CN102785434A - 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法 - Google Patents

减反射玻璃及二次碱腐蚀制备减反射玻璃的方法 Download PDF

Info

Publication number
CN102785434A
CN102785434A CN2012103318093A CN201210331809A CN102785434A CN 102785434 A CN102785434 A CN 102785434A CN 2012103318093 A CN2012103318093 A CN 2012103318093A CN 201210331809 A CN201210331809 A CN 201210331809A CN 102785434 A CN102785434 A CN 102785434A
Authority
CN
China
Prior art keywords
glass
anti reflection
aqueous slkali
corrosion
basis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103318093A
Other languages
English (en)
Other versions
CN102785434B (zh
Inventor
刘立强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210331809.3A priority Critical patent/CN102785434B/zh
Publication of CN102785434A publication Critical patent/CN102785434A/zh
Application granted granted Critical
Publication of CN102785434B publication Critical patent/CN102785434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

本发明涉及减反射玻璃及二次碱腐蚀制备减反射玻璃的方法。其目的在于获得近零反射的Na2O-CaO-SiO2体系玻璃,大大增加玻璃的光透射率。本发明是采用下述技术方案实现的:将玻璃基体依次放入两个碱溶液腐蚀槽内腐蚀,取出洗净后放入烘箱内烘干得到减反射玻璃。本发明的有益效果为:成本低,得到的减反射玻璃的可见光双面反射率低于0.5%,本发明处理的超白平板和压花玻璃的可见光透过率超过99%。

Description

减反射玻璃及二次碱腐蚀制备减反射玻璃的方法
技术领域
本发明涉及玻璃表面处理方法,特别涉及二次碱腐蚀减反射玻璃及其制备方法。采用二次碱腐蚀法制备出的减反射玻璃适用于太阳能光热和光电材料、建筑用玻璃、温室玻璃墙及装饰用玻璃。
背景技术
目前减反射玻璃研究领域,减反射玻璃的可见光透光率一般都低于98%,且工艺复杂成本高,不适合规模化生产。本发明人经过几年的潜心研究,发明了二次碱腐蚀法减反射技术,这一独创的减反射技术的减反射效果好、成本低,用该方法处理的光伏玻璃可见光透过率达到99%以上,这一研究成果使我国的光伏玻璃减反射技术达到了国际领先水平。该技术的应用将会大大提升光伏电池的转换效率,提升我国光伏产品的国际竞争力,为我国光伏产业的发展和我国太阳能利用技术的进步做出贡献。利用该技术生产的减反射玻璃应用于建筑幕墙、温室墙体和装饰用玻璃可以降低光污染、提高太阳光的利用率、增加视觉清晰度。
发明内容
本发明是针对目前光伏、光热、建筑等玻璃需要降低反射率、提高透过率和消除光污染的需求发明的一种减反射效果好、成本低的减反射玻璃制备方法。
为达到上述目的,本发明所采用的技术方案为:一种减反射玻璃,它包括玻璃基体及其表面的减反射膜,所述减反射膜为连续梯度折射率分布的减反射膜层。
所述的减反射膜层厚度为80-500纳米。
所述玻璃基体为用压延法或浮法生产的光伏、光热、建筑、温室或装饰用Na2O-CaO-SiO2体系玻璃。
本发明采用的制备方法为:二次碱腐蚀制备减反射玻璃的方法,将玻璃基体依次放入两个碱溶液腐蚀槽内腐蚀,取出洗净后放入烘箱内烘干得到减反射玻璃。
所用玻璃基体为用压延法或浮法生产的光伏、光热、建筑、温室或装饰用Na2O-CaO-SiO2体系玻璃,玻璃基体放入碱溶液前,其表面需用清洗剂清洗干净,然后再用去离子水冲洗干净。市场上常见清洗剂即可。
将冲洗干净的玻璃基体放入第一个碱溶液腐蚀槽内,所述的碱溶液含有LiOH、NaOH、KOH、Ca(OH)2中的一种或多种以及微量NaSiO3,其中Ca(OH)不能单独使用;并在槽内放置0.5~40h,取出后用去离子水冲洗干净。
以上所用碱溶液浓度分别为LiOH 0.001~5%、NaOH 0.001~5%、KOH 0.001~5%、Ca(OH)2  0.001~0.16%,NaSiO3溶液浓度为0.0001~0.001%。
将经过第一个碱溶液腐蚀槽腐蚀的玻璃基体再放入第二个碱溶液腐蚀槽内,所述的第二个碱溶液腐蚀槽内的碱溶液含有LiOH、NaOH、KOH、Ca(OH)2中的一种或多种,其中Ca(OH)2亦不能单独使用;放置0.5~30h,然后取出用去离子水清洗干净。
第二个碱溶液腐蚀槽内所用碱溶液浓度分别为:LiOH  0.001~1%、NaOH  0.001~ 1%、KOH  0.001~1%、Ca(OH)2  0.001~0.01%。
将经过两个碱溶液腐蚀槽腐蚀的玻璃基体放入100~500℃的烘干箱内,烘干10~100min,关闭烘箱加热,自然降温到低于60℃时将玻璃从烘箱中取出,得到减反射玻璃。
本发明的有益效果是:采用二次碱溶液腐蚀法,该方法巧妙地利用了玻璃的微观结构特点,通过二次腐蚀技术使玻璃表面形成一层具有连续梯度折射率分布的多孔SiO2减反射膜层,并能够控制减反射膜层的梯度折射率分布形式,使玻璃的减反射性能和减反射带宽达到最优,得到的减反射玻璃的可见光双面反射率低于0.5%,采用二次腐蚀方法处理的超白玻璃可见光透过率超过99%,透过率大于96%的减反射带宽达到了1200nm,其性能指标达到国际领先水平。成本低。
附图说明
图1所示为实施例1未经减反射处理的玻璃基体断面扫描电镜图。
图2所示为实施例1经二次腐蚀减反射处理的玻璃表面连续折射率分布减反射膜层断面的扫描电镜图。
图3所示为实施例1未经处理玻璃基体与二次碱腐蚀减反射玻璃的透过率与反射率曲线图。
具体实施方式
实施例1:
如图2所示,一种减反射玻璃,它包括玻璃基体及其表面的减反射膜,所述减反射膜为连续梯度折射率分布的减反射膜层。所述的减反射膜层厚度为80-500纳米。所述玻璃基体为用压延法或浮法生产的光伏、光热、建筑、温室或装饰用Na2O-CaO-SiO2体系玻璃。图1所示为未经减反射处理的玻璃基体断面扫描电镜图。
测量所得减反射玻璃透过率与反射率,见图3。图中“原片玻璃”即为未经减反射处理的用压延法或浮法生产的光伏、光热、建筑、温室及装饰用Na2O-CaO-SiO2体系玻璃(钠钙硅体系玻璃)基体,其在减反射处理前透过率为91%左右,反射率为8%左右。采用本减反射方法处理后玻璃透的可见光过率可达99%以上、反射率低于0.5%。
实施例2:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为1%的NaOH和0.0005%的NaSiO3的溶液腐蚀槽内,并在槽内放置40h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为0.001% 的KOH溶液的腐蚀槽内,放置25h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入200℃的烘干箱内,烘干50min,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例3:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为1.6% KOH、0.007% Ca(OH)2以及0.0003%的NaSiO3溶液的腐蚀槽内,并在槽内放置20h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为1% LiOH、0.001%NaOH、0.003 Ca(OH)2的腐蚀槽内,放置10h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入300℃的烘干箱内,烘干30分钟,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例4:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为5% LiOH、0.001% NaOH、0.004% KOH、0.16% Ca(OH)2以及0.0001% NaSiO3溶液的腐蚀槽内,并在槽内放置0.5h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为1% 的NaOH和0.01% Ca(OH)2的腐蚀槽内,放置2h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入500℃的烘干箱内,烘干10分钟,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例5:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为5% NaOH、0.001% KOH、0.1% Ca(OH)2以及0.0007% NaSiO3溶液的腐蚀槽内,并在槽内放置3h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为0.01% LiOH、0.01% NaOH、0.01% KOH 以及0.01% Ca(OH)2的腐蚀槽内,放置0.5h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入100℃的烘干箱内,烘干100分钟,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例6:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为0.001% LiOH 、5% KOH 、0.001% Ca(OH)2以及0.001% NaSiO3溶液的腐蚀槽内,并在槽内放置20h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为1% 的KOH和0.0001% Ca(OH)2的腐蚀槽内,放置7h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入350℃的烘干箱内,烘干15分钟,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例7:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为2.5%的KOH以及0.001% NaSiO3溶液腐蚀槽内,并在槽内放置35h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为0.001% 的LiOH溶液的腐蚀槽内,放置30h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入200℃的烘干箱内,烘干50min,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。
实施例8:
将需要做减反射处理的用压延法或浮法生产的光伏、光热或建筑用Na2O-CaO-SiO2体系玻璃基体表面用清洗剂清洗干净,然后再用去离子水冲洗干净。将玻璃基体放入第一个含有浓度为2.5%的LiOH溶液腐蚀槽内,并在槽内放置35h,取出后用去离子水冲洗干净。将清洗干净的玻璃基体再放入第二个含有浓度为1% 的NaOH溶液的腐蚀槽内,放置30h,然后取出用去离子水清洗干净。将清洗干净的玻璃基体放入200℃的烘干箱内,烘干50min,关闭烘箱加热开关,自然降温至60℃时从烘箱中取出,得到减反射玻璃。

Claims (10)

1.一种减反射玻璃,其特征在于,它包括玻璃基体及其表面的减反射膜,所述减反射膜为连续梯度折射率分布的减反射膜层。
2.如权利要求1所述的减反射玻璃,其特征在于,所述的减反射膜层厚度为80-500纳米。
3.如权利要求1或2所述的减反射玻璃,其特征在于所述玻璃基体为用压延法或浮法生产的光伏、光热、建筑、温室或装饰用Na2O-CaO-SiO2体系玻璃。
4.二次碱腐蚀制备减反射玻璃的方法,其特征在于将玻璃基体依次放入两个碱溶液腐蚀槽内腐蚀,取出洗净后放入烘箱内烘干得到减反射玻璃。
5.如权利要求4所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于所用玻璃基体为用压延法或浮法生产的光伏、光热、建筑、温室或装饰用Na2O-CaO-SiO2体系玻璃,玻璃基体放入碱溶液前,其表面需用清洗剂清洗干净,然后再用去离子水冲洗干净。
6.如权利要求4或5所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于将冲洗干净的玻璃基体放入第一个碱溶液腐蚀槽内,所述的碱溶液含有LiOH、NaOH、KOH、Ca(OH)2中的一种或多种以及微量NaSiO3,其中Ca(OH)不能单独使用;并在槽内放置0.5~40h,取出后用去离子水冲洗干净。
7.如权利要求6所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于所用碱溶液浓度分别为LiOH 0.001~5%、NaOH 0.001~5%、KOH 0.001~5%、Ca(OH)2  0.001~0.16%,NaSiO3溶液浓度为0.0001~0.001%。
8.如权利要求7所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于将经过第一个碱溶液腐蚀槽腐蚀的玻璃基体再放入第二个碱溶液腐蚀槽内,所述的第二个碱溶液腐蚀槽内的碱溶液含有LiOH、NaOH、KOH、Ca(OH)2中的一种或多种,其中Ca(OH)2亦不能单独使用;放置0.5~30h,然后取出用去离子水清洗干净。
9.如权利要求8所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于第二个碱溶液腐蚀槽内所用碱溶液浓度分别为:LiOH  0.001~1%、NaOH  0.001~1%、KOH  0.001~1%、Ca(OH)2  0.001~0.01%。
10.如权利要求9所述的二次碱腐蚀制备减反射玻璃的方法,其特征在于将经过两个碱溶液腐蚀槽腐蚀的玻璃基体放入100~500℃的烘干箱内,烘干10~100min,关闭烘箱加热,自然降温到低于60℃时将玻璃从烘箱中取出,得到减反射玻璃。
CN201210331809.3A 2012-09-10 2012-09-10 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法 Active CN102785434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210331809.3A CN102785434B (zh) 2012-09-10 2012-09-10 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210331809.3A CN102785434B (zh) 2012-09-10 2012-09-10 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法

Publications (2)

Publication Number Publication Date
CN102785434A true CN102785434A (zh) 2012-11-21
CN102785434B CN102785434B (zh) 2014-12-24

Family

ID=47151108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210331809.3A Active CN102785434B (zh) 2012-09-10 2012-09-10 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法

Country Status (1)

Country Link
CN (1) CN102785434B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795785A (zh) * 2012-09-10 2012-11-28 刘立强 减反射玻璃及二次酸腐蚀制备减反射玻璃的方法
CN103043917A (zh) * 2012-12-28 2013-04-17 浙江大学 一种超白光伏玻璃减反膜的制备方法
CN105236756A (zh) * 2015-09-21 2016-01-13 海南大学 减反射玻璃及其制备方法
CN105917252A (zh) * 2014-01-16 2016-08-31 康宁精密素材株式会社 抗反射玻璃基底及其制造方法
CN107827367A (zh) * 2017-11-23 2018-03-23 海南中航特玻科技有限公司 一种具有防眩增透功能平板玻璃的制备方法
CN108863091A (zh) * 2018-07-20 2018-11-23 武汉理工大学 一种防眩光玻璃的制备方法
CN111211049A (zh) * 2018-11-21 2020-05-29 上海尚理投资有限公司 一种硅片碱腐蚀工艺及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120014865A (ko) * 2011-07-14 2012-02-20 연세대학교 산학협력단 반사 방지성 유리를 포함하는 태양전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120014865A (ko) * 2011-07-14 2012-02-20 연세대학교 산학협력단 반사 방지성 유리를 포함하는 태양전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘立强等: "梯度折射率宽带减反射光伏玻璃研究", 《功能材料》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795785A (zh) * 2012-09-10 2012-11-28 刘立强 减反射玻璃及二次酸腐蚀制备减反射玻璃的方法
CN102795785B (zh) * 2012-09-10 2015-04-22 刘立强 减反射玻璃及二次酸腐蚀制备减反射玻璃的方法
CN103043917A (zh) * 2012-12-28 2013-04-17 浙江大学 一种超白光伏玻璃减反膜的制备方法
CN103043917B (zh) * 2012-12-28 2015-08-26 浙江大学 一种超白光伏玻璃减反膜的制备方法
CN105917252A (zh) * 2014-01-16 2016-08-31 康宁精密素材株式会社 抗反射玻璃基底及其制造方法
US10295705B2 (en) 2014-01-16 2019-05-21 Corning Precision Materials Co., Ltd. Anti-reflection glass substrate and method for manufacturing same
CN105917252B (zh) * 2014-01-16 2019-05-28 康宁精密素材株式会社 抗反射玻璃基底及其制造方法
CN105236756A (zh) * 2015-09-21 2016-01-13 海南大学 减反射玻璃及其制备方法
CN107827367A (zh) * 2017-11-23 2018-03-23 海南中航特玻科技有限公司 一种具有防眩增透功能平板玻璃的制备方法
CN108863091A (zh) * 2018-07-20 2018-11-23 武汉理工大学 一种防眩光玻璃的制备方法
CN108863091B (zh) * 2018-07-20 2021-04-20 武汉理工大学 一种防眩光玻璃的制备方法
CN111211049A (zh) * 2018-11-21 2020-05-29 上海尚理投资有限公司 一种硅片碱腐蚀工艺及其应用

Also Published As

Publication number Publication date
CN102785434B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN102785434B (zh) 减反射玻璃及二次碱腐蚀制备减反射玻璃的方法
KR101455448B1 (ko) 투명 유리 기재 및 이러한 기재의 제조 방법
CN102299207B (zh) 用于太阳电池的多孔金字塔型硅表面陷光结构制备方法
CN102225849B (zh) 一种免烧结玻璃表面减反膜的制备方法
CN102863156B (zh) 一种绒面azo透明导电膜的制备方法
CN103789839B (zh) 一种弱氧化单晶硅片的制绒方法
CN102786228B (zh) 碱腐蚀制备减反射玻璃的方法
CN102795785B (zh) 减反射玻璃及二次酸腐蚀制备减反射玻璃的方法
CN103219427A (zh) 一种高陷光纳米结构单面制绒的实现方法
CN104362221A (zh) 一种rie制绒的多晶硅太阳电池的制备方法
CN102324446A (zh) 用于薄膜太阳电池的透明导电基板的制备方法
CN105236756A (zh) 减反射玻璃及其制备方法
CN109853044A (zh) 基于全波段减反的单晶硅表面复合微结构及其制备方法
CN104538470A (zh) 基于硅纳米线阵列的太阳能电池及其制备方法
CN109801989A (zh) 一种发电建材及其制备方法
CN103043917B (zh) 一种超白光伏玻璃减反膜的制备方法
CN201181710Y (zh) 一种其上镀有增透膜的太阳能光伏电池
CN103320776A (zh) 一种非真空中高温太阳能选择性吸收涂层复合减反膜及其制备方法
CN103643289B (zh) 基于化学刻蚀的单晶硅表面结构及其制备及应用
CN206616149U (zh) 一种高透光率光伏镀膜玻璃
CN102795784A (zh) 酸腐蚀制备减反射玻璃的方法
CN103570248B (zh) 增透的防雾玻璃及其制备方法
CN102544200B (zh) 一种纳米太阳电池陷光结构的制备方法
CN112147722A (zh) 一种光伏玻璃用的增透膜及其制备方法和应用
CN101624700A (zh) 一种多晶硅太阳电池表面织构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant