業株式会社 蓄電デバイスの制御装置
JP4798087B2 (ja) * 2007-07-10 2011-10-19 トヨタ自動車株式会社 電力システムおよびそれを備えた車両
JP4539735B2 (ja) * 2008-02-29 2010-09-08 三菱自動車工業株式会社 バッテリ管理制御装置
JP4506881B2 (ja) * 2008-06-19 2010-07-21 株式会社デンソー ハイブリッド車両の制御装置
CN102089956B (zh) * 2008-07-11 2013-06-05 丰田自动车株式会社 电池的充放电控制装置以及具备该装置的混合动力汽车
CN102481853B (zh) * 2009-08-28 2014-03-12 丰田自动车株式会社 车辆的电源系统及具有该系统的电动车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610932A (zh) * 2007-02-20 2009-12-23 丰田自动车株式会社 电动车辆、车辆充电装置及车辆充电系统
CN101682204A (zh) * 2007-06-15 2010-03-24 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及充放电控制方法
WO2009051185A1 (ja) * 2007-10-19 2009-04-23 Toyota Jidosha Kabushiki Kaisha 外部充電ev/hv自動車

Also Published As

Publication number Publication date
US8981729B2 (en) 2015-03-17
US20120299552A1 (en) 2012-11-29
CN102801190A (zh) 2012-11-28
JP2012244888A (ja) 2012-12-10
JP5304844B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
CN102801190B (zh) 用于电池的充电控制设备和充电控制方法
EP3245096B1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
US8854010B2 (en) Control apparatus and control method for electric storage apparatus
CN102447140B (zh) 锂离子电池的控制装置
KR101605491B1 (ko) 비수 이차 전지의 제어 장치 및 제어 방법
US9630504B2 (en) Distance to empty prediction with kinetic energy change compensation
EP3248827A1 (en) Hybrid energy storage module system
CN105050855A (zh) 蓄电系统和用于蓄电装置的满充电容量估计方法
US9197078B2 (en) Battery parameter estimation
CN111196168B (zh) 车辆的充电控制装置
US20130054072A1 (en) Method for Operating a Motor Vehicle and the Motor Vehicle
US10389143B2 (en) Battery power prediction for high load events
JP5803849B2 (ja) 蓄電システム
JP2010140762A (ja) リチウムイオン電池の状態を判別する判別装置
US20120150378A1 (en) Determination and Usage of Reserve Energy in Stored Energy Systems
US9365129B2 (en) Vehicle having an electric motor and method of controlling a display displaying a cruising distance of the vehicle
JP4866156B2 (ja) 二次電池の充電状態推定装置、充電状態推定方法、およびプログラム
US11180051B2 (en) Display apparatus and vehicle including the same
JP2020174458A (ja) 電池パック
JP5842607B2 (ja) 非水二次電池の制御装置および制御方法
JP2014121131A (ja) 車両用電源装置及び電動車両
JP5169479B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant