CN102763220A - 用于至少局部地除去层堆叠的层的方法 - Google Patents

用于至少局部地除去层堆叠的层的方法 Download PDF

Info

Publication number
CN102763220A
CN102763220A CN2010800545910A CN201080054591A CN102763220A CN 102763220 A CN102763220 A CN 102763220A CN 2010800545910 A CN2010800545910 A CN 2010800545910A CN 201080054591 A CN201080054591 A CN 201080054591A CN 102763220 A CN102763220 A CN 102763220A
Authority
CN
China
Prior art keywords
layer
light
laser
semiconductor layer
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800545910A
Other languages
English (en)
Other versions
CN102763220B (zh
Inventor
V.R.莫尔多万
C.T.诺伊格鲍尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nice Solar Energy GmbH
Original Assignee
Manz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manz AG filed Critical Manz AG
Publication of CN102763220A publication Critical patent/CN102763220A/zh
Application granted granted Critical
Publication of CN102763220B publication Critical patent/CN102763220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

在用于至少局部地除去层堆叠(1)的至少一个半导体层(4)的方法中,如此加热光密金属化层(3),使得位于其上方的半导体层脱离。

Description

用于至少局部地除去层堆叠的层的方法
技术领域
本发明涉及一种具有权利要求1的前序部分的特征的方法。
背景技术
公知的是,薄层太阳能电池由不同的层构建和因此是层堆叠。经常在光学透明的衬底上施加导电层,在所述导电层上又有半导体层。作为最上面的层又设置导电层。
在制造期间必须将薄层太阳能电池结构化。这例如在CIS/CIGS电池情况下通过机械刻刀或皮秒(ps)激光器来实现。该加工通常从上方、也就是从上面的导电层出发来实现。这借助图1来阐述:
图1展示了包括玻璃衬底2的层堆叠1,在该玻璃衬底2上布置有例如由钼制成的导电层3(金属化层)。在此之后是半导体层4,例铜铟硒(CIS)层或铜铟镓硒(CIGS)层。在半导体层4上又施加例如由TCO(透明导电氧化物(Transparent Conductive Oxide))制成的导电层5。用附图标记6表明了可采用于引入迹线(Spuren)的机械刻刀。
为了在衬底上制造多个可以互相串联的单个太阳能电池,施加所谓的P2迹线,即局部地除去层4。然后所施加的层5(前面接触)于是建立通向层3(背面接触)的电连接。随后引入P3迹线,其方式是局部地除去层4和5。通过该步骤应分开单个电池。在此处不允许进行在层3和5之间的电连接。
在采用机械刻刀时有问题的是,通过该机械刻刀只引入比较宽的迹线,并且刻刀可能磨损。此外,该方法是比较缓慢的。
替代或附加地,如这由附图标记7所表明的那样,借助于皮秒激光器可以实现结构化(迹线引入)。但是皮秒激光器在购置方面是很昂贵的。
根据现有技术,从上方、也就是从背离衬底2的侧来实现两种结构化方法。尤其是在借助激光器的结构化时,可能出现导电层5熔化和在结构化的边缘处向下流。此外,在半导体层4中在热影响区之内,导电性由于热效应而显著提高,使得由于两种效应可能发生到导电层3的短路。这应尽可能予以避免。
除了结构化,也就是借助机械刻刀或皮秒激光器引入迹线之外,经常进行所谓的边缘除层,也就是在太阳能电池的边缘处隔离。这例如在DE 199 644 43 B4中得以描述。
从EP 2 083 445 A1中公知了一种用于制造光电模块的方法。为了形成串联的电池,利用发射红外辐射的激光器通过分离线将透明的基本电极层、半导体层和背电极层结构化。从衬底侧来实现半导体层的和背电极层的结构化,其方式是将激光穿过透明的前电极引向半导体层和背电极层。
EP 1 727 211 A1公开了一种用于将薄层太阳能电池结构化的方法。用第一功率的激光来除去半导体层和布置在其上的背电极层,其方式是将激光穿过透明的衬底和布置在其上的透明的前电极引向要除去的半导体层和背电极层。用第二功率的激光除去布置在衬底上的层,其方式是将激光穿过透明的衬底引向要除去的层堆叠。
DE 20 2008 005 970 U1公开了一种装置,用于在薄层太阳能电池情况下借助激光辐射剥蚀在玻璃上的层,其中,激光器通过谐振器的品质电路(Güteschaltung)生成短脉冲,并且其中,用激光器的辐射在层上产生焦斑,所述焦斑通过调整装置相互排列,使得实现平面的剥蚀。
发明内容
本发明的任务是提供一种方法,用该方法可以以简单的和成本低的方式局部地除去层堆叠的一个或多个层。如果将该方法应用于太阳能电池,也应通过该方法避免在导电层之间形成短路。
通过具有权利要求1的特征的方法来解决该任务。在此,优选在应除去位于其上方的半导体层的区域中加热光密金属化层,该光密金属化层有利地具有更高的导热性和/或具有比位于其上方的半导体层的至少一种成分的沸点更高的沸点。
因此如果例如应将迹线引入半导体层中,也就是除去该半导体层,则沿着该迹线的走向来加热光密半导体层。通过如此加热光密金属化层,使得位于其上方的半导体层的具有较低沸点的至少一种成分蒸发,发生半导体层和必要时位于半导体层之上的层的除去。如果半导体层是CIS层或CIGS层,则通过加热位于其下的金属化层使半导体层中的硒(沸点:684.6oC,导热性                                                
Figure DEST_PATH_IMAGE001
)蒸发,可能是足够的。但是蒸发半导体层的其它成分也是可以设想的。半导体层的仅一种成分的蒸发通常足以引起层和也许位于其上方的层的其余成分的剥落。原则上也可以设想如此来加热光密层,使得由于在光密层和半导体层之间的温度差而发生半导体层和必要时布置在其上方的层的局部剥落,也就是半导体层的成分不蒸发。
在除去半导体层或位于其上方的层的该方式中产生裂纹边。由此在覆盖电极层(布置在半导体层上方的导电层,在太阳能电池情况下前面接触)和可以是太阳能电池的第一金属化层的光密金属化层之间减小短路的危险。
如果从背离半导体层的侧来加热光密金属化层,则是特别优选的。由此可以避免:熔化布置在半导体层上的导电层(覆盖电极层)和建立通到光密金属化层的短路。光密金属化层可以构成为钼层(沸点:4639oC,导热性:
Figure 793575DEST_PATH_IMAGE002
)。
在此可以规定,穿过一个或多个光学透明的层来加热光密金属化层。光密金属化层可以例如布置在玻璃衬底上,并且穿过玻璃衬底来加热。附加于光学透明的衬底,在光密金属化层之下还可以设置其它透明的层,尤其是增附剂层或扩散势垒。也可以穿过这些层来加热例如可以构成为钼层的光密金属化层。
如果借助激光器进行加热,则是特别优选的。由此穿过光学透明的层执行加热是特别简单的。
根据现有技术需要采用在购置上很昂贵的皮秒激光器,而根据本发明规定,借助纳秒激光器来执行加热。尤其是可以采用在1 μm范围中的红外激光器。这样的激光器比皮秒激光器显著有益。
如果借助脉动激光器实现加热,则得出其它的优点。由此可以将能量输入良好地定剂量。尤其是可以由此实现光密层的点状加热。由此可以特别良好地控制所剥落的第二层的扩张。
如果借助在截面上正方形的或圆形的光学光导将激光束映射到层堆叠上,则是特别优选的。通过该措施可以特别良好定义地将迹线引入到层堆叠中。
此外可以规定,如此加热光密层,使得该光密层蒸发。不言而喻,在光密层蒸发之前,位于其上方的半导体层蒸发。如果应执行太阳能电池、尤其是薄层太阳能电池的边缘除层,光密层的蒸发是特别有利的。
如果将本发明方法采用于太阳能电池的边缘除层或采用于尤其是薄层太阳能电池的太阳能电池结构化,则得出特别的优点。
附图说明
从根据展示发明基本细节的附图的图对本发明的实施例的以下详细描述中以及从权利要求中,得出本发明的其它的特征和优点。那里所展示的特征不应理解为按比例尺的,并且是如此示出的,使得可以使显著看出本发明的特点。不同的特征可以各个自身单独地或多个地以任意的组合的方式在本发明的变型方案中实现。
图1展示了根据现有技术的方法所结构化的层堆叠;
图2展示了从层堆叠背面来执行层堆叠表面的结构化的层堆叠:
图3展示了执行了边缘除层的层堆叠。
具体实施方式
图2展示了具有光学透明的衬底2的层堆叠1。在衬底2上布置例如由钼制成的光密层3。层3是导电层,尤其是金属化层。例如由CIGS制成的半导体层4布置在光密层3上。在层4上又施加例如由TCO制成的导电层5(覆盖电极层)。
在位置10处已除去了层4,5。尤其是在这里在所谓的P3结构化的框架内已引入了迹线。实现该结构化,其方式是穿过透明的衬底2局部加热金属化层、也就是光密层3。尤其是如此来实现加热,使得半导体层4的成分(在该情况下硒)蒸发。由此在区域10中,层堆叠的一部分、也就是层4,5剥落。将纳秒激光器采用于加热光密层3。这通过附图标记11来表明。
在图3中又展示了层堆叠1。这里可以看出,在区域15中已除去层4,5,并且此外在区域16中已除去光密层3。在区域15中,以与在图2中在区域10中引入迹线相同的方式除去层4,5,也就是其方式是用纳秒激光器11加热光密层3,使得在层4中层4的成分(例如硒)蒸发,并且由此在区域15中层4,5剥落。在该行动方式中形成良好定义的裂纹边17。
为了除去区域16中的光密层3,用由较宽示出的激光器18所表明的较大的激光功率加热所述光密层3,使得层3熔化和蒸发。以此方式执行了边缘除层。
通过图2,3变得清楚的是,用以不同功率运行的相同的激光器,可以获得不同的层除去结果。例如可以只用其功率的小百分比来运行用于结构化的激光器,如这在图2中所示出的那样。为了暴露光密层3,如这通过图3中的区域1所表明,例如可以在稍微较高的功率范围中运行激光器。但是如果附加地也还应除去光密层3,则可以用其最大功率的较高的百分比来运行激光器。因此用仅唯一的激光器按照激光功率而定可以发生不同的层除去。
从图2和3的描述中变得清楚的是,本发明方法的优点尤其是在于太阳能电池的制造,尤其是在于其结构化和边缘除层。 
权利要求书(按照条约第19条的修改)
1.用于至少局部地除去层堆叠(1)的至少一个半导体层(4)的方法,其中,加热光密金属化层(3),使得位于其上方的半导体层脱离,其中,从背离半导体层(4)的侧来加热光密金属化层(3)。
2.按照权利要求1的方法,其特征在于,加热光密金属化层(3),使得位于其上方的半导体层(4)的具有较小导热性的和/或较低沸点的至少一种成分蒸发。
3.按照以上权利要求之一的方法,其特征在于,穿过一个或多个光学透明的层(2)来加热光密金属化层(3)。
4.按照以上权利要求之一的方法,其特征在于,借助激光器(11,18)实现加热。
5.按照以上权利要求之一的方法,其特征在于,借助ns激光器(11,18)实现加热。
6.按照以上权利要求之一的方法,其特征在于,借助脉动激光器(11,18)实现加热。
7.按照以上权利要求之一的方法,其特征在于,借助在截面上正方形的或圆形的光学光导将激光束映射到层堆叠(1)上。
8.按照以上权利要求之一的方法,其特征在于,加热光密金属化层(3),使得该光密金属化层(3)蒸发。
9.按照以上权利要求之一的方法,其特征在于,执行太阳能电池的边缘除层。
10.按照以上权利要求之一的方法,其特征在于,执行太阳能电池结构化。
 

Claims (11)

1.用于至少局部地除去层堆叠(1)的至少一个半导体层(4)的方法,其中,加热光密金属化层(3),使得位于其上方的半导体层脱离。
2.按照权利要求1的方法,其特征在于,加热光密金属化层(3),使得位于其上方的半导体层(4)的具有较小导热性的和/或较低沸点的至少一种成分蒸发。
3.按照权利要求1或2的方法,其特征在于,从背离半导体层(4)的侧来加热光密金属化层(3)。
4.按照以上权利要求之一的方法,其特征在于,穿过一个或多个光学透明的层(2)来加热光密金属化层(3)。
5.按照以上权利要求之一的方法,其特征在于,借助激光器(11,18)实现加热。
6.按照以上权利要求之一的方法,其特征在于,借助ns激光器(11,18)实现加热。
7.按照以上权利要求之一的方法,其特征在于,借助脉动激光器(11,18)实现加热。
8.按照以上权利要求之一的方法,其特征在于,借助在截面上正方形的或圆形的光学光导将激光束映射到层堆叠(1)上。
9.按照以上权利要求之一的方法,其特征在于,加热光密金属化层(3),使得该光密金属化层(3)蒸发。
10.按照以上权利要求之一的方法,其特征在于,执行太阳能电池的边缘除层。
11.按照以上权利要求之一的方法,其特征在于,执行太阳能电池结构化。
CN201080054591.0A 2009-12-01 2010-11-29 用于至少局部地除去层堆叠的层的方法 Active CN102763220B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009056572.8 2009-12-01
DE102009056572.8A DE102009056572B4 (de) 2009-12-01 2009-12-01 Verfahren zum zumindest bereichsweisen Entfernen einer Schicht eines Schichtenstapels
PCT/EP2010/007221 WO2011066930A1 (de) 2009-12-01 2010-11-29 Verfahren zum zumindest bereichsweisen entfernen einer schicht eines schichtenstapels

Publications (2)

Publication Number Publication Date
CN102763220A true CN102763220A (zh) 2012-10-31
CN102763220B CN102763220B (zh) 2016-04-27

Family

ID=43759848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080054591.0A Active CN102763220B (zh) 2009-12-01 2010-11-29 用于至少局部地除去层堆叠的层的方法

Country Status (8)

Country Link
US (1) US8628993B2 (zh)
EP (1) EP2507834B1 (zh)
KR (1) KR101444567B1 (zh)
CN (1) CN102763220B (zh)
CA (1) CA2782200A1 (zh)
DE (1) DE102009056572B4 (zh)
PL (1) PL2507834T3 (zh)
WO (1) WO2011066930A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030827A (zh) * 2013-08-30 2016-10-12 北京铂阳顶荣光伏科技有限公司 用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011017807A1 (de) * 2011-04-29 2012-10-31 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum laserinduzierten Entfernen von Bereichen von Schichten eines Schichtenstapels
DE102013109478A1 (de) * 2013-08-30 2015-03-05 Hanergy Holding Group Ltd. Verfahren zur Herstellung von Sub-Solarmodulen durch elektrisch isolierende Isoliergräben in einem Dünnschichtsolarmodul und Verfahren zur Herstellung eines Dünnschichtsolarmoduls mit derartigen Isoliergräben
DE102015115030A1 (de) * 2015-09-08 2017-03-09 Von Ardenne Gmbh Verfahren zum Entfernen einer Schicht von einem Substrat und dessen Verwendung
DE102015121141B4 (de) * 2015-12-04 2020-06-04 Solibro Hi-Tech Gmbh Dünnschichtsolarmodul
DE102015121144B4 (de) 2015-12-04 2019-05-09 Solibro Hi-Tech Gmbh Dünnschichtsolarmodul
DE102015017306B3 (de) * 2015-12-04 2020-03-19 Solibro Hi-Tech Gmbh Verfahren zur Herstellung eines Dünnschichtsolarmoduls
DE202017107931U1 (de) * 2017-12-28 2019-04-01 Inalfa Roof Systems Group B.V. Dachkonstruktion für ein Fahrzeug und ein semi-transparentes Photovoltaik-Paneel darin
FR3084203A1 (fr) 2018-07-20 2020-01-24 Sunpartner Technologies Procede industriel d'ablation laser de couches minces en une etape pour la realisation de modules photovoltaïques semi-transparents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324195B1 (en) * 1999-01-13 2001-11-27 Kaneka Corporation Laser processing of a thin film
EP1727211A1 (en) * 2005-05-27 2006-11-29 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
US20080182349A1 (en) * 2006-07-28 2008-07-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799335A (ja) * 1993-06-21 1995-04-11 Sanyo Electric Co Ltd 半導体膜の除去加工方法及び光起電力素子の製造方法
DE19964443B4 (de) * 1999-04-07 2007-08-16 Shell Solar Gmbh Vorrichtung zum Abtragen von Schichten auf einem Werkstück
DE10326505B4 (de) * 2003-06-10 2012-01-19 Solarion Ag Laserritzen von Dünnschichthalbleiterbauelementen
DE102008006166A1 (de) * 2008-01-26 2009-07-30 Schott Solar Gmbh Verfahren zur Herstellung eines photovoltaischen Moduls
KR101460580B1 (ko) * 2008-02-20 2014-11-12 주성엔지니어링(주) 박막형 태양전지 및 그 제조방법
DE202008005970U1 (de) * 2008-04-30 2008-07-24 4Jet Sales + Service Gmbh Robotergeführte Kantenisolation bei Dünnschicht-Solarzellen
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
EP2214213A2 (de) 2009-01-29 2010-08-04 SCHOTT Solar AG Photovoltaisches Modul

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324195B1 (en) * 1999-01-13 2001-11-27 Kaneka Corporation Laser processing of a thin film
EP1727211A1 (en) * 2005-05-27 2006-11-29 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
US20080182349A1 (en) * 2006-07-28 2008-07-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J HERMANN ET AL: "Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers", 《JOURNAL OF PHYSICS D: APPLIED PHYSICS》 *
J HERMANN ET AL: "Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers", 《JOURNAL OF PHYSICS D: APPLIED PHYSICS》, vol. 39, no. 3, 20 January 2006 (2006-01-20) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030827A (zh) * 2013-08-30 2016-10-12 北京铂阳顶荣光伏科技有限公司 用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法
CN106030827B (zh) * 2013-08-30 2018-03-23 北京铂阳顶荣光伏科技有限公司 用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法

Also Published As

Publication number Publication date
US20120238049A1 (en) 2012-09-20
WO2011066930A1 (de) 2011-06-09
DE102009056572B4 (de) 2014-10-23
EP2507834A1 (de) 2012-10-10
KR101444567B1 (ko) 2014-09-25
CN102763220B (zh) 2016-04-27
EP2507834B1 (de) 2014-10-22
PL2507834T3 (pl) 2015-03-31
KR20120096052A (ko) 2012-08-29
WO2011066930A4 (de) 2011-07-28
US8628993B2 (en) 2014-01-14
CA2782200A1 (en) 2011-06-09
DE102009056572A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
CN102763220A (zh) 用于至少局部地除去层堆叠的层的方法
US8822809B2 (en) Solar cell apparatus and method for manufacturing the same
US9437756B2 (en) Metallization of solar cells using metal foils
JP6055787B2 (ja) 太陽電池及びその製造方法
KR102629257B1 (ko) 태양 전지용 1차원 금속화
JP5220134B2 (ja) 光電変換セルおよび光電変換モジュール
TWI529958B (zh) 太陽能電池之製造方法
KR102625414B1 (ko) 태양 전지의 포일 기반 금속화를 위한 두꺼운 손상 버퍼
CN101689574A (zh) 用于对超轻重量半导体器件进行激光划片的方法和设备
KR20140117472A (ko) 불연속적 레이저 스크라이브 라인들을 사용하기 위한 방법 및 구조
US8552287B2 (en) Stacked-layered thin film solar cell and manufacturing method thereof
CN112424956A (zh) 使用激光束对半导体基板进行局部金属化
US8283199B2 (en) Solar cell patterning and metallization
JP7127042B2 (ja) 光電変換モジュール及び光電変換モジュールを製造する方法
CN109564946B (zh) 光电转换元件以及光电转换装置
KR20200130495A (ko) 태양 전지 스트링잉을 위한 레이저 보조 금속화 공정
KR20110001793A (ko) 태양전지 및 이의 제조방법
JP2014135486A (ja) 太陽電池の製造方法
US20120326258A1 (en) Photoelectric conversion device and method for manufacturing the photoelectric conversion device
CN102308392A (zh) 使用穿硅通孔的改进的光伏电池效率
KR102132941B1 (ko) 태양 전지 및 태양 전지 모듈
KR20130070461A (ko) 태양전지 및 이의 제조방법
KR101306436B1 (ko) 태양광 발전장치 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170222

Address after: Schwbisch Hall

Patentee after: Wuerth Solar GmbH. & Co. KG

Address before: Reutlingen

Patentee before: Manz Ag

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Schwbisch Hall

Patentee after: Nice Solar Co.,Ltd.

Address before: Schwbisch Hall

Patentee before: Manz CIGB Technology GmbH