CN102781871B - 无机磷酸盐组合物及方法 - Google Patents

无机磷酸盐组合物及方法 Download PDF

Info

Publication number
CN102781871B
CN102781871B CN201080056375.XA CN201080056375A CN102781871B CN 102781871 B CN102781871 B CN 102781871B CN 201080056375 A CN201080056375 A CN 201080056375A CN 102781871 B CN102781871 B CN 102781871B
Authority
CN
China
Prior art keywords
component
phosphate
coating
oxide
valency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080056375.XA
Other languages
English (en)
Other versions
CN102781871A (zh
Inventor
阿伦·沃
威廉·乔治
瓦季姆·德罗兹德
考希克·穆霍帕迪亚
萨米尔库玛·瓦桑特拉尔·帕特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Latitude 18 Inc
Original Assignee
Latitude 18 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latitude 18 Inc filed Critical Latitude 18 Inc
Publication of CN102781871A publication Critical patent/CN102781871A/zh
Application granted granted Critical
Publication of CN102781871B publication Critical patent/CN102781871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2402Apparatus to be carried on or by a person, e.g. by hand; Apparatus comprising containers fixed to the discharge device
    • B05B7/2472Apparatus to be carried on or by a person, e.g. by hand; Apparatus comprising containers fixed to the discharge device comprising several containers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/06Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances cement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • C04B2111/00172Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite by the wet process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paints Or Removers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Civil Engineering (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Paper (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明所公开和描述的是酸性磷酸盐组分和碱性氧化物/氢氧化物组分的多组分无机磷酸盐制品。还公开了其适于喷雾涂覆的高固体可雾化的组合物。

Description

无机磷酸盐组合物及方法
技术领域
本发明涉及酸性磷酸盐组分和碱性氧化物/氢氧化物组分的多组分无机磷酸盐制品。
背景技术
环氧、聚酯、聚丙烯和其他聚合物制得的有机合成材料被广泛用于复合材料,例如纤维板、玻璃纤维复合材料、用于大理石和花岗岩台面板表面的密封剂、航空器、防弹衣等。这些树脂相对昂贵,具有高温室气体密度并且是可燃的。在它们的使用期间由它们释放的挥发性的有机化合物对于使用者存在健康危害。
目前有用于配制无机矿物基树脂的技术但是这些技术通常是以碱金属铝硅酸盐和碱金属硼铝硅酸盐为基础的。这些技术大部分限于一种类型的制品并且不是总允许具有广泛范围的配方、特性和用途的树脂的制造。
磷酸盐陶瓷以及由磷酸或酸性磷酸盐和金属氧化物之间的酸碱反应制得的陶瓷是广为人知的。这些发明中公开的产品是硬的并且重复水泥或陶瓷或两者的特性。
迄今为止的快速固化组合物例如磷酸盐陶瓷已经证实很难喷涂涂覆(并雾化)在表面上以提供平滑的、类似漆的光洁度。例如,常规的水凝水泥可被溅射涂覆,但是溅射的涂覆不能提供平滑的、类似漆的光洁度,因为其难以获得与高粘度,非悬浮的基质的良好的混合,并且这些涂层包含大量的往往导致颗粒状表面纹理的未反应的前体材料。同样,将常规的水凝水泥混合延长的时间以便提高其同质性通常导致在溅射涂覆之前或过程中的混合物固化。与这些常规制品中的起始前体一起使用另外的集料加剧了提供平滑的类似漆的光洁度的问题,尤其是如果这些集料具有大于约300筛目的尺寸。因此,迄今为止未能成功配制常规的水凝水泥以使它们是可容易地雾化的。
另一个问题,尤其对于磷酸盐陶瓷来说,是它们在应用和固化之后通常是半透明的。在可雾化的磷酸盐陶瓷中使用有色集料以向这些制品提供颜色构成了挑战。在这些制品中使用太少的天然矿物集料(例如,为了避免不想要的纹理)产生通常显示为白色或弱着色的涂料并且因此即使高于着色剂的常规负载也是不可接受的。由于流变学难题和困难地雾化,通常避免在这些制品中使用高负载的固体和/或较大的集料。
另一方面,迄今为止已经证明难以使用较大的集料(包括大的集料着色剂例如有色的砂土集料)获得有纹理的、可雾化的磷酸盐陶瓷涂料,部分由于较多的集料可阻塞喷雾/雾化设备并且必须配制组合物以使其可保持大的集料颗粒但是同时在集料移动例如沿着垂直表面或过顶表面向下前固化。相反,常规的非陶瓷的漆提供太薄的涂层而难以保持用于织构化和突出化的大的集料,至少部分因为它们具有过低的粘性并且因为它们花太长时间固化。
发明内容
一般来说,本文公开的是包含至少一种酸性磷酸盐第一组分和至少一种碱性第二组分的多组分制品,所述第一和第二组分适于组合提供无机磷酸盐组合物。
本文还公开了进行便宜地制造商业上可行的具有高强度和在制造产品和/或改进现有产品中有用的其他有用的特性的无机合成组合物所必需的化学反应的技术。本文公开的一个方面涉及制造能够长期存储和运输的化学上稳定的多组分无机磷酸盐前体的方法。在本文公开的一个具体的方面,公开了用于修饰无机磷酸盐前体溶液以便产生高强度的快速固化的磷酸盐组合物的方法。在本文公开的另一个具体的方面,提供了具有低密度、减少的结晶形态的无机磷酸盐组合物。另外的实施方案涉及制造用于热转化为包含块磷铝石(AlPO4)相的材料的用作防火涂料的无机磷酸盐组合物的方法。通常,本文公开的方面包括使用环境友好的技术在这些无机磷酸盐前体和组合物的商业产品中提供改善的性能的制造方法。
本文还公开的是之前提到的与为了喷雾涂覆和/或将所述组合物雾化而配制的半透明的磷酸盐陶瓷的织构化和/或着色有关的问题的解决方法。因此,即时可喷雾的无机磷酸盐前体组合物包含高达约30筛目或更大的集料并且可以相对薄的厚度喷雾而仍然保持所述集料并且在集料从应用位点移动或移出例如沿着墙面向下或从天花板落下之前足够迅速地固化。这些喷雾涂覆的磷酸盐陶瓷组合物产生具有美学上令人愉快的颜色的高强度的迅速固化的磷酸盐陶瓷涂料。这些组合物还可提供防腐保护和/或被用作与聚合涂料例如丙烯酸或氨基甲酸乙酯基涂料组合的内层涂料。在一个方面,所述磷酸盐喷雾涂料组合物适于在金属表面例如交通工具诸如汽车、火车、自行车、宇航飞行器、货车和公共汽车的结构元件和底盘上喷雾涂覆。
本文公开和描述的前体组分和组合物中的一些是以磷酸或磷酸盐溶液为基础的。某些实施方案使用微溶(sparsely-soluble)的氧化物和微溶的氧化物矿物,其是于中性pH值在水中具有有限的溶解度的氧化物和氧化物矿物。前体组分包含至少一种酸性磷酸盐组分(第一组分)和至少一种碱性氧化物/氢氧化物组分(第二组分)。
在一个方面,所述第一组分被制备为磷酸或磷酸盐的水溶液以使溶液具有约1.5至约5的pH值。在一个方面,不包括包含第一组分具有1.5以下和/或5以上的pH值的水溶液。
在另一个方面,第二组分通过向pH值9-14的水溶液缓慢加入所述微溶的氧化物或所述微溶的氧化物矿物来制备。
在还有另一个方面,所述微溶的氧化物或所述微溶的氢氧化物被提供为来自于天然来源并且任选地修饰以便以其氢氧化物形式提供有效量的所述微溶的氧化物的卤水溶液。例如,使用包含有效量的氢氧化镁(任选地与有效量的氯化镁、氯氧化镁、硫酸镁和硫酸氧镁一起)的镁卤水。使用其氢氧化物形式的微溶的氧化物的液体来源使得可以消除或减少与通常在无机磷酸盐材料的制备中使用的粉末的单个颗粒的良好润湿有关的问题并且避免或减少了任何过量的放热反应。
如下文所列出的实施例中所示的,所获得的从上文提到的第一和第二前体组分制备的无机磷酸盐组合物具有独特的形态结构。即时混合的制品或所述固化产品可用作薄/厚的涂料、漆、即时粘合剂或用作复合材料的基质或用作在金属和非金属结构材料上使用的抗腐蚀剂或防火涂料。
在一个实施方案中,提供了生产磷酸盐组合物的方法。所述方法包括提供包含化学式Am(H2PO4)m.nH2O的酸性磷酸盐的水溶液的第一组分,其中A是氢离子、铵阳离子、金属阳离子或其混合物;其中,m=1-3并且n=0-6;将所述第一组分溶液调节至约2至约5的pH值。提供包含由B2mOm、B(OH)2m表示的碱性氧化物或碱性氢氧化物或其混合物的水溶液的第二组分,其中B是化合价为2m(m=1、1.5或2)的元素,所述第二组溶液调节至9-14之间的pH值。将第一组分和第二组分混合在一起以提供无机磷酸盐组合物。任选地,可加入一定尺寸和一定量的集料着色剂以便赋予所述固化产品可见的颜色。
在所述第一实施方案的第一个方面,所述第一组分的pH值被调节至约2.5至约5之间或约3至约4.5之间。
在所述第一实施方案的第二个方面,所述第一组分包含磷酸盐、式Mm(H2PO4)m的二氢磷酸盐及其水合物,或其混合物;其中M是钠、钾、镁、钙、铝或其混合物并且m为1-3。
在所述第一实施方案的第三个方面,所述第一组分包含碱的二氢磷酸盐(alkali dihydrogen phosphate)M(H2PO4)或其水合物、磷酸、碱土二氢磷酸盐M(H2PO4)2或其水合物或三价金属三氢磷酸盐MH3(PO4)2或其水合物中的至少两种。
在所述第一实施方案的第四个方面,所述第一组分包含由式M3(PO4)2表示的金属磷酸氢盐及其水合物,其中M是铝(III),铁(III),锰(III),选自镧(III)、铈(III)、钇(III)、钪(III)的镧系金属及其混合物。
在所述第一实施方案的第五个方面,所述第一组分包含与磷酸或磷酸三氢铝或其水合物中的一种或多种组合的磷酸二氢钾或其水合物,以使溶液的pH值在2-5之间。A是钠、钾、铯、铁(II)、铁(III)、镁(II)、锌(II)、铝(III)、铋(III)、锆(IV)或其混合物。
在所述第一实施方案的第六个方面,所述第一组分包含磷酸,碱金属二氢磷酸盐MH2PO4,碱土金属二氢磷酸盐M(H2PO4)2或其水合物,过渡金属三氢磷酸盐MH3(PO4)2或其水合物,或其混合物,与碱金属氧化物、碱金属氢氧化物、碱土金属氧化物或碱性矿物组合。
与所述第一实施方案的上述方面中的任一个组合,所述第二组分的pH值被调节至约9至约13之间或约10至约12之间或约10至约11之间。
与所述第一实施方案的上述方面中的任一个组合,所述第二组分包含由式BO表示的氧化物或由式B(OH)表示的氢氧化物,其中B是碱土金属或过渡金属。B可以是钠、钾、镁、钙、锌、钡、铝、钇、镧系金属、锆、铁、铋或锰。所述第二组分可以是镁、钡、钙、锌、铁(II)、锰(II)的氧化物或氢氧化物或其混合物。
与所述第一实施方案的上述方面中的任一个组合,所述第二组分是具有约9至约11,或约10至11的pH值的镁卤水,其中镁卤水包含有效量的氢氧化镁。氢氧化镁可通过具有六边形板状形态来表征。镁卤水还可含有有效量的氢氧化镁、氯化镁、硫酸镁、氧氯化镁前体、硫酸氧镁前体或其混合物。
与所述第一实施方案的上述方面中的任一个组合,所述第二组分包含具有大于5m2/g的平均最小表面积的颗粒物质。与所述第一实施方案的上述方面中的任一个组合,所述第二组分还以第二组分的1∶0.05至1∶6之间的重量比包含硅灰石、滑石粉、粉煤灰、高岭土、高岭石、偏高岭土、莫来石、铝酸钙矿物、硅酸钙矿物、硅酸铝矿物、硅酸铝钙矿物或其混合物。
在所述第一实施方案的第七个方面,所述第一组分是磷酸二氢钾或其水合物并且所述第二组分是具有约9至约11的pH值的镁卤水,其中所述镁卤水含有有效量的氢氧化镁。
在所述第一实施方案的第八个方面,所述第一组分是磷酸二氢钾或其水合物并且所述第二组分是具有约9至约11的pH值的镁卤水,其中所述镁卤水含有有效量的氢氧化镁,其中所述镁卤水含有有效量的氢氧化镁、氯化镁、硫酸镁、氧氯化镁磷酸盐前体、硫酸氧镁磷酸盐前体或其混合物。
在所述第一实施方案的第九个方面,所述第一组分包含Mg(H2PO4)2或其水合物并且所述第二组分包含碱金属氧化物或碱金属氢氧化物。
在所述第一实施方案的第十个方面,所述第一组分包含AlH3(PO4)2或其水合物并且所述第二组分包含碱金属氧化物或碱金属氢氧化物。
与所述第一实施方案的上述方面中的任一个组合,所获得的反应产物具有减少的结晶形态或减少的成核中心。与所述第一实施方案的上述方面中的任一个组合,所述第一组分或所述第二组分具有小于50微米的平均粒度。
在所述第一实施方案的第十一个方面,所述第二组分是碱土金属氧氯化物磷酸盐前体、碱土金属硫酸氧化物(oxy-sulfate)磷酸盐前体或其混合物。
与所述第一实施方案的上述方面中的任一个组合,所述第二组分还包含填充剂硅灰石(CaSiO3)、滑石(Mg3Si4O10(OH)2、莫来石(硅酸铝)、C类粉煤灰和F类粉煤灰两者,所述活性填充剂以与所述第二组分1∶0.5至1∶6的重量比存在。与所述第一实施方案的上述方面中的任一个组合,提供通过如所述第一实施方案中定义的工艺制备的产品。
在第二个实施方案中,提供了无机磷酸盐化合物。所述化合物具有通式:B(A3-mPO4)s,其中A具有m=1或2的化合价,B具有s=1或2的化合价;B(A(2/m)PO4)s,其中A具有m=1或2的化合价,B具有s=1或2的化合价;(2/m)A3Bm(PO4)2,其中A具有m=1或2的化合价,B具有3的化合价;或B(AOPO4)s,其中A具有4的化合价并且S=1或2而B具有1或2的化合价,其中无机磷酸盐i-iv具有下列表征中的至少一个:如通过x-射线衍射所测量的存在大量减少的量的煅烧的碱金属/碱土金属氧化物颗粒;或如通过x-射线衍射所测量的相对于组成上相似的无机磷酸盐陶瓷减少的结晶形态,或者;相对于组成上相似的无机磷酸盐陶瓷减少的密度。
在所述第二实施方案的第一个方面,无机磷酸盐的密度小于1.8g/cm3或小于1.5g/cm3。与所述第二实施方案的上述方面中的任一个组合,所述化合物是Na2KPO4、NaK2PO4、MgKPO4、Mg(ZnPO4)2、Mg(K2PO4)2、Mg2KPO4、Mg(ZnPO4)2、Mg(K2PO4)2、AlK3(PO4)2、Al2Mg3(PO4)2、ZrOKPO4、Mg(ZrOPO4)2、Zr(OH)2KPO4或Mg[Zr(OH)2PO4)2]2
在第三实施方案中,提供了生产含有氧磷酸盐的组合物的方法,所述方法包括:提供包含化学式(MO)(H2PO4)2的氧磷酸盐及其水合物的溶液的第一组分,其中M是化合价4的元素并且m=1-3,其中所述第一组分溶液调节至2-5之间的pH值;提供包含由B2mOm或B(OH)2m表示的碱性氧化物或碱性氢氧化物的溶液的第二组分,其中B是化合价2m(m=1、1.5或2)的元素;并且将所述第一组分和所述第二组分混合在一起。
在所述第三实施方案的第一个方面,M是锆(IV)。在所述第三实施方案的第二个方面,pH值被调节至2-5之间或者pH值被调节至3-4.5之间或者pH值被调节至3-3.5之间。与所述第三实施方案的上述方面中的任一个组合,所述第一组分包含氧氯化镁、硫酸氧镁或其混合物,与一定量的氢氯酸或硫酸组合以将pH值降至2至5之间。与所述第三实施方案的上述方面中的任一个组合,提供了通过如所述第三实施方案中定义的工艺制备的产品。与所述第三实施方案的上述方面中的任一个组合,所述第二组分包含以所述第二组分的0-5重量%之间的量存在的锆化合物、锌化合物或混合物。
在第四实施方案中,提供了生产块磷铝石的方法。所述方法包括:提供包含磷酸三氢铝AlH3(PO4)2或其水合物的第一组分;提供包含氢氧化铝的第二组分;将所述第一组分和所述第二组分混合在一起;以及在足以形成x射线衍射可检测的块磷铝石相(AlPO4)的升高的温度加热混合物。
在第五方面,提供了生产耐高温涂料的方法,所述方法包括:提供包含磷酸三氢铝AlH3(PO4)2或其水合物的第一组分;提供包含氢氧化铝的第二组分;将所述第一组分和所述第二组分混合在一起;以及将物品的表面与所述第一组分和所述第二组分的混合物接触;在足以形成x射线衍射可检测的块磷铝石相(AlPO4)的升高的温度加热所述物品的表面。
在第六实施方案中,提供了生产磷酸三氢铝AlH3(PO4)2或其水合物的方法。所述方法包括将包含氧化铝或氢氧化铝或氧化铝水合物中的至少一种和磷酸的溶液加热至升高的温度一段足以溶解最大量的氧化铝或氢氧化铝或氧化铝水合物中的至少一种的时间;以及冷却以形成粘性溶液。
在所述第六实施方案的第一个方面,所述方法还包括向所述溶液加入约0.5重量%至约2重量%的氟化物离子的来源。与所述第六实施方案的上述方面中的任一个组合,所述方法还包括向所述溶液加入约0.2重量%至约1重量%的氧化剂,氧化剂选自高锰酸钾,铬酸钾,铬酸钠,钾、镁或铝的可溶的硝酸盐。与所述第六实施方案的上述方面中的任一个组合,所述方法还包括将镁卤水、氢氧化镁或氧化镁中的至少一种与所述粘性溶液混合以形成反应混合物;以及将所述反应混合物应用于基材上。
在第七实施方案中,提供了可雾化的磷酸盐陶瓷组合物。可雾化的磷酸盐陶瓷组合物包含:第一组分,所述第一组分包含化学式Am(H2PO4)m.nH2O的酸性磷酸盐的水溶液,其中A是氢离子、铵阳离子、金属阳离子或其混合物,其中,m=1-3并且n=0-6,将所述第一组分溶液调节至约2至约5的pH值;第二组分,所述第二组分包含由B2mOm、B(OH)2m表示的碱性氧化物或碱性氢氧化物或其混合物的水溶液,其中B是化合价为2m(m=1、1.5或2)的元素,将所述第二组溶液调节至9-14之间的pH值;和流变改性剂/悬浮剂,其量能够提供所述第一组分或所述第二组分的剪切稀化并且还能够将高固体含量的所述第一组分或所述第二组分悬浮以便雾化。任选地,集料材料以在所述第一和第二组分的至少一种能够赋予可见的颜色和/或纹理的量存在。所述第一组分可包含磷酸二氢钾或其水合物,与磷酸或磷酸三氢铝或其水合物中的一种或多种组合以使所述溶液的pH值在2-5之间。所述第一组分可包含磷酸二氢钙或其水合物。所述第一组分,A可以是钠、钾、铯、铁(II)、铁(III)、镁(II)、锌(II)、铝(III)、铋(III)、锆(IV)或其混合物。所述第一组分优选地包含磷酸盐、碱金属二氢磷酸盐MH2PO4、碱土金属二氢磷酸盐M(H2PO4)2或其水合物,过渡金属三氢磷酸盐MH3(PO4)2或其水合物,或其混合物。第二组分可以是由式BO表示的氧化物或由式B(OH)表示的氢氧化物,其中B是碱土金属或过渡金属,其中B是钠、钾、镁、钙、锌、钡、铝、钇、镧系金属、锆、铁、铋或锰。所述第二组分可以是镁、钡、钙、锌、铁(II)、锰(II)的氧化物或氢氧化物或其混合物。第二组分可以是具有约9至约11的pH值的镁卤水。磷酸盐陶瓷喷雾组合物还可包含以足以增加磷酸盐陶瓷硬度的量存在的氧化铝。可使用所述第一或第二组分的高达约75重量%的固体含量。
与所述第七实施方案的上述方面中的任一个组合,流变改性剂/悬浮剂是瓜尔豆胶,迪特胶(diutan gum),维纶胶(welan gum)和黄原胶中的至少一种。与所述第七实施方案的上述方面中的任一个组合,所述集料以至少约1重量%至约60重量%的量存在。与所述第七实施方案的上述方面中的任一个组合,所述集料是树脂涂覆的二氧化硅和天然有色矿物集料中的至少一种。集料可以具有约20筛目微米至约400筛目的平均粒度。与所述第七实施方案的上述方面中的任一个组合,所述集料具有至少约20筛目或更小的平均粒度并且在应用小于20密耳的涂层后,在垂直表面或过顶表面上的涂层中喷雾的磷酸盐陶瓷涂料基本上保持集料。
在第八方面,将磷酸盐陶瓷雾化的方法,所述方法包括提供(i)包含化学式Am(H2PO4)m.nH2O的酸性磷酸盐的水溶液的第一组分,其中A是氢离子、铵阳离子、金属阳离子或其混合物,其中,m=1-3并且n=0-6,所述第一组分溶液调节至约2至约5的pH值;和(ii)包含由B2mOm、B(OH)2m表示的碱性氧化物或碱性氢氧化物或其混合物的水溶液的第二组分,其中B是化合价为2m(m=1、1.5或2)的元素,所述第二组溶液调节至9-14之间的pH值,其中在雾化之前所述第二组分与所述第一组分是分离的;(iii)能够在离开分配设备之前提供所述第一组分或所述第二组分的剪切稀化并且还能够将高固体含量的任一种组分悬浮导致第一组分或第二组分的粘度上的降低以便雾化的流变改性剂/悬浮剂;和将所述第一组分和所述第二组分雾化。所述第一组分和所述第二组分可以是如上文对于第七实施方案所描述的。任选地,集料材料可以在所述第一和第二组分中的至少一个中以能够赋予可见的颜色和/或纹理的量存在。在一个方面,雾化的步骤包含使用多通道泵、多活塞泵、蠕动泵、柱塞排出挤压器(ramdischarge extruder)和螺杆泵中的至少一个驱使所述第一组分和第二组分通过雾化喷孔。
与所述第八实施方案的上述方面中的任一个组合,雾化的步骤还包括用于将所述第一组分、所述第二组分和所述集料混合的混合器。与所述第八实施方案的上述方面中的任一个组合,雾化的步骤包括将所述第一和第二组分基本上同时地分散。与所述第八实施方案的上述方面中的任一个组合,所述流变改性剂/悬浮剂是瓜尔豆胶,迪特胶,维纶胶和黄原胶中的至少一种。
与所述第八实施方案的上述方面中的任一个组合,所述集料以至少约1重量%至约60重量%的量存在。所述集料可以具有约20筛目至约400筛目的平均粒度。所述集料可以是包括天然有色矿物集料的集料着色剂和包含树脂涂覆的二氧化硅的集料着色剂中的至少一种。与所述第八实施方案的上述方面中的任一个组合,所述集料具有在应用后向喷雾组合物提供表面纹理的平均粒度。与所述第八实施方案的上述方面中的任一个组合,所述方法还包括在应用于垂直表面或过顶表面时形成小于约20密耳厚的涂层并且将所述集料保持在所述涂层中的步骤,其中所述集料是至少400筛目的。
附图简述
上文概述的本文中公开和描述的各方面的理解可通过参考附图来获得,其中一些附图图示说明了从下文陈述的实施例获得的结果。相应地,
图1描述了本文中公开并且描述的磷酸镁钾组合物的薄涂层(蓝色)和厚涂层的X射线衍射图样。
图2描述了常规Ceramicrete(一种磷酸盐水泥)的X射线衍射图样。
图3描述了如本文中公开和描述的磷酸铝(alumophosphate)(AlH3(PO4)2·2.5H2O)A和Al(OH)3的X射线衍射图,证实了晶相或非晶相的减少。
图4是本文中公开和描述的磷酸氢铝凝胶的照片。
图5描述了本文中公开和描述的由磷酸氢铝、硅灰石和氧化镁生成的涂料的X射线衍射图样。
图6描述了与显示用于比较的纯莫来石和磷酸铝相比的本文中公开和描述的磷酸铝、MgO和莫来石样品的X射线衍射图
图7描述了通过使用本文中公开和描述的磷酸氢铝和氧化镁前体材料生成的涂料。
具体实施方式
在不同方面,提供了一种多组分制品,包括至少一种酸性组分和至少一种碱性组分。所述多组分制品的两种组分都以溶液、乳液、分散体、浆体或其组合提供。每种组分被单独生成并单独贮存,并且可被单独或组合分配。所述组分最终在应用前或在应用过程中组合并且允许反应形成无机磷酸盐组合物。
所获得的所述多组分制品的反应产物在pH值上接近中性并且可提供类似耐火材料的组合物,其在很高的温度例如超过20000F(诸如大多数商业有机基产品和一些无机产品不能存留的温度)时很稳定。
在另一个实施方案中,上述制品被作为合适的涂料和/或漆提供并被配制用于高固体喷雾涂料。直到现在,喷涂具有高固体含量的陶瓷前体溶液的悬浮液并在应用至表面后获得平滑的或不会产生集料的移动(或涂料中集料的大量保留)的涂层还是困难的。事实上,同样的情形也会出现在水凝水泥的常规喷雾涂覆中。由于多种原因像常规漆/涂料制品一样将喷雾设备与含集料制品一起使用是有问题的,所述多种原因中的一些包括使大尺寸集料通过喷雾设备的小喷孔的难题,以及甚至更困难的,一旦所述集料被喷涂在表面上防止它们移动的难题。同样地,雾化所述含集料制品的能力和获得可接受的涂覆表面也是难以捉摸的。减少制品的固化时间仅提供了对这个问题的部分解决方法并且通常不适用于常规油漆。
申请人因此提供了能够喷雾涂覆并且能够雾化以便提供“类似漆”外观的陶瓷制品。事实上,很难在表面上区分即时固化涂料与常规漆涂料。类似常规漆,所述即时制品可被直接喷在表面上,例如,金属表面,混凝土表面和其它结构表面,但相比之下,所述即时制品提供了不可能来自于常规漆的水平的功能性的、增值的特性,例如金属腐蚀防护和耐火性。
通过所述制品组分(A和B部分)中固体的流变学控制和分散的组合,使用常规喷雾设备提供了类似漆的最终的陶瓷涂料。进一步证明集料着色剂可被有效地掺入已有的高固体制品组分以便提供着色的涂料。同样证明了使用大尺寸的集料例如沙子提供即时制品的纹理表面。使用其量能够提供所述第一组分或所述第二组分的剪切稀化并且还能够使高固体含量的所述第一组分或所述第二组分悬浮以便雾化的流变改性剂/悬浮剂,获得优异的类似漆的涂料。
由于被调节的所述组分的粘度、它们的密度和它们迅速固化的能力(以提供所述集料的至少一种机械保持(mechanical hold)),将所述集料加至本公开内容(instant disclosure)的高固体组分据信是可能的。常规漆和大多数水凝水泥仅仅由于至少它们不能迅速固化而不能保持大尺寸的集料(用于着色或织构化)。结果,所述即时制品与这些常规涂料不同,在于它们能够提供例如从威尼斯沙石膏光洁度(Venetian sand plaster finish)至鲜艳着色的类似绸缎光洁度的涂层的一系列涂层,而从常规水凝水泥或常规漆不能得到。
在一个方面,可喷雾的陶瓷涂料包含第一组分和第二组分、悬浮剂、小于约30筛目的粒度的集料和流变改性剂。
第一组分-酸性磷酸盐前体材料
酸性磷酸盐组分:该酸性磷酸盐组分由磷酸和/或式Am(H2PO4)m.nH2O的酸性磷酸盐组成,其中A为m价的元素例如钠(Na,m=1)、钾(K,m=1)、镁(Mg,m=2)、钙(Ca,m=2)、铝(Al,m=3)等。当使用较高价氧化物时,A可以为被还原的氧化物相(oxide phase)。例如,对于铁,其以+2和+3的化合价状态(为氧化物的FeO和Fe2O3)存在,A可以为较低的氧化状态的金属。它也可以是四价金属氧化物例如ZrO2+的氧化物阳离子,在这种情况下,m=2,上文式中nH2O仅仅为结合水,其中n可以为任意数字,通常范围为从0至25。
使用由式AH3(PO4)2.nH2O表示的三价金属例如铝、铁和锰的磷酸氢盐,是可能的,其中A为包括铝、铁、锰、钇、钪和所有镧系金属例如镧、铈等的三价金属。
如果所述酸性前体的pH值高于即时反应所需,可加入磷酸并且pH值可被调节以降低pH值。选择的优选的pH值在3和4之间,并且最优选的pH值在3和3.5之间;通过使用碱性氧化物、氢氧化物或矿物部分中和来升高磷酸的pH值或酸性磷酸盐例如磷酸二氢镁(Mg(H2PO4)2)或磷酸三氢铝(AlH3(PO4)2)的pH值,或通过经由添加少量但适量的磷酸或低pH值的酸性磷酸盐例如Mg(H2PO4)2或磷酸三氢铝(AlH3(PO4)2)酸化具有大于3.5的pH值的磷酸二氢盐例如磷酸二氢钾(KH2PO4)。在本文中下文描述的实施例提供了调节这一pH值的方案。
在前体中使用的酸性磷酸盐通常仅为部分可溶。在这种情况下,所述前体被碾碎使得平均粒度通过230筛目筛(小于70微米)。
对于氯氧化物和硫酸氧化物组合物,所述酸性组分由用氢氯酸或硫酸适当酸化以降低pH值的氯氧化镁和硫酸氧镁组成。
水可被加入至所述前体组分以减低其粘度,或者可使用其它类型的粘度降低剂。防止藻类生长的商业添加剂也可被加入至该前体,使得在该前体贮存期间没有藻类生长发生。
第二组分-碱性氧化物/氢氧化物前体材料
碱性前体:所述碱性前体通常由具有小于70微米的平均粒度的微溶氧化物或优选地氢氧化物组成。所述氧化物可由式B2mOm或B(OH)2m表示,其中B为2m价金属。所有的二价金属氧化物(m=1)和一些在还原态的三价金属氧化物都落入该微溶性氧化物的范畴。二价氧化物的实例为,但不限于,镁、钡、锌、钙。在还原态的三价氧化物的实例子为氧化铁(FeO)和氧化锰(MnO)。
对于漆、涂料、粘合剂和封蜡(seal),期望在所述涂料中获得至少一些非晶相或玻璃相,以便该相将填充基材的表面不平整并形成防渗的、致密的并且平滑的涂层。已发现通过使用氢氧化镁(Mg(OH)2)代替煅烧的MgO有可能产生这样的结构。Mg(OH)2与酸性磷酸盐的即时反应导致两个有利的结果。第一,由于反应的时间非常短,晶体生长不能发生。第二,由于Mg(OH)2的溶解度大大高于煅烧MgO的溶解度,其大部分溶解并因此不会有用于反应产物的任何晶体生长的许多成核中心。最终结果为更多的非晶结构。
通过使用非煅烧的氧化物粉末,进行生产适于在常规喷雾装置中喷雾涂覆和适于提供有色或平滑的光洁度的酸碱陶瓷的方法在以前是很困难的。陶瓷由于三维稳定性和刚性通常需要晶体结构。与此相反,非陶瓷涂料通常附于基材上并从基材得到两维刚性。至少由于这个原因,非煅烧氧化物或氢氧化物的用途本文被公开和描述为产生用作涂料并且也用于可喷雾涂料的大量减少结晶的无机磷酸盐组合物的碱性前体。在一个方面,非煅烧氧化物或氢氧化物如在本文中公开和描述的作为碱性前体以产生大量减少结晶的无机磷酸盐组合物的使用提供了超过常规磷酸盐陶瓷的主要区别和实质改进。另一方面,煅烧的氧化物的使用可提供超过未煅烧的氧化物或氢氧化物的固化涂料的改善的着色。
在酸碱水泥和涂料中,煅烧氧化物是能量消耗的主要来源。这可通过使用非煅烧氧化物和氢氧化物来消除。例如,一方面直接从氧化镁矿得到的Mg(OH)2卤水提供了单独的或与其它碱性矿物或填料组合的所述第一组分的合适的来源。所述卤水含有至少约60%溶解的、悬浮的或分散的Mg(OH)2并且可被直接用于提供所述无机磷酸盐组合物的所述第二碱性组分。
无机磷酸盐组合物
至少在一方面,提供了两部分组分系统,一部分是酸性磷酸盐前体组分,它的pH值位于2-5之间,优选范围为2.5-4.5,并且最优选范围为3-4.5范围。碱性前体组分具有9-14的pH值范围,优选范围为10.5-12,并且最优选范围为11-12。
当使用二价金属氧化物时,形成无机磷酸盐组合物的酸碱反应由反应式(1)给出:
Am(H2PO4)m.nH2O+B(OH)2m+sH2O=A(BPO4)m+(n+m+s)H2O.(1)
在反应式(1)右手边的第一化合物为酸性磷酸盐前体材料,其可以是水合物。第二化合物为碱性前体材料,其也可以是水合物。例如磷酸二氢钾(KH2PO4)作为所述酸性磷酸盐并且氢氧化镁作为碱性材料,提供了A=K,m=1,和B=Mg,和n=0,其导致了以下反应式用作酸碱反应式(2)。
KH2PO4+Mg(OH)2+4H2O=MgKPO4.6H2O    (2)
当类似反应用于生产MgKPO4·6H2O的陶瓷时,(参见例如,ChemicallyBonded Phosphate Ceramics,Arun Wagh,Elsevier pub.,2004),相对于氢氧化镁的液态、浆体、分散体或乳液来源,所述水泥使用煅烧的氧化镁制造。因此,当在理论上制备相同的化学制品时,在本文中公开和描述的无机磷酸盐实质上是比之前制备的MgKPO4.6H2O更加非晶形的(结晶度减少)。
另外,至少在一个方面,已发现当所述酸性磷酸盐前体组分具有化学价为m的元素时,其中m大于1,例如,Mg(H2PO4)2(m=2),在碱性前体材料中碱金属的氧化物或氢氧化物,例如Na或K的氧化物或氢氧化物,可作为浆体、分散体或乳液来使用。产生例如上文讨论的无机磷酸盐组合物的酸碱反应由反应式(3)给出:
Am(H2PO4)m.nH2O+2mB(OH)=AB2m(PO4)m+(n+m)H2O    (3)
所获得的水部分蒸发产生无机磷酸盐组合物。Mg(OH)2可作为通过小于70微米(230-235筛目)的非常精细的粉末来使用。它可与显示大于3的pH值的酸性磷酸盐反应。例如,人们可使用磷酸二氢钾溶液(其pH值为4.2),并且通过加入少量磷酸或非常低pH值的磷酸二氢盐,例如磷酸二氢铝(AH3(PO4)2.nH2O)(其pH值为约1.2)降低它的pH。Mg(OH)2的使用减少了在产品的寿命周期成本中的能量消耗并且因此也减少了在整个过程中温室气体排放。如上文所讨论的,升高碱性组分的pH值以溶解更多的氢氧化物至非常高的pH值是可能的,并且如果需要,可达到14的最大pH值。然而,所述非常碱性的产品的处理是困难的,并且因此建议最大pH值为11。如下文所讨论的,镁卤水,其具有约10.2的pH,运行得非常好。
一旦将所述酸性和碱性溶液对其溶解度、pH值和任选的粘度优化,所述无机磷酸盐组合物通过混合所述第一和第二前体组分形成。这些组分的适用性和比例以及它们的相容性由所述酸碱反应的化学计量学决定。表1概述了这些组合,以及所获得的无机磷酸盐组合物的化学配方。
在表1中,加入以起始反应的水或在反应期间形成的水,可作为游离或结合水存在。表1没有在两者之间进行区分,但是该区分无关紧要因为当产品被干燥时游离水会蒸发,但结合水会被保留在结构中。例如,结合水的量可通过使用常规分析工具和技术估算,比如差示扫描量热法。
表1.可在形成所述无机磷酸盐组合物产品中发生的酸碱反应的概述
在表1中,单价元素的实例为钠(Na)、钾(K)或铵(NH4)。类似地,人们可使用的主要二价元素为镁、钙、锌、钡等,而三价元素为铝、铁等,并且四价元素的一个实例是锆(Zr)。可使用适合上文给出的所述组合的其它元素和所述公开内容和权利要求不应被上文给出的实例限制。
虽然化学计量学限定了所述胶粘剂的组合物,但是不可能准确定制在生产过程中的组合物。通常,碱性氧化物和氢氧化物前体含量与酸性磷酸盐前体含量相比被保持在化学计量更高的量。这提供了实质上无任意残余酸的产品。
涂料和漆
水泥和陶瓷通常可通过使用酸性磷酸盐和氧化物以及氧化物矿物生产。这些水泥和陶瓷通常通过在水中混合酸性磷酸盐和固体氧化物形成。这种混合物被立即使用并且最终在数小时内固化为固体产品。然而,这些前体制品和整个过程对生产适于分配的制品例如作为薄膜涂料以及类似物没有用。其原因中的至少一些包括,例如:这些组合物是含有特定物质的快速固化水泥,并且混合之后和固化之前的最大作用时间仅为几个小时。因此,它们不具有漆和涂料需要的保存期限。为了生成平滑、薄的涂层,通常有必要使用非常精细的颗粒作为组分。通常,这在3-D水泥生成和陶瓷领域不是必要条件。事实上,更精细的颗粒增加了暴露至酸碱反应的表面积。例如,已公开对表面积的限制可为0.3-0.55m2/g,其是很小的范围并且通常不适于某些应用,包括例如,涂料。进一步公开了0.55m2/g的最大允许表面积对于某些应用,包括例如涂料,同样太小。漆和涂料,例如,为了即时反应和应用的涂料表面的平滑度通常需要具有大的表面积(例如,大于约5m2/g,更优选大于约10m2/g)的更精细的颗粒。
在常规酸碱磷酸盐水泥的固化期间,放热的酸碱反应释放热量并且加热反应混合物,这可能帮助固化。对于薄涂层,由于相对薄的涂层的大表面积,大量的该释放热量被浪费。特别地,在喷雾涂覆(其是涂覆大面积的最有效的方法)中,酸碱前体介质被雾化,该雾化冷却了所述介质若干度,这抑制了基材表面上的酸碱反应。这导致了未反应的介质从垂直的/过顶的表面例如墙/天花板的滴落(或回弹),并且还在干燥表面上产生粉化。由于这个原因,需要将漆和涂料组合物适于产生更高量的释放热量(其将硬化喷雾产品)的即时反应。这是为什么常规水泥需要大表面积颗粒的另一个原因。
常规漆和涂料通常为有机聚合物并且它们根据用途通常为非晶体、无定形材料。另一方面,上文讨论的酸碱磷酸盐水泥或陶瓷由晶体或固化后有大量结晶相的玻璃晶体材料组成。结果,例如,考虑到否则会提供不期望的粒状结构的它们的显著的晶体结构,常规酸碱磷酸盐陶瓷通常不适于涂料、漆和粘合剂。已在本文中发现和公开的是适于薄膜涂料、漆和粘合剂的大量减少晶体的无机磷酸盐组合物。已发现,通过改变前体材料以提供溶液、分散体、乳液和/或浆体,生产大量减少晶体的无机磷酸盐组合物。
此外,即使使用常规前体起始材料和载有高达75重量%固体的高固体的另外一种前体组分,通过流变学控制和在制品组分(A和B部分)中固体的分散的组合,陶瓷的类油漆最终涂料使用常规喷雾设备来提供。已进一步证实集料着色剂可被有效地掺入已有的高固体制品组分,以便提供着色的涂料。同样已经证实使用大尺寸的集料如沙子提供即时制品的纹理表面。
所述组分的分配可使用装有合适的喷枪,可选地装有在线静态混合器的常规配料设备例如双源挤压器、柱塞、泵等来进行。在一个方面,当所述喷雾设备通常被用于水凝水泥分配/喷溅时,所述喷雾设备不包括纹理枪。
在至少一个方面,多组分制品被公开和描述,在组合各个组分之前或组合之后提供了至少一种或多种以下特性:提供了通常少于约35,000厘泊的单个组分的粘度,优选少于约15,000厘泊;当被分配时或在其后的短时间内,所述单个组分结合/粘附于基材,以使它们不会受到暴露于不同的大气条件例如雨、太阳和风的负面影响;坚硬并致密的固化涂层结合于基材,所述涂层符合为特殊应用例如防火、耐腐蚀、耐化学性、建筑感染力等设计的标准;所述固化涂料显示抗整个太阳光谱以及热和冷循环的长期耐久性;提供了酸性磷酸盐前体组分大于约2的pH值和碱性前体组分少于约12值的pH,以避免职业危害和在任何使用、处置或溢出期间保护环境;在储存期间提供基本上同质的组分,并且在泵送和贮存期间不会发生水的分离。如果在贮存和运输期间不发生分离,所述组分可在应用之前被很容易地预混合回至同质状态;在贮存期间通过火山灰反应将碱性前体硬化的倾向最小化达至少六个月;和/或防止酸性前体的生物活性。
如在本文中所公开制备的涂料是耐久性的,不会被紫外线辐射恶化,并且某些制品反射红外辐射并且,因此,支持在建筑中的能源节约。被公开的组合物适于底涂层和面涂层,因为它们提供了与各种基材的优异的结合。
无机磷酸盐组合物的分配
因为产生漆、涂料或粘合剂的酸碱反应是瞬时的,因此需要合适的涂覆系统。一种多元系统,在其中所述酸性和碱性前体材料可以期望的比例单独贮存,并且然后可被分配。例如,所述无机磷酸盐组合物前体可在应用期间被引入至一个混合室内或在离开喷雾装置时混合。所述系统在市场上是常见的,并且可适合于分配酸性和/或碱性组分而不会恶化装置的内表面或组分。
前体组分的粘度
两种组分的粘度应该足够低以便促进分配。通常,小于35,000厘泊(cp)或更小的前体粘度对于许多泵是可接受的,但是优选小于15,000cp的粘度。
对于酸性组分,这不是个问题,因为大多数酸性磷酸盐显示出低粘度。磷酸二氢钠是高度可溶的,它很容易满足这个要求。磷酸二氢钾具有低溶解度(20g/100ml)并且大部分所述磷酸盐保持悬浮。因此,它的粘度需要被降低。这可通过碾磨磷酸二氢钾溶液的溶液进行。其它的实例性的酸性磷酸盐,例如磷酸二氢镁(Mg(H2PO4)2),或磷酸三氢铝(AlH3(PO4)2)也具有低溶解度并且因此可能也需要被碾磨以生成低粘度前体组分。通常,不希望加入过量的水,因为它导致在最终反应混合物中太多的水并且可能发生一种或多种组分的固化。
对于碱性组分,所述粘度依赖于在溶液中粉末材料的量。在溶液中使用的氧化物粉末或矿物粉末必须实际上非常精细并且被研磨至通过-325微米筛目尺寸。Mg(OH)2的卤水对于这一目的是理想的,因为它显示低粘度并且因此不需要卤水处理。
所述第二组分(碱性前体)的粘度可通过加入部分反应矿物例如硅灰石(硅酸钙,CaSiO3)或含有例如粉煤灰的材料的矿物调节。优选F级粉煤灰因为小量的碳作为颗粒上的润滑剂起作用并且帮助减少前体组分的粘度。添加剂的含量可以为等于所述第二组分的量至其两倍的量的范围。如果使用其它氧化物,所述量可被相应调节以获得少于15,000cp的粘度。
除了上文描述的方法外,粘度也可通过加入小量的常规水性漆调节剂调节,其可根据需要调节(例如降低)粘度。
保存期限
如上文提及的,理想的是酸性和碱性前体组分都应具有良好的保存期限,优选大于6个月,大于一年或大于18个月。在此期间,应该有颗粒和液体部分轻微的离析,或者,应该容易地将组分重新混合为适于在应用时分配的同质或半半同质物质。这可能例如通过碾磨酸性组分以便生成同质前体并且然后如果必要任选地加入一种或多种商业悬浮剂来进行。
获得碱性组分的长保存期限更加困难。这是因为,碱性氧化物组分在存在水分时趋向于经受火山灰反应(发生在硅酸盐水泥中或湿粉煤灰中的反应)以至于碱性粉末自身固化为坚硬物质导致重新构成和/或研磨硬化的物质用于使用的困难。
在水泥工业中火山灰反应通常与钙含量相关。因此,在碱性组分中限制钙含量可解决这个问题。例如,使用F级粉煤灰,其具有最少量的游离钙,或限制硅灰石的量,使得不释放过量的钙。在碱性组分中C级粉煤灰通常应当避免,因为这种灰含有非常高比例的游离钙。由于相同的原因,氢氧化钙通常应当被避免在所述第二前体组分中作为氧化物组分。在一个方面,碱性前体组分可含有不超过多于Mg(OH)2或最广范围内的任一种氧化物的三倍的量并且在特定范围内两倍的量的硅灰石和F级粉煤灰以提供合理的好的保存期限。
添加剂
所公开的组合物任选地可包括一种或多种添加剂,例如填料表面活性剂(阴离子型或阳离子型,两性的或非离子型的)、增塑剂、沉降剂、流变改性剂和/或悬浮剂和/或消泡剂。
合适的填料包括例如硅灰石、滑石粉、C级或F级粉煤灰、高岭土高岭石、偏高岭土、莫来石、铝酸钙矿物,硅酸钙矿物,硅酸铝矿物,硅酸钙铝矿物或它们的混合物。可使用单独的或与以上组合的其它填料。在某些方面,所述填料对所述第二组分的重量比在1∶0.05至1∶6之间。在某些方面,所述即时组合物可基本上不含硅酸钙。
合适的阴离子表面活性剂包括,例如,全氟辛酸(PFOA或PFO)、全氟辛烷磺酸(PFOS)、十二烷基硫酸钠(SDS)、十二烷基硫酸铵、烷基硫酸盐、十二烷基醚硫酸钠(SLES)、烷基苯磺酸盐和肥皂或脂肪酸盐。合适的阳离子表面活性剂包括,例如,十六烷基三甲基溴化铵(CTAB)、烷基三甲基铵盐(alkyltimethylammonium salt)、氯化十六烷基吡啶(CPC)、聚乙氧基牛油胺(POEA)、苯扎氯铵(BAC)和苄索氯铵(BZT)。合适的两性表面活性剂包括,例如,十二烷基甜菜碱、椰油酰胺丙基甜菜碱和椰油酰胺两性基甘氨酸盐(coco amphoglycinate)。合适的非离子型表面活性剂包括,例如,烷基聚(环氧乙烷)、烷基酚聚(环氧乙烷)、泊洛沙姆或泊洛沙胺(聚环氧乙烷或聚环氧丙烷的共聚物)、辛基糖苷、癸基麦芽苷、十六醇、油醇和十二烷基二甲胺氧化物。可使用单独的或与以上组合的其它的表面活性剂。
合适的增塑剂包括,例如,邻苯二甲酸酯、偏苯三酸酯、脂肪族二元酯、磷酸酯、环氧化合物或聚酯。增塑剂(plastizer)的具体的实例包括,例如,DOP(二(2-乙基己基)邻苯二甲酸酯、DINP(二(异壬基)邻苯二甲酸酯、TOTM(三(2-乙基己基)偏苯三酸酯、TINTM(三(异壬基)偏苯三酸酯、DOA(二(2-乙基己基)己二酸酯、DINA(二(异壬基)己二酸酯、DOZ(二(2-乙基己基)壬二酸酯和DOS(二(2-乙基己基)癸二酸酯。可使用单独的或与以上组合的其它的增塑剂(plastizer)。
抗沉降剂包括,例如,大豆卵磷脂,硬脂酸铝,硬脂酸酯涂覆的碳酸钙,改性蓖麻油或脂肪酸,双戊烯,松油,甲基乙基酮肟,二异丁烯顺丁烯二酸分散体,聚丙烯酸铵,改性大豆磷脂乳液,聚己内酯多元醇聚乙烯亚胺嵌段共聚物,聚己内酯多元醇甲苯二异氰酸酯共聚物,聚羟基硬脂酸和醇酸树脂基抗沉降剂。可使用单独的或与以上组合的其它的抗沉降剂。
合适的流变改性剂/悬浮剂包括水合硅酸镁铝,木质素磺酸盐(木质素磺酸钙,木质素磺酸钠和类似物),磺化萘磺酸盐缩聚物的盐,磺化三聚氰胺磺酸盐缩聚物的盐,β萘磺酸盐,磺化三聚氰胺甲醛缩聚物,萘磺酸盐甲醛缩聚树脂,例如LOMARD分散剂(科宁公司,美国辛辛那提市,俄亥俄州),聚天冬氨酸盐,低聚物分散剂,聚甲基丙烯酸盐,瓜尔豆胶,迪特胶,维纶胶,黄原胶和/或作为流变改性剂/悬浮剂起作用的其它试剂。已观察到,某些流变改性剂/悬浮剂,例如DARVAN(聚甲基丙烯酸钠)能仅提供被限制的性能,例如,仅在约15%的Al2O3或其它相似的高粘度的颗粒下提供平滑的涂层。因此,对于任何具体的磷酸盐陶瓷制品,流变改性剂/悬浮剂的具体的选择是不可推断的。
消泡剂包括,例如硅基消泡油(具有聚醚末端基团的硅氧烷)、乙炔乙二醇表面活性剂和聚辛基丙烯酸酯。可使用单独的或与以上组合的其它的消泡剂。
消除在酸性磷酸盐前体中的藻类生长
磷酸盐对于藻类是营养素并且因此应该预料到在所述酸性组分中的藻类生长。为避免藻类,可加入抑制任一种生物活性的各种常规添加剂。一个良好的实例为氧化铜。在所述酸性磷酸盐前体中加入少于1重量%的氧化铜足以抑制生物生长。用以防止藻类或真菌生长的其它商业化学品也可被使用。-
在本文中公开和描述的是新的无机的两组分前体制品,其含有酸性磷酸盐、氯氧化物和硫酸氧化物溶液和浆体,和碱性组分,所述碱性组分包括氧化物和氢氧化物,它们可被聚在一起以即时反应以便生成的产物为无机(氯氧-)或(硫酸氧化-)磷酸盐组合物。公开了生成所述两种酸性和碱性组分和它们的组合、可雾化的可喷雾的制品和任选的基本上非晶体的、结晶度减少的陶瓷的方法并以如下文选定的实施例中的陈述所表征,但是所述方法和权利要求同样适用于具有组分例如氯氧化物和硫酸氧化物系统的适当修改的其它酸碱制品。提供了关于这些修改的简短的讨论,但是该讨论并非意在限制权利要求或公开本身。
实施例
进行下文列出的多个实施例以便明确表达和证实本文中公开的组合物的属性。
实施例1.磷酸镁钾组合物
在这一实验中,所述第一(酸性)组分由当在水溶液中测量时具有约4.2的pH值的磷酸二氢钾(MKP)组成。所述MKP在使用前被碾磨一小时至约74微米尺寸粉末(US 200筛)。然后所述MPK被进一步碾磨一小时并且通过加入2.5重量%磷酸(作为50%的稀释溶液添加)将它的pH值被调节在3.2和3.5之间。0.5重量%氧化铜被添加以防止藻类生长。所述溶液用水调节以产生大约10,000厘泊的粘度。该组分的密度为1.9g/cm3
所述第二组分(碱性)如下制备:作为氢氧化镁来源的所需量的镁卤水溶液(Martin Marietta)被称量进入混合器。Zr(OH)4粉末被加至所述卤水并且被搅拌5-10分钟直到同质。将通过325筛目的硅灰石缓慢加至该溶液并且混合10-15分钟。加入额外量的水以调节粘度至大约20,000至25,000厘泊。该液体组分的密度为1.25g/cm3并且在该溶液中颗粒的平均颗粒尺寸被测定为约5.6微米或更小。因此,所述第二组分由约69重量%镁卤水(提供约61重量%Mg(OH)2),约8.7重量%硅灰石,约2.2重量%氢氧化锆(Zr(OH)4),余量的水组成。
将所述两种组分以1∶1的体积比混合用于使用多元喷雾系统的喷雾。所述喷雾系统的两个腔室分别用两种组分填充。喷枪由混合管组成,在其中所述两种组分能在喷雾前被混合。将所述组合物喷雾至不同的基材例如钢铁、木材、硬质纤维板、铝、混凝土、低碳钢泰伯尔面板上。所涂覆的厚度为约15-20密耳。耐磨性测量根据ASTM D 4060进行。在进行所有测试之前涂层被允许在环境条件下硬化7天并且进行简单分析。
在本文中公开的无机磷酸盐组合物的所获得的薄膜与涂敷在低碳钢平板上的商业环氧树脂涂料和常规无机磷酸盐混凝土(Ceramicrete)进行比较。密度、粘着性(拉拔试验,ASTM D4541)和耐磨性的结果概括在下表2中。
表2.对磷酸镁钾组合物的试验结果
在表2中的结果显示所述涂料的密度接近商业有机涂料。氢氧化镁与煅烧的氧化镁(方镁石)的密度(其为3.6g/cm3)相比具有更低的密度(2.38g/cm3)。对于从煅烧的氧化镁生成的标准Ceramicrete(磷酸盐水泥),依赖于使用的填料,密度在1.8至2(g/cm3)之间。因此,标准Ceramicrete比在本文中公开的所述无机磷酸盐组合物更重。在Ceramicrete中,大多数煅烧的氧化镁作为悬浮的或包埋的颗粒物质保持不反应,其有助于密度。相比之下,在本文中公开的所述无机磷酸盐组合物的密度比Ceramicrete的密度更少,据信这是由于氢氧化镁源更完全的反应和颗粒氧化镁的量的减少。结果,在本文中公开和描述的所述无机磷酸盐组合物产生了更低密度的材料,例如,约1.4g/cm3的密度,其与有机涂料相当。相比之下,从方镁石制备的类似组合物的典型的有机磷酸盐水泥的密度在1.8至2.0g/cm3之间
氢氧化镁具有六边形的板状(platelet)或片状(sheet)结构,这在结构上和形态上不同于具有立方结构的煅烧的氧化镁(方镁石)。除了更低的密度的无机磷酸盐组合物之外,据信由此衍生的氢氧化镁生成的无机磷酸盐组合物的所述片状结构与从煅烧的氧化镁衍生的无机磷酸盐制备的涂料相比提供了更加平滑的涂层和更加优秀的耐磨性。在本文中公开和描述的衍生自氢氧化镁的所获得的无机磷酸盐组合物的平均粒度(大于5m2/g)的差异也有助于与煅烧的氧化镁(小于0.55m2/g)的耐磨性和平滑度相比所述涂层更加优异的耐磨性和平滑度。
在表2中的数据也证实了,在本文中公开的无机磷酸盐组合物远优于环氧树脂涂料,例如,所述无机磷酸盐组合物具有商业环氧树脂涂料的耐粘着性的两倍至三倍的耐粘着性,磨损试验结果为环氧树脂的约四分之一,并且代表磨损损失的磨损指数为约环氧树脂涂料的约三分之一。因此,在本文中公开的无机磷酸盐组合物远优于在市场上可获得的一些商业涂料。
在本文中公开的有机磷酸盐组合物与常规磷酸盐混凝土的粉末X射线衍射比较
下文图1显示了如实施例1中描述所制备的两个完全相同的样品的X射线衍射图,一个被喷雾为薄涂层并且另一个被喷雾为厚涂层(标记为“A”)。两个涂层准确地显示了相同的图样,表明如实施例1中的涂料制品可被用作薄的或厚的涂层。图1的主峰代表CaSiO3、Mg(OH)2和MgKPO4.6H2O。然而,每个峰都加宽了。X射线衍射峰的宽度是非晶相或微晶相的象征。相比之下,Ceramicrete(由煅烧的氧化镁生成的化学上相似的磷酸盐水泥)的X射线衍射图样被重现在图2中,与实施例1的样品的X射线衍射图样重叠。数据显示,来自于实施例1的样品的相应的峰比在Ceramicrete中宽,这表明在本文中公开的无机磷酸盐组合物的非晶含量(结晶度减少)大大高于在Ceramicrete中。在图2中的数据还显示,在Ceramicrete中,煅烧的氧化镁峰大幅大于在本文中公开的无机磷酸盐组合物的峰,这表明在Ceramicrete中大量氧化镁保持未反应或粗晶形式。因此,如本文中公开的无机磷酸盐组合物中氧化物的反应可能更完全和/或晶体氧化物的量被显著降低,导致适于涂料的结晶度大幅减少的产品。
实施例2.磷酸铝组合物
30g氢氧化铝(三水铝矿,Al(OH)3)在室温下加至173.4g磷酸溶液(H3PO4,50重量%,摩尔比Al(OH)3∶H3PO4=1∶2.3)中。1.5g(5重量%)氟化钾和1.5g高锰酸钾被加至与Al(OH)3一起的所述酸中。该混合物在100-110℃下被搅拌60分钟至约3小时。冷却至室温后所获得的产物为粘性浆体。这被标记为组分A。
作为任选试剂加入作为示例性氧化剂的高锰酸钾以在实施例2中减少氢气形成。氧化剂的使用提供了对表面(例如钢/铁表面)改善的附着性。在钢/基材上实施例2的组合物的涂料的结果与没有氧化剂存在时它的附着性相比提供了无机磷酸盐组合物和金属之间改善的附着性。也可使用其它合适的氧化剂,例如,水溶性氧化剂,比如铬酸钾、铬酸钠或硝酸钾、硝酸镁和硝酸铝。
在图3中X射线衍射图样显示氢氧化铝(其完全结晶)在上文描述的过程中当与磷酸溶液混合时,如宽晕图样证明的提供了更少的晶体形式的氢氧化铝。在常规磷酸盐水泥中,这种无定形的,非晶体的相是轻微的或不存在的(不显示)。所述无定形组分A产生清楚的类似蜂蜜的浆。这可在图4给出的照片中见到。这些由不同浓度的磷酸氢铝产生,但是所有的都产生透明的粘稠凝胶。
碱性组分通过在足够的水中以3∶1的重量比混合硅灰石和MgO以产生具有约10,000厘泊粘度的前体而产生。类似地,在另一个实验中,加入莫来石取代硅灰石。该碱性组分被标记为B。该碱性组分可以为具有足够量的氢氧化镁的镁卤水。
所述两种组分(A+B)以8∶3的重量比混合,并且将所获得的前体组合物涂覆在包括低碳钢、铝、木材和水泥板的不同的基材上。该样品被允许硬化一周。图5显示了连同用于比较的硅灰石和所述第一酸性磷酸盐组分的涂料一起的所述涂料的X射线衍射图样。
类似地,图6显示了用莫来石和A部分,以及还有莫来石和氧化镁的混合物作为B部分和磷酸氢铝生成的涂料的X射线衍射图样。所有样品都很硬并且与不同基材结合很好。生成的涂料不能被轻易地划痕并且不能被清除,甚至当所述基材朝坚硬物体击打时。
在图5和6中所述组分和所述固化涂料的比较表明,虽然高度结晶的莫来石、硅灰石和氧化镁被用作原材料,但是与在固化无机磷酸盐组合物中的这些晶体材料相关的X射线衍射峰在高度上显著降低并且比单独的成分更宽。因此,固化无机磷酸盐组合物的结晶度大大降低。在不被任何特定理论束缚的同时,据信酸性组分是开发和或提供在本文中公开和描述的无机磷酸盐组合物的这种降低的晶体形态的至少部分原因。
图7显示了在塑料杯中所喷雾的这些最终涂层。它们在外表上、在表面上的平滑度和密度上都是同质的。标准Ceramicrete不显示这些独特性质,至少是因为它缺少本文中公开的无机磷酸盐组合物的本实施方案具有的降低的结晶形态。
实施例3:形成块磷铝石涂料的方法
基于热力学原理的理论分析表明磷酸三氢铝,如果与氧化铝(刚玉,Al2O3)反应,将在约150℃生成磷酸铝(AlPO4)(块磷铝石)。在高达1500℃下稳定的块磷铝石矿物相将提供高温涂料。因此,100克如在实施例2中公开的磷酸三氢铝(AlH3(PO4)2-5H2O)粘性浆体与50克氧化铝细粉末混合并且充分混合以形成粘稠浆体。将其刷在175℃预热的低碳钢基材上。首先,所述浆体的一些水部分蒸发,但是随后涂料良好结合至钢上。整个组合体在175℃下保持约三个小时。一旦所有脱气和蒸发都已发生,应用第二涂料并且在175℃下凝固化约三个小时。在钢表面上形成的所获得的厚涂层坚硬、致密并且非常好地与所述钢结合。从实施例3制备的所形成的涂层的X射线衍射研究表明所述涂料实质是块磷铝石。因此,在本文中公开和描述的方法提供了用于制备块磷铝石前体制品并且之后形成对提供高温保护或改善物品(例如金属和其它建筑材料)的高温服务有用的块磷铝石涂料的相对简单的方法。
实施例4.含有粉煤灰填料的无机磷酸盐组合物
在这个实施例中,碱性组分含有55重量%卤水,22重量%F级粉煤灰,6重量%氢氧化锆,14重量%水和3重量%商业油漆调节剂。所有组分被充分混合为大约粘度为10,000厘泊的浆体形式。酸性组分通过混合68%磷酸单钾盐和31重量%的水,小量的悬浮剂和氧化铜制备为浆体以防止藻类的形成。
这两种组分溶液以酸性比碱性组分为1∶1.5的体积比在多元喷枪中被使用。将它们喷至磨损试验所用的低碳钢平板和标准平板上。凝固化后根据ASTM协议测试具有涂层的平板的耐磨性和粘着性。对三个不同样品以及商业环氧树脂涂料对照的结果的平均值在下文表3中给出。
表3:实施例4与环氧树脂对照比较的试验结果
显示在表3中的结果证实,在所有方面,含有粉煤灰的无机磷酸盐组合物涂料与环氧树脂对照涂料相比显示更好的磨耗(abrasion)和磨损(wear)性能。耐粘着性比环氧树脂涂料高约50%,并且磨耗性能为环氧树脂涂料的至少两倍。这显示含有粉煤灰涂料的无机磷酸盐组合物涂料优于商业环氧树脂对照涂料。
实施例5.含有莫来石填料的无机磷酸盐组合物
在这个实施例中,如实施例4的相同的组合物被制备,除了替代粉煤灰,更换为使用精细粉末形式的莫来石(3Al2O3·2SiO2)。两种组分(酸性磷酸盐/碱性氢氧化物)的比例与实施例4相同并且样品通过喷雾在低碳钢和磨耗平板上来制备。这些试验的结果在表4中给出。
表4:与环氧树脂对照比较的实施例5涂料的试验结果
如实施例4的情况下,实施例5的结果显示,在所有方面,含有莫来石的无机磷酸盐组合物涂料也显示与环氧树脂对照涂料相比改善的性能特征。实施例5的耐粘着性比环氧树脂涂料高约20%,并且磨耗性能为环氧树脂涂料的至少两倍。这显示粉煤灰涂料不仅可行而且远优于商业涂料。
实施例6.用于喷涂没有集料位移的集料/磷酸镁钾组合物
第一(酸性)组分由当在水溶液中测量时具有约4.2的pH值的磷酸二氢钾(MKP)组成。也可使用磷酸钙前体。加入所述MKP粉末(约74微米尺寸US200筛)并且该溶液pH值通过加入2.5重量%磷酸(作为50%的稀释溶液添加)调节在3.2和3.5之间。任选地加入0.5重量%氧化铜以防止藻类生长。该溶液用水调节以产生约10,000厘泊的粘度。该组分(组分A)的密度为约1.9g/cm3
第二组分(碱性)如下制备:所需量的作为氢氧化镁来源的镁卤水溶液(Martin Marietta)称量进入混合器。将Zr(OH)4粉末加至所述卤水并且被搅拌5-10分钟直到同质。通过325筛目的硅灰石被缓慢加至该溶液并且混合10-15分钟。加入额外量的水以调节粘度至大约20,000至25,000厘泊。该液体组分的密度为1.25g/cm3并且在该溶液中颗粒的平均颗粒尺寸被测定为约5.6微米或更小。因此,所述第二组分由约69重量%镁卤水(提供约61重量%Mg(OH)2),约8.7重量%硅灰石,余量的水组成。所述MgOH卤水可被用MgO替代,优选煅烧的MgO。以下为适于可被雾化以提供薄膜、类漆的涂层的喷雾涂料的高固体负载的磷酸盐前体组分的实例。这些实例使用固体的A部分(例如MKP)和B部分(例如MgO)。可设想如上文描述的任一部分的替换。表5概述了示例性的可雾化的组合物(样品1&2)。
表5.可雾化组合物
样品3:在一定量已加入需要量的85%磷酸的水中加入酸性磷酸盐前体(例如磷酸二氢钾(MKP))并且混合少于一分钟,然后加入悬浮剂(例如,黄原胶)并用高剪切分散叶片混合10分钟。所述水-磷酸盐混合物将变稠并且变色至不透明,然后添加需要量的MKP至该悬浮液。在上文的样品(1和2)中,约1至60重量%树脂涂覆的二氧化硅(Estes Colored Aggregates,从Clifford EstesCompany获得,费尔菲尔德,新泽西州;粒度在约30-70筛目之间)可全部分散在一种组分部分中或分散(平分或不平分)在任一组分部分中。30-325筛目尺寸的约1至60的重量%固体负载的集料着色剂同样用于所述即时制品中。优选地,所述Estes着色集料可以约0-30重量%固体或更多的水平加入至A部分。在至少一个实例中,6重量%的Estes着色集料被用于上文样品2中并且在最终涂料中提供了极好的颜色和外观。同样已观察到可使用有色艺术沙子(art sand)或天然有色沙子和集料获得相似的结果,具有类似的结果。在上文的样品中,约0.2重量%黄原胶被作为悬浮剂使用,(约0.05wt%被用于B部分中)。所述两种组分以1∶1的体积比混合用于使用具有蠕动泵的多元喷雾系统的喷雾。使用对雾化提供高压的高压活塞泵(无气喷涂)可达到相似的结果。可选择地,可使用多通道泵、多活塞泵、柱塞排出挤压器(ram discharge extruder)、双组份填缝枪或具有静态混合和空气辅助的以便雾化的螺杆泵。喷雾系统的两个腔分别用两种组分填充。喷枪由混合管组成,在其中所述两种组分能在喷雾前被混合。所述组合物被喷雾至不同的基材例如钢铁、木材、硬质纤维板、铝、混凝土、低碳钢泰伯尔面板上。所涂覆的厚度为约5密耳并且具有来自于集料着色剂的明显的颜色。使用在本文中公开的方法获得高达约20密耳的涂层。该涂层被允许在环境条件下硬化并且产生具有磷酸盐水泥表征的优异的涂层。相比之下,普通喷漆要求较薄(<2密耳)以避免不能保留相似量的任和尺寸集料的流动或垂落。因此,在一个方面,其它非陶瓷、快速固化/凝固化涂料可使用提供为至少20密耳的涂料厚度的集料,以便提供集料的一些机械固定性。
此外,不像需要花费很长时间干燥的普通漆允许集料在其可“机械上”保持在原位之前从其原始放置位置移动和/或脱落,所述即时磷酸盐陶瓷喷雾组合物迅速固化并且至少在机械上充分保持集料在原位,足以被喷在垂直表面上和过顶表面上而不会存在集料的移动或脱落。
在一个方面,具有树脂涂覆的二氧化硅集料的所述即时磷酸盐陶瓷喷雾组合物基本上没有结合至集料的树脂涂层,因此改善了涂料的美感,例如,通过不涂覆或覆盖树脂涂层部分,因此允许集料的颜色在更大程度上现。这通过无颜料的磷酸盐陶瓷的天然半透明外观扩大,产生更加有活力的颜色外观。
在另一个方面,所述即时磷酸盐陶瓷喷雾涂料可包含其它集料以增加纹理。在另一个方面,所述即时磷酸盐陶瓷喷雾涂料可包含无色天然集料(例如沙子、滑石粉等)以给出自然的光洁度,例如在单色中沙子石膏类型的光洁度。
在另一个方面,所述即时磷酸盐陶瓷喷雾组合物作为用于基材,例如金属表面底漆来使用并且随后被聚合物涂料例如丙烯酸或氨基甲酸乙酯涂料涂覆。所述金属表面可以为交通工具,例如底盘。如果需要,氧化铝可以足以增加所获得的磷酸盐陶瓷的硬度的量加至所述第一和第二组分中的一种或两种中。
在上文的集料磷酸盐陶瓷组合物因为对喷雾系统有用而公开的同时,相同的织构化的和/或着色的组合物适于通过非喷雾涂覆的方法应用,例如通过涂抹等等。
说明书所使用的表达成分、反应条件等等数量的所有数字可理解为在所有情况下被术语“约”修饰。因此,除非相反地表示,在本文中陈述的数值参数可以是近似值,其可根据寻求获得的所期望性能而变化。
上文的描述公开了多种方法和材料。这些描述易受方法和材料中的修改以及在制造方法和设备中的变化的影响。考虑到这一公开内容或所述公开内容的实行,这些修改对于所属领域的技术人员是明显的。因此,不预期将本公开限制在本文中公开的具体实施方案,但是它包括在本权利要求的真实范围和精神内的做出的所有的修改和变化。

Claims (23)

1.一种磷酸盐陶瓷喷雾组合物,所述组合物包含:
第一组分,所述第一组分包含化学式Am(H2PO4)m.nH2O的酸性磷酸盐的高固体含量水溶液,其中A为氢离子、铵阳离子、金属阳离子或其混合物,其中m=1-3,并且n=0-6,所述第一组分溶液被调节至2至5的pH值并且其中第一组分的高固体含量为所述水溶液的至少63wt%至75wt%;
第二组分,所述第二组分包含由B2mOm、B(OH)2m表示的碱性氧化物或碱性氢氧化物或其混合物的高固体含量水溶液,其中B为化合价2m(m=1、1.5或2)的元素,所述第二组分溶液被调节至9-14之间的pH值并且其中第二组分的高固体含量为所述水溶液的至少54wt%至75wt%;和
流变改性剂/悬浮剂,该流变改性剂/悬浮剂的量能够提供所述第一组分或所述第二组分的剪切稀化以便雾化并且还能够将高固体含量的所述第一组分或所述第二组分悬浮以便雾化;和
任选地,在所述第一组分和所述第二组分中的至少一种中以能够赋予可观察到的颜色和/或纹理的量存在的集料材料。
2.如权利要求1所述的磷酸盐陶瓷喷雾组合物,其中,所述第二组分为氢氧化镁和氢氧化钙中的至少一种以及水。
3.如权利要求1所述的磷酸盐陶瓷喷雾组合物,其中,所述第一组分包含2重量%至10重量%的磷酸、水以及磷酸二氢钾和磷酸二氢钙中的至少一种。
4.如权利要求1所述的磷酸盐陶瓷喷雾组合物,其还包含以足以增加所述磷酸盐陶瓷的硬度的量存在的氧化铝。
5.如权利要求1-4中任一项所述的磷酸盐陶瓷喷雾组合物,其中,所述流变改性剂/悬浮剂为瓜尔豆胶、迪特胶,维纶胶和黄原胶中的至少一种,其以0.15-1.5wt%的量存在。
6.如权利要求5所述的磷酸盐陶瓷喷雾组合物,其中,所述集料以至少1重量%至60重量%的量存在,其分散在所述第一组分或第二组分中,或平分或不平分地分散在两者中。
7.如权利要求6所述的磷酸盐陶瓷喷雾组合物,其中,所述集料为树脂涂覆的二氧化硅和天然有色矿物集料中的至少一种。
8.如权利要求6所述的磷酸盐陶瓷喷雾组合物,其中,所述集料具有20筛目微米至400筛目的平均粒度。
9.如权利要求6所述的磷酸盐陶瓷喷雾组合物,其中,所述集料具有至少20筛目或更小的平均粒度,并且在施加少于20密耳的涂层后,所述集料基本上保留在垂直表面或过顶表面上的涂料中。
10.一种雾化磷酸盐陶瓷的方法,所述方法包括
提供:(i)第一组分,所述第一组分包含化学式Am(H2PO4)m.nH2O的酸性磷酸盐的高固体含量水溶液,其中A为氢离子、铵阳离子、金属阳离子或其混合物,其中m=1-3,并且n=0-6,所述第一组分溶液被调节至2至5的pH值并且其中第一组分的高固体含量为所述水溶液的至少63wt%至75wt%;(ii)第二组分,所述第二组分包含由B2mOm、B(OH)2m表示的碱性氧化物或碱性氢氧化物或其混合物的高固体含量水溶液,其中B为化合价2m(m=1、1.5或2)的元素,所述第二组分溶液被调节至9-14之间的pH值并且其中第二组分的高固体含量为所述水溶液的至少54wt%至75wt%;其中在雾化之前所述第二组分与所述第一组分分离;(iii)流变改性剂/悬浮剂,该流变改性剂/悬浮剂的量能够在离开分配装置之前提供所述第一组分或所述第二组分的剪切稀化并且还能够将高固体含量的所述第一组分或所述第二组分悬浮导致其粘度减小以便雾化;(iv)任选地,在所述第一和所述第二组分的至少一种中以能够赋予的颜色和/或纹理的量存在的集料材料;和
雾化所述第一组分和第二组分。
11.如权利要求10所述的方法,其中,所述雾化步骤包括使用多通道泵、多活塞泵、蠕动泵、柱塞式排出挤压器和螺杆泵中的至少一种驱使所述第一组分和所述第二组分通过雾化喷孔。
12.如权利要求10-11中任一项所述的方法,其中,所述雾化步骤还包括用于混合所述第一组分、所述第二组分和所述集料的混合器。
13.如权利要求10所述的方法,其中,所述雾化步骤包括基本同时分配所述第一组分和第二组分。
14.如权利要求10所述的方法,其中,所述流变改性剂/悬浮剂为瓜尔豆胶、迪特胶,维纶胶和黄原胶中的至少一种。
15.如权利要求10-11或12-13中任一项所述的方法,其中,所述集料以至少1重量%至60重量%的量存在。
16.如权利要求15所述的方法,其中,述集料具有20筛目至400筛目的平均粒度。
17.如权利要求15所述的方法,其中,所述集料为包含天然有色矿物集料的集料着色剂和包含树脂涂覆的二氧化硅的集料着色剂中的至少一种。
18.如权利要求16所述的方法,其中,所述集料具有在应用后向所述喷雾组合物提供表面纹理的平均粒度。
19.如权利要求10-11、13-14或16-18中任一项所述的方法,所述方法还包括:形成小于20密耳厚的涂层和当应用于垂直表面或过顶表面时将所述集料保留在涂层中的步骤,其中,所述集料为至少400筛目。
20.一种无机磷酸盐化合物,其具有通式:
i)Bs(A3-mPO4)s;其中A具有化合价m=1或2;并且B具有化合价s=1或2;
ii)Bs(A2/mPO4)s;其中A具有化合价m=1或2;并且B具有化合价s=1或2;
iii)(2/m)A3Bm(PO4)2;其中A具有化合价m=1或2;;B具有化合价3;或
iv)B(AOPO4)s;其中A具有化合价4和s=1或2;并且B具有化合价1或2;
其中所述无机磷酸盐i-iv具有下列表征中的至少一个:
a)如通过x射线衍射所测量的,存在大大减少的量的煅烧的碱/碱土氧化物颗粒;或
b)如通过x射线衍射测量的,相对于组成上相似的无机磷酸盐陶瓷或陶瓷,减少的结晶形态,或;
c)相对于组成上相似的无机磷酸盐陶瓷减少的密度。
21.如权利要求20所述的无机磷酸盐化合物,其中,所述密度为小于1.8g/cm3
22.如权利要求20所述的无机磷酸盐化合物,其中,所述密度为小于1.5g/cm3
23.如权利要求20所述的无机磷酸盐化合物,其中,所述化合物为以下中的至少一种:MgKPO4;Mg(ZnPO4)2Mg(K2PO4)2;Mg2KPO4;Mg(ZnPO4)2;Mg(K2PO4)2;Al2Mg3(PO4)2;Mg(ZrOPO4)2;Mg[Zr(OH)2PO4)2]2和磷酸钙/镁。
CN201080056375.XA 2009-12-11 2010-12-10 无机磷酸盐组合物及方法 Active CN102781871B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28594809P 2009-12-11 2009-12-11
US61/285,948 2009-12-11
PCT/US2010/059958 WO2011072262A2 (en) 2009-12-11 2010-12-10 Inorganic phosphate compositions and methods

Publications (2)

Publication Number Publication Date
CN102781871A CN102781871A (zh) 2012-11-14
CN102781871B true CN102781871B (zh) 2014-11-26

Family

ID=44143600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080056375.XA Active CN102781871B (zh) 2009-12-11 2010-12-10 无机磷酸盐组合物及方法

Country Status (9)

Country Link
US (2) US8858702B2 (zh)
EP (1) EP2509927B1 (zh)
JP (1) JP6134140B2 (zh)
KR (1) KR20120113224A (zh)
CN (1) CN102781871B (zh)
AU (1) AU2010327923B2 (zh)
CA (1) CA2783723C (zh)
ES (1) ES2821489T3 (zh)
WO (1) WO2011072262A2 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130139930A1 (en) * 2009-12-18 2013-06-06 Latitude 18, Inc. Inorganic phosphate corrosion resistant coatings
DE102011056815A1 (de) * 2011-12-21 2013-08-01 Chemische Fabrik Budenheim Kg Nährstoffzusammensetzung für biologische Systeme
ES2796823T3 (es) 2013-02-15 2020-11-30 Latitude 18 Inc Materiales y revestimientos cerámicos de fosfato inorgánico
EP2956570A4 (en) * 2013-02-15 2017-03-15 Latitude 18, Inc. Inorganic coating and composition
US20160258067A1 (en) * 2013-08-12 2016-09-08 Latitude 18, Inc. Inorganic phosphate corrosion resistant coatings
CN103641466B (zh) * 2013-12-25 2016-04-13 山东硅苑新材料科技股份有限公司 多孔聚磷酸钙生物材料制备方法
JP6303578B2 (ja) * 2014-02-19 2018-04-04 東ソー株式会社 ポリオール組成物
FR3021045B1 (fr) * 2014-05-16 2020-02-21 Solvay Sa Procede de production d'un reactif phosphocalcique, reactif obtenu et son utilisation
EP3072861B1 (en) 2015-03-27 2022-07-20 Fritz Egger GmbH & Co. OG Phosphate-based ceramic coatings comprising aerogel particles
CA2983007A1 (en) * 2015-04-16 2016-10-20 Premier Magnesia, Llc Magnesium-based cements and slurry precursors for the same
RU2592922C1 (ru) * 2015-04-30 2016-07-27 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Композиция для изготовления жаростойких композитов
TWI632383B (zh) * 2015-08-31 2018-08-11 日商精工愛普生股份有限公司 電子零件搬送裝置及電子零件檢查裝置
CN105440744A (zh) * 2015-11-20 2016-03-30 南京航空航天大学 一种水性含铝磷酸盐陶瓷防腐涂料及其制备和固化方法
US11565973B2 (en) 2016-04-06 2023-01-31 Ceramicoat International Limited Sprayable silicate-based coatings and methods for making and applying same
US20190135681A1 (en) * 2016-04-06 2019-05-09 Ceramicoat International Limited Sprayable alumino-silicate coatings, resins, their compositions and products
EP3661893A1 (de) 2017-07-31 2020-06-10 Heraeus Deutschland GmbH & Co. KG Mehrkomponentige zusammensetzung zur herstellung einer wässrigen umhüllungsmasse
CN107777991A (zh) * 2017-11-06 2018-03-09 江苏宜翔陶瓷科技有限公司 适于不同材质泥料的粘结泥
CN109897400A (zh) * 2017-12-07 2019-06-18 航天特种材料及工艺技术研究所 一种耐高温绝缘涂料及其制备方法
CN108364705A (zh) * 2018-02-24 2018-08-03 航天慧能(江苏)环境工程有限公司 一种含有放射性元素废料的处理方法
CN108485328B (zh) * 2018-05-02 2020-05-22 苏州大学 一种常温固化无机涂料、其制备方法及涂层工件
EP3702398A1 (en) * 2019-02-26 2020-09-02 World Link Industry Engineering GmbH Floating roof for tanks, fire resistant coating thereof, and method for their manufacture
WO2021150915A1 (en) * 2020-01-24 2021-07-29 Advanced Polymerics, Inc. Phosphate cement compositions
CN112044405B (zh) * 2020-08-31 2023-03-14 宜兴国际环保城科技发展有限公司 一种医药废水处理剂及其制备方法
CN113248946A (zh) * 2021-05-14 2021-08-13 恒昌涂料(惠阳)有限公司 用于制作类陶瓷涂层的涂料组合物及其制备方法和应用
KR102534224B1 (ko) * 2021-11-17 2023-05-26 주식회사 위드엠텍 해양구조물의 부식방지를 위한 MgO계 인산 세라믹 코팅제와 그 제조방법
CN113912375A (zh) * 2021-11-22 2022-01-11 安徽大学绿色产业创新研究院 一种致密陶瓷涂料
CN113880608B (zh) * 2021-11-22 2022-09-30 安徽大学绿色产业创新研究院 一种超疏水复合陶瓷涂层
US20230331996A1 (en) * 2022-04-18 2023-10-19 Sheet Pile LLC Method of coating metal structural member to resist corrosion, composition of coating, and structural member including coating
CN115044232A (zh) * 2022-06-23 2022-09-13 中铁城建集团第一工程有限公司 一种钢结构防火涂料及其制备方法、使用方法
CN115678575B (zh) * 2022-11-16 2023-08-01 应急管理部天津消防研究所 用于快速阻隔森林火灾的硅基固化泡沫材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783799B1 (en) * 1999-08-03 2004-08-31 David M. Goodson Sprayable phosphate cementitious coatings and a method and apparatus for the production thereof

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257281A (en) 1937-12-29 1941-09-30 Us Gypoum Company Coating composition
US2329065A (en) 1942-03-06 1943-09-07 Westinghouse Electric & Mfg Co Corrosion resistant coating for metal surfaces
US2450952A (en) 1945-01-06 1948-10-12 Herbert H Greger Phosphate cements
US3392007A (en) 1964-07-14 1968-07-09 Allied Chem Free flowing fertilizer coated with magnesium phosphate and magnesium amonium phosphate and method of making
US3184320A (en) 1964-12-08 1965-05-18 North American Aviation Inc Ceramic protective coating composition
US4083933A (en) * 1974-01-26 1978-04-11 Hoechst Aktiengesellschaft Process for preparing AlH3 (PO4)2 ·3H2 O
DE2403707A1 (de) * 1974-01-26 1975-08-14 Hoechst Ag Verfahren zur herstellung von alh tief 3 (po tief 4 ) tief 2 . 3h tief 2 o
US3973056A (en) 1974-06-06 1976-08-03 American Gas Association, Inc. Inhibition of stress-corrosion cracking of steel pipeline
CA1081718A (en) 1978-03-20 1980-07-15 Laszlo Paszner Mineral-clad ligneus bodies and method of adhering a mineral deposit in wood fragment surfaces
US4395456A (en) 1980-01-10 1983-07-26 Imperial Chemical Industries Limited Inorganic foam
US4504555A (en) 1982-09-07 1985-03-12 Masonite Corporation Composition and process for forming inorganic resins and resulting product
US4411876A (en) * 1982-12-30 1983-10-25 Stauffer Chemical Company Process for the manufacture of trimagnesium phosphate octahydrate of high purity
US4839049A (en) 1983-09-01 1989-06-13 Astro Met Associates, Inc. Ceramic composition
US4478805A (en) 1983-09-22 1984-10-23 The Dow Chemical Company Preparation of high purity berlinite
JPS61111973A (ja) 1984-10-31 1986-05-30 黒崎窯業株式会社 耐火吹付け材の吹付け方法
FR2585273B1 (fr) 1985-07-24 1988-05-13 Daussan & Co Revetement pour proteger l'interieur d'un recipient metallurgique et procede pour realiser ce revetement
AU6251586A (en) 1985-09-10 1987-03-12 Shubow, C. Composition for use in fireproofing and insulation
US4721659A (en) 1985-11-12 1988-01-26 Stauffer Chemical Company Process for applying a cementitious material to a structural base and article produced therefrom
US5002610A (en) 1985-12-12 1991-03-26 Rhone-Poulenc Basic Chemicals Co. Process for making reinforced magnesium phosphate fast-setting cements
JPS62252307A (ja) * 1986-04-25 1987-11-04 Sekisui Plastics Co Ltd 水酸アパタイトを湿式合成する方法
JPS6369984A (ja) 1986-07-16 1988-03-30 サ−マテツク・インタ−ナシヨナル・インコ−ポレイテツド 改良被覆部品、コ−テイング及びその適用方法
US4962228A (en) * 1987-03-09 1990-10-09 Mobil Oil Corporation Layered divalent metal phosphates containing pendent substituent groups and their preparation
US4756762A (en) 1987-07-16 1988-07-12 American Stone-Mix, Inc. Magnesium phosphate cement systems
DE3830848C1 (zh) 1988-09-10 1989-12-21 Boehler Ag, 4005 Meerbusch, De
JPH02180708A (ja) * 1988-12-28 1990-07-13 Lion Corp 水酸化アパタイトの製造方法
DE3915746A1 (de) * 1989-05-13 1990-11-15 Hoechst Ag Verfahren und anlage zur herstellung von dicalciumphosphat
KR920702705A (ko) 1989-06-26 1992-10-06 케이쓰 로드니 맨슬 코팅 조성물
NO894355D0 (no) 1989-11-02 1989-11-02 Elkem Materials Kombinerte strukturer av keramer og superbetong.
US5039454A (en) 1990-05-17 1991-08-13 Policastro Peter P Zinc-containing magnesium oxychloride cements providing fire resistance and an extended pot-life
US5034160A (en) * 1990-06-11 1991-07-23 W.R. Grace & Co.-Conn. Sprayable fireproofing composition
DE4023310A1 (de) 1990-07-21 1992-01-23 Bayer Ag Intumeszenztraeger und deren verwendung
US5338356A (en) 1991-10-29 1994-08-16 Mitsubishi Materials Corporation Calcium phosphate granular cement and method for producing same
US5173960A (en) 1992-03-06 1992-12-22 At&T Bell Laboratories Cable having superior resistance to flame spread and smoke evolution
US5302563A (en) 1992-03-06 1994-04-12 Minerals Technologies, Inc. Sprayable refractory composition
US5401538A (en) 1992-04-16 1995-03-28 W.R. Grace & Co.-Conn. Sprayable portland cement-based fireproofing compositions
CH686780A5 (de) 1992-07-22 1996-06-28 Sandoz Ag Fliessfaehige Zementmischungen.
JP3358833B2 (ja) * 1992-10-12 2002-12-24 日本化学工業株式会社 防錆顔料
JPH0724815A (ja) 1993-07-09 1995-01-27 Nippon Chem Ind Co Ltd セメントの吹付方法
US5525148A (en) 1993-09-24 1996-06-11 American Dental Association Health Foundation Self-setting calcium phosphate cements and methods for preparing and using them
JPH07188592A (ja) * 1993-12-27 1995-07-25 Otsuka Chem Co Ltd 耐火被覆用組成物及び耐火被覆材
US5494708A (en) 1994-06-17 1996-02-27 Blue Oak Materials Limited Partnership Method and apparatus for mixing, spraying and placing cementitious materials
US6080334A (en) 1994-10-21 2000-06-27 Elisha Technologies Co Llc Corrosion resistant buffer system for metal products
US5645518A (en) 1995-01-31 1997-07-08 The University Of Chicago Method for stabilizing low-level mixed wastes at room temperature
GB9505259D0 (en) 1995-03-16 1995-05-03 Sandoz Ltd Improvements in or relating to organic compounds
JPH08269397A (ja) * 1995-04-03 1996-10-15 Denki Kagaku Kogyo Kk 耐火被覆材
US5624493A (en) 1995-04-19 1997-04-29 The United States Of America As Represented By The Department Of Energy Quick-setting concrete and a method for making quick-setting concrete
DE69624971T2 (de) 1995-04-25 2003-07-17 Sermatch Internat Inc Fäulnisverhinderndes Überzugsmittel für Turbomaschinen
JPH09142913A (ja) * 1995-09-20 1997-06-03 Co-Op Chem Co Ltd 無機質組成物
US6103007A (en) 1995-11-17 2000-08-15 Vrije Universiteit Brussel Inorganic resin compositions, their preparation and use thereof
FR2742142B1 (fr) 1995-12-08 1998-01-16 Rhone Poulenc Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers
US5830815A (en) 1996-03-18 1998-11-03 The University Of Chicago Method of waste stabilization via chemically bonded phosphate ceramics
US5846894A (en) 1996-03-18 1998-12-08 The University Of Chicago Phosphate bonded structural products from high volume wastes
US6204214B1 (en) 1996-03-18 2001-03-20 University Of Chicago Pumpable/injectable phosphate-bonded ceramics
JPH10102288A (ja) * 1996-09-24 1998-04-21 Queen Mary & Westfield College リン酸カルシウム化合物のコーティング方法
US5968240A (en) 1997-08-19 1999-10-19 Sermatech International Inc. Phosphate bonding composition
US6136088A (en) 1997-10-09 2000-10-24 Mbt Holding Ag Rapid setting, high early strength binders
JPH11209111A (ja) * 1998-01-21 1999-08-03 Pola Chem Ind Inc 複合燐酸塩
FR2778654B1 (fr) 1998-05-14 2000-11-17 Bouygues Sa Beton comportant des fibres organiques dispersees dans une matrice cimentaire, matrice cimentaire du beton et premelanges
JP2000169121A (ja) * 1998-11-27 2000-06-20 Sekisui Plastics Co Ltd 非晶質リン酸カルシウムスラリーとその製造方法
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6153809A (en) 1999-05-05 2000-11-28 The United States Of America As Represented By The United States Department Of Energy Polymer coating for immobilizing soluble ions in a phosphate ceramic product
US6133498A (en) 1999-05-05 2000-10-17 The United States Of America As Represented By The United States Department Of Energy Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents
JP2001031408A (ja) * 1999-07-19 2001-02-06 Tosoh Corp エチレンジアミンリン酸亜鉛マグネシウム、その製造方法及びそれを配合してなる難燃性樹脂組成物
US6458423B1 (en) 1999-08-03 2002-10-01 David M. Goodson Sprayable phosphate cementitious coatings and a method and apparatus for the production thereof
CA2389701A1 (en) * 1999-11-05 2001-05-17 Otto Hofstetter Ag Multiple layer preform and method for producing the same
US7331400B2 (en) 2000-03-07 2008-02-19 Avtec Industries, Inc. Fire resistant and smoke suppressing coatings
US7429290B2 (en) 2000-06-22 2008-09-30 Thomas Joseph Lally Fire-retardant coating, method for producing fire-retardant building materials
US6461415B1 (en) 2000-08-23 2002-10-08 Applied Thin Films, Inc. High temperature amorphous composition based on aluminum phosphate
US6518212B1 (en) 2000-09-18 2003-02-11 The University Of Chicago Chemically bonded phospho-silicate ceramics
US6929865B2 (en) 2000-10-24 2005-08-16 James J. Myrick Steel reinforced concrete systems
US6498119B2 (en) 2000-12-29 2002-12-24 University Of Chicago Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese
US6569263B2 (en) 2001-05-29 2003-05-27 The Regents Of The University Of California Corrosion protection
CA2456967A1 (en) * 2001-08-10 2003-04-17 Ceratech, Inc. Composite materials and methods of making and using such composite materials
US6790275B2 (en) 2001-09-25 2004-09-14 W. R. Grace & Co.-Conn. Pumpably verifiable fluid fiber compositions
US6776837B2 (en) 2001-11-30 2004-08-17 The University Of Chicago Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder
KR20050012291A (ko) * 2002-06-19 2005-01-31 닥터.에이치.씨. 로버트 마티즈 스티프텅 수술용 인산칼슘 기재 수경성 시멘트
AU2003265419A1 (en) 2002-08-13 2004-02-25 Clement Hiel Fire-resistant covers for surfaces
KR20050110613A (ko) 2002-12-23 2005-11-23 어플라이드 씬 필름스 인코포레이티드 알루미늄 포스페이트 코팅
US7001860B2 (en) 2002-12-30 2006-02-21 The University Of Chicago Construction material and method
EP1597736A2 (en) 2003-02-18 2005-11-23 The University of Chicago Ceramicrete stabilization of u-and pu-bearing materials
WO2004077454A2 (en) 2003-02-26 2004-09-10 Ch2M Hill, Inc. Aluminum phosphate ceramics for waste storage
US20090075051A1 (en) 2003-03-05 2009-03-19 Fyfe Edward R Fire protection coating for FRP-reinforced structure
JP4251619B2 (ja) * 2003-03-25 2009-04-08 日本パーオキサイド株式会社 亜リン酸含有めっき廃液からリン酸カルシウム、或いはリン酸マグネシウムを分離回収する方法。
WO2005013923A1 (en) 2003-08-08 2005-02-17 Dentsply International Inc. Method and product for phosphosilicate slurry for use in dentistry and related bone cements
EP1678268B1 (de) 2003-10-02 2009-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zusammensetzung für ein brandschutzmittel für werkstoffe und verfahren zum brandschutz
US20050160944A1 (en) 2004-01-23 2005-07-28 The University Of Chicago Permafrost ceramicrete
US8742195B2 (en) 2004-02-26 2014-06-03 Ch2M Hill, Inc. Aluminum phosphate ceramics for waste storage
US7250119B2 (en) 2004-05-10 2007-07-31 Dasharatham Sayala Composite materials and techniques for neutron and gamma radiation shielding
WO2005120722A2 (en) 2004-06-14 2005-12-22 Pigmentan Anticorrosive Pigments For Paints Ltd. Method for depositing anti-corrosive coating onto metal surface
US7160383B2 (en) 2004-06-15 2007-01-09 Uchicago Argonne, Llc Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam
CA2579295C (en) 2004-09-03 2010-07-06 The University Of Chicago Chemically bonded phosphate ceramic sealant formulations for oil field applications
WO2006056996A2 (en) 2004-11-29 2006-06-01 Pigmentan Ltd Methods of preventing corrosion
CA2618159C (en) 2005-09-02 2011-04-26 Uchicago Argonne, Llc. Light weight phosphate cements
US7699928B2 (en) 2006-07-14 2010-04-20 Grancrete, Inc. Sprayable and pumpable phosphate cement
WO2008068000A2 (en) 2006-12-06 2008-06-12 Construction Research & Technology Gmbh Rheology modifying additive for cementitious compositions
US20080286609A1 (en) 2007-05-15 2008-11-20 Surace Kevin J Low embodied energy wallboards and methods of making same
US8377196B2 (en) 2007-08-10 2013-02-19 Construction Research & Technology Gmbh Rheology modifying additive for dry cast cementitious compositions
US20090176110A1 (en) * 2008-01-08 2009-07-09 General Electric Company Erosion and corrosion-resistant coating system and process therefor
US20100247321A1 (en) * 2008-01-08 2010-09-30 General Electric Company Anti-fouling coatings and articles coated therewith
US9023145B2 (en) * 2008-02-12 2015-05-05 Bunge Amorphic Solutions Llc Aluminum phosphate or polyphosphate compositions
DE102008015834A1 (de) 2008-03-27 2009-10-01 Inos Automationssoftware Gmbh Verfahren und Vorrichtung zum automatischen Einbringen oder Auftragen von zähflüssigem Material
US7789953B2 (en) 2008-03-28 2010-09-07 Praxair S.T. Technology, Inc. High temperature resistant coating compositions
US8273172B2 (en) 2008-10-07 2012-09-25 Grancrete, Inc. Heat resistant phosphate cement
US20110023748A1 (en) 2009-02-23 2011-02-03 Wagh Arun S Fire protection compositions, methods, and articles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783799B1 (en) * 1999-08-03 2004-08-31 David M. Goodson Sprayable phosphate cementitious coatings and a method and apparatus for the production thereof

Also Published As

Publication number Publication date
US20150104368A1 (en) 2015-04-16
CA2783723C (en) 2019-01-15
CA2783723A1 (en) 2011-06-16
ES2821489T3 (es) 2021-04-26
KR20120113224A (ko) 2012-10-12
EP2509927B1 (en) 2020-07-08
EP2509927A2 (en) 2012-10-17
CN102781871A (zh) 2012-11-14
US20110143910A1 (en) 2011-06-16
US20160068442A9 (en) 2016-03-10
WO2011072262A2 (en) 2011-06-16
EP2509927A4 (en) 2013-07-24
US8858702B2 (en) 2014-10-14
JP6134140B2 (ja) 2017-05-24
AU2010327923A1 (en) 2012-07-26
AU2010327923B2 (en) 2015-05-07
JP2013513703A (ja) 2013-04-22
WO2011072262A3 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
CN102781871B (zh) 无机磷酸盐组合物及方法
US7658795B2 (en) Magnesium oxychloride cement
CN101076502A (zh) 结合到聚苯乙烯泡沫塑料上的新型可喷涂磷酸盐水泥的组合物和应用
CN111039643B (zh) 以复合水气硬凝胶结构无机成膜的墙面涂覆组合物
CN102432335B (zh) 涂装基层处理用的聚合物乳液型界面剂及其制备方法
US20090197990A1 (en) Lightweight Structural Finish
CN102584141A (zh) 一种具有无机特征的抗泛碱性能优异的外墙饰面砂浆
KR20190080189A (ko) 할로이사이트를 이용한 친환경 천연 페인트 및 그 제조방법
KR100803170B1 (ko) 친환경성 석회 도료 조성물
US7045476B1 (en) Aerated refractory, method for producing high-temperature structural members
CN101360797A (zh) 有装饰效果的涂料组合物及其制备方法和应用
US3167439A (en) Coating composition
CN103889921A (zh) 缓释磷酸水泥
CA2363303C (en) Viscosity stable smectite clay slurries and mixtures of smectite clay and one or more phosphonates useful to make such slurries
US3179527A (en) Coating composition
CN106009793A (zh) 一种干粉肌理漆
CN104926262B (zh) 用于复合材料的无机粘结材料体系
KR101089051B1 (ko) 헥토라이트를 이용한 천연 화강석 또는 대리석 다채 입체 무늬 도료 조성물 및 이의 제조방법
JP3431486B2 (ja) 粉状ワンパックのケイ酸アルカリ組成物及びこれを用いたペースト状ケイ酸アルカリ系固化材、産業廃棄物の処理方法、並びにポリマー製品
KR101563988B1 (ko) 카오린을 주성분으로 하는 건축용 벽바름재
US20240043325A1 (en) Geopolymer compositions and methods of making and using the same
WO2015195670A1 (en) Aluminum phosphate ceramics and coatings
KR20040052974A (ko) 원적외선방사 맥반석 미장 퍼티 및 그 제조방법
RU1825806C (ru) Силикатна краска
JPS6110048A (ja) セラミツク・コ−テイングを形成しうるセメント混和材

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant