CN102763164B - 具有有源缓冲器的功率开关 - Google Patents

具有有源缓冲器的功率开关 Download PDF

Info

Publication number
CN102763164B
CN102763164B CN201180009537.9A CN201180009537A CN102763164B CN 102763164 B CN102763164 B CN 102763164B CN 201180009537 A CN201180009537 A CN 201180009537A CN 102763164 B CN102763164 B CN 102763164B
Authority
CN
China
Prior art keywords
power semiconductor
semiconductor device
mosfet power
pressure side
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180009537.9A
Other languages
English (en)
Other versions
CN102763164A (zh
Inventor
K.特里尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Siliconix Inc
Original Assignee
Vishay Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Siliconix Inc filed Critical Vishay Siliconix Inc
Publication of CN102763164A publication Critical patent/CN102763164A/zh
Application granted granted Critical
Publication of CN102763164B publication Critical patent/CN102763164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种具有有源缓冲器的功率开关,依据第一实施例,该电子电路包括第一功率半导体器件,和被耦接到第一功率半导体器件的第二功率半导体器件。该第二功率半导体器件被配置成对抗第一功率半导体器件的振铃。

Description

具有有源缓冲器的功率开关
相关申请
本申请要求提交于2010年2月18日的第61/305,857号,发明名称为“PowerSwitchwithActiveSnubber”的美国临时专利申请的利益,其代理案号为VISH-8785.PRO,在此结合其全文作为参考。
技术领域
在此所描述的实施例涉及电子电路与半导体的设计和制造领域,并且更尤其涉及具有有源缓冲器(activesnubber)的功率开关的系统和方法。
背景技术
在使用同步的低压侧金属氧化物半导体场效应晶体管(MOSFET)的DC-DC降压变换器应用中,在高压侧MOSFET导通时可能出现大的电压过冲。这种过冲可能是由于低压侧MOSFET体二极管的“活跃(snappy)”的性质导致的,并且可导致电压过冲,和在将低压侧MOSFET的漏极连接到高压侧MOSFET的源极的节点上的过多振铃(ringing)。电压过冲可超过低压侧MOSFET的电压额定值,这引起稳定性问题,例如,性能降低、寿命缩短或故障。振铃振荡可能扰动附近的敏感的电路,并且来自振铃的噪声还引起了电磁干扰(EMI)。
图1说明了示例性DC-DC降压变换器电路100,依据常规技术,降压变换器电路100包括低压侧MOSFET开关110和高压侧MOSFET开关120。应该理解的是,低压侧MOSFET开关110包括体二极管(未示出)。MOSFET体二极管是制造处理产生的副作用,并通常不被认为是“好”的二极管。与离散高速二极管(discretehigh-speeddiode)相比,体二极管的反向恢复时间很长,例如,当流过的电流改变方向时,体二极管花费较长的时间来关断。在反向开关(例如,高压侧MOSFET开关120)导通时,这可能导致击穿(shootthrough)或阶跃恢复(snapback)的情况。
高压侧MOSFET开关120和低压侧MOSFET开关110被配置成通过控制电路来控制,例如被导通或关断,以产生输出电压Vout。降压变换器100进一步包括开关节点130,例如,低压侧MOSFET110的漏极到高压侧MOSFET120的源极的耦接。在操作中,开关节点130可受到振铃噪声的影响。除上述的许多有害的作用以外,振铃可能达到或超过低压侧MOSFET开关110的电压额定值。例如,由于稳定性的原因,设计者可能希望以不超过其最大电压额定值的80%的峰值电压来操作低压侧MOSFET开关110。
遗憾的是,使用具有较高电压额定值的部件作为低压侧MOSFET开关110的替换品并不是一种合意方案。例如,具有更高电压额定值的MOSFET具有更大的内电阻和更大的开关损耗,这导致了较低的开关效率。因此,常规手段并未针对这些问题提供合意的方案。
发明内容
因此,需要一种具有有源缓冲器的功率开关。
一种具有有源缓冲器的功率开关被揭示出。依照第一实施例,该电子电路包括第一功率半导体器件和被耦接到第一功率半导体器件的第二功率半导体器件。该第二功率半导体器件被配置成对抗第一功率半导体器件的过冲和/或振铃。
依照另一个实施例,该电子电路包括被配置成耦接到高电压并被配置成通过开关控制逻辑进行控制的高压侧功率半导体开关。该电子电路进一步包括被配置成耦接到低电压,并被配置成通过开关控制逻辑来控制,与高压侧功率半导体开关串联耦接的低压侧功率半导体开关。低压侧功率半导体开关包括第一低压侧功率半导体器件和被耦接到该第一低压侧功率半导体器件的第二低压侧功率半导体器件。第二低压侧功率半导体器件被配置成对抗第一低压侧功率半导体器件的过冲和/或振铃。
再依照另一个实施例,MOSFET半导体器件包括第一功率半导体器件和被耦接到第一功率半导体器件的第二功率半导体器件。该第二功率半导体器件被配置成对抗第一功率半导体器件的过冲和/或振铃。第一和第二功率半导体器件被放置在单个晶片(die)上。
仍依照进一步的实施例,沟槽型MOFSET功率半导体器件包括形成第一沟槽型MOSFET功率半导体器件的栅极的第一多个第一沟槽,和形成第二沟槽型MOSFET功率半导体器件的栅极的第二多个第二沟槽。该沟槽型MOSFET功率半导体器件和第二沟槽型MOSFET功率半导体器件具有公共的源极和公共的漏极,并且,第一多个第一沟槽和第二多个第二沟槽是相互交织的。
附图说明
被结合在说明书中并形成本说明书的一部分的附图,说明了本发明的实施例,并且与说明一起用于解释本发明的原理。
图1说明了依照常规技术的示例性DC-DC降压变换器电路;
图2说明了依照本发明的实施例的具有集成的缓冲器(IntegratedSnubber)的示例性功率MOSFET;
图3说明了依照本发明的实施例的功率MOSFET的一部分的示例性沟槽型布局的平面图;
图4说明了依照本发明的实施例的示例性DC-DC降压变换器电路。
具体实施方式
现在将详细参考本发明的不同的实施例,在附图中说明了其示例。虽然本发明将结合这些实施例进行说明,但是应该理解,它们并非意图将本发明限制在这些实施例中。相对而言,本发明旨在覆盖在随附的权利要求书中所限定的本发明的精神和范围之内可包括的备选、变体和等价物。
而且,在下面对本发明的详细说明中,阐述了许多特定的细节,以便提供对本发明的彻底的理解。但是,应该理解的是,不具有这些特定细节也可实现本发明。另一方面,熟知的方法、过程、组件和电路并未被详细地说明,以不使得本发明没有必要地难以理解。
图2说明了依据本发明的实施例的具有集成的缓冲器的示例性功率MOSFET200。在诸如DC-DC降压变换器电路100的应用中,MOSFET200可替换例如低压侧MOSFET开关110(图1)。
MOSFET200在外部被配置成单个器件,例如,具有一个漏极节点204、一个源极节点206和一个栅极节点202。在内部,MOSFET200包括两个有源器件,低压侧MOSFET210和缓冲器MOSFET240。低压侧MOSFET210可与低压侧MOSFET开关110(图1)相似。例如,可将低压侧MOSFET210设计成具有合意的特征,以用于在诸如DC-DC降压变换器电路100的电路中的应用。
缓冲器240被基本上并联地耦接到低压侧MOSFET210。例如,缓冲器MOSFET240的漏极被耦接到低压侧MOSFET210的漏极。缓冲器MOSFET240的源极被耦接到低压侧MOSFET210的源极。缓冲器MOSFET240的栅极通过栅极阻抗250被耦接到低压侧MOSFET210的栅极。
缓冲器MOSFET240比低压侧MOSFET210更小,例如,缓冲器MOSFET240包括比低压侧MOSFET210更小的沟道面积。例如,缓冲器MOSFET240可比低压侧MOSFET210小10至100倍。例如,低压侧MOSFET210可包括功率MOSFET200的沟道面积的95%,而缓冲器MOSFET240包括功率MOSFET200的沟道面积的5%。
缓冲器MOSFET240和低压侧MOSFET210在它们各自的栅-漏极/栅-源极电荷比(Qgd/Qgs)也存在不同,这大体上反映了相应的器件的沟槽几何结构。栅极电荷特征Qgd(栅极到漏极电荷)和Qgs(栅极到源极电荷)通常是功率半导体的特定特征,例如,这些参数通常在器件数据表中被公布。然而,低压侧MOSFET210可具有小于1.0的栅-漏极/栅-源极电荷比,Qgd/Qgs,缓冲器MOSFET240应具有较高的电荷比Qgd/Qgs,例如,比值在约1.5至4的范围内。更高的比例可能是有益的。
栅极阻抗250将缓冲器MOSFET240从低压侧MOSFET210隔离,使得在瞬变过程中缓冲器MOSFET240能够导通。例如,在低压侧MOSFET210的栅极接地时,栅极阻抗250足以使缓冲器MOSFET240导通。通过在漏极节点204处较高的dV/dt上升时间使缓冲器MOSFET240被触发导通。如果dV/dt比Vin/(Cg×Rg)大得多,且Qgd/Qgs大于1.5,则在瞬变过程中缓冲器MOSFET240将导通,其中Cg为缓冲器MOSFET240的平均栅极电容,且Rg为缓冲器MOSFET240的栅极阻抗250的值。在一般应用中,dV/dt可在每纳秒2伏至每纳秒10伏的范围内。
响应于在漏极节点204处适当较高的dV/dt上升时间,缓冲器MOSFET240栅极上的电压将提高至比缓冲器MOSFET240的阈值电压更高的值,这使得缓冲器MOSFET240导通。这种效果通过缓冲器MOSFET240的高的Qgd/Qgs比所引起。一旦栅极电压超过缓冲器MOSFET240的阈值电压,则缓冲器MOSFET240将导通并且生成漏极电流,其将起到抑制或对抗在漏极节点204上电压过冲的作用。对电压过冲的抑制还导致了与振铃噪声相关联的功率降低。
通过在这样的情况下进行导通,缓冲器MOSFET240抑制或对抗电压过冲和振铃,正如否则在常规技术下存在的。在这种新颖的方式下,缓冲器MOSFET240,作为功率MOSFET200的一部分,具有优势地降低过冲、振铃噪声和辐射的电磁干扰,同时有利地改善了器件的可靠性。
图3说明了依照本发明的实施例的功率MOSFET200的一部分的示例性沟槽布局300的平面图。将理解到的是,图3并不是按比例描绘的。功率MOSFET,例如,功率MSOFET200,通常包括上千个沟槽。图3说明了包括在沟槽上的多晶硅的栅极。
沟槽310说明了示例性的沟槽,正如可被用于构造常规的功率MOSFET,例如,在图1中的低压侧MOSFET开关110或低压侧MOSFET210的那样。在功率MOSFET200内,沟槽310可被用于实现低压侧MOSFET210。将理解的是,这些沟槽310“颈缩(neckdown)”,或者它们的宽度的一部分较为狭窄。这种设计特征有利地降低了从栅极到源极和漏极的寄生电容,例如Cgd和Cgs。这样的变窄还降低了栅极的电阻。
沟槽320说明了可被用于构造缓冲器MOSFET240(图2)的示例性沟槽。将理解到的是,在一些实施例中,沟槽320可比沟槽310的宽度更宽。这种设计特征有利地提高了Qgd与Qgs之比。例如,对于给定的沟槽,Qgd通常随着沟槽宽度的增加而增加,但是Qgs的值基本不变。为了达到缓冲器MOSFET240与低压侧MOSFET210的期望面积比,大多数沟槽与低压侧MOSFET210相关联。例如,约每15个沟槽中有1个与缓冲器MOSFET240相关联,例如,功率MOSFET200在每一个沟槽320的情况下可重复14次沟槽310模式的情况。可理解到的是,电荷并不是沿着栅极衬底/沟槽均匀分布的,并且因此沟槽之比可能与期望的有效栅极面积之比不同。
图4说明了依据本发明的实施例的示例性DC-DC降压变换器电路400。降压变换器电路400包括高压侧MOSFET开关120和具有起到低压侧开关作用的集成缓冲器的功率MOSFET200。
高压侧MOSFET开关120和具有集成的缓冲器的功率MOSFET200被配置成通过控制电路来控制,例如被导通或关断,以产生输出电压Vout。降压变换器400进一步包括开关节点430,例如,具有集成的缓冲器的功率MOSFET200的漏极与高压侧MOSFET120的源极的耦接。
与常规技术的DC-DC降压变换器电路100(图1)相比,通过操作具有集成的缓冲器的功率MOSFET200内的缓冲器MOSFET240,在DC-DC降压变换器400中可减少有害的振铃噪声,尤其是在开关节点430处。
所理解到的是,依照本发明的实施例是依照金属氧化物半导体场效应晶体管(MOSFET)来描述的。依照本发明的实施例充分适用于其它技术,且实施例可在其它的技术中预见到,包括分立器件的应用中,例如,器件210和240分离的实施例,以及包括其它已知技术(包括双极性、BiMOS、CMOS和其它适宜技术)的半导体。
本发明的实施例已经进行了描述。但是本发明是在特定的实施例中被描述的,应该理解到的是,本发明并不应被构造成受到这样的实施例的限制,而应依据随附的权利要求书进行解释。
在此所描述的所有元件、部件和步骤被优选地包括在内。将理解的是,所有这些元件、部件和步骤都可以由其它元件、部件和步骤替换,或者都被删除,其对本领域技术人员将显而易见。
概念:
本文揭示了至少以下概念:
概念1.一种电子电路,其包括:
第一功率半导体器件;以及
第二功率半导体器件,其被耦接到所述第一功率半导体器件,
其中,所述第二功率半导体器件被配置成对抗在所述第一功率半导体器件的漏极节点处的振铃。
概念2.如概念1所述的电子电路,其中所述第一和第二功率半导体器件在它们各自的源极和漏极处被并联耦接。
概念3.如概念1所述的电子电路,其中,所述第一和第二功率半导体器件的栅极通过在所述第一功率半导体器件的栅极接地时足以使所述第二功率半导体能够导通的阻抗被隔离。
概念4.如概念1所述的电子电路,其中,所述第二功率半导体器件包括小于所述第一功率半导体器件的沟道面积的约百分之十的沟道面积。
概念5.如概念1所述的电子电路,其中,所述第二功率半导体器件的特征在于,具有大于约1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
概念6.如概念1所述的电子电路,其中,所述第二功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
概念7.如概念1所述的电子电路,其中,所述第二功率半导体器件被配置成在所述第一功率半导体器件关断时导通。
概念8.一种电子电路,包括:
高压侧功率半导体开关,其被配置成耦接到高电压,并被配置成通过开关控制逻辑来控制;
低压侧功率半导体开关,其被配置成耦接到低电压,并被配置成通过所述开关控制逻辑来控制,与所述高压侧功率半导体开关串联耦接;
其中,所述低压侧功率半导体开关包括:
第一低压侧功率半导体器件,以及
第二低压侧功率半导体器件,其被耦接到所述第一低压侧功率半导体器件;
其中,所述第二低压侧功率半导体器件被配置成对抗在所述第一低压侧功率半导体器件的漏极节点处的振铃。
概念9.如概念8所述的电子电路,其中,所述第一和第二低压侧功率半导体器件在它们各自的源极和漏极处并联耦接。
概念10.如概念8所述的电子电路,其中,所述第一和第二低压侧功率半导体器件的栅极通过在所述第一功率半导体器件的栅极接地时足以使所述第二功率半导体能够导通的电阻被隔离。
概念11.如概念8所述的电子电路,其中,所述第二低压侧功率半导体器件包括小于所述第一低压侧功率半导体器件的沟道面积的约百分之十的沟道面积。
概念12.如概念8所述的电子电路,其中,所述第二低压侧功率半导体器件的特征在于,具有大于约1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
概念13.如概念8所述的电子电路,其中,所述第二低压侧功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
概念14.如概念8所述的电子电路,其中,所述第二低压侧功率半导体器件被配置成在所述第一低压侧功率半导体器件关断时导通。
概念15.一种MOSFET半导体器件,包括:
在单个晶片上的:
第一功率半导体器件;以及
第二功率半导体器件,其被耦接到所述第一功率半导体器件;
其中,所述第二功率半导体器件被配置成对抗所述第一功率半导体器件的漏极节点处的振铃。
概念16.如概念15所述的半导体器件,其中,所述MOSFET半导体器件被配置成经由一个栅极节点、一个源极节点和一个漏极节点被耦接到其它电路。
概念17.如概念15所述的半导体器件,其中,所述第一和第二功率半导体器件的栅极通过在所述第一功率半导体器件的栅极接地时足以使所述第二功率半导体能够导通的阻抗被隔离。
概念18.如概念15所述的半导体器件,其中所述第二功率半导体器件包括小于所述第一功率半导体器件的沟道面积的约百分之五的沟道面积。
概念19.如概念15所述的半导体器件,其中,所述第二功率半导体器件的特征在于,具有大于约1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
概念20.如概念15所述的半导体器件,其中,所述第二功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
概念21.如概念15所述的半导体器件,其中,所述第二功率半导体器件被配置成在所述第一功率半导体器件关断时导通。

Claims (19)

1.一种电子电路,其包括:
第一MOSFET功率半导体器件;以及
第二MOSFET功率半导体器件,其被耦接到所述第一MOSFET功率半导体器件,
其中,所述第二MOSFET功率半导体器件被配置成对抗在所述第一MOSFET功率半导体器件的漏极节点处的振铃;
其中,所述第二MOSFET功率半导体器件被配置成:在所述第一MOSFET功率半导体器件处于导通状态时,所述第二MOSFET功率半导体器件处于关断状态;并且
其中,所述第一和第二MOSFET功率半导体器件的栅极通过在所述第一MOSFET功率半导体器件的栅极接地时足以使所述第二MOSFET功率半导体能够导通的阻抗被隔离。
2.如权利要求1所述的电子电路,其中所述第一和第二MOSFET功率半导体器件在它们各自的源极和漏极处被并联耦接。
3.如权利要求1所述的电子电路,其中,所述第二MOSFET功率半导体器件包括比所述第一MOSFET功率半导体器件的沟道面积小10至100倍的沟道面积。
4.如权利要求1所述的电子电路,其中,所述第二MOSFET功率半导体器件的特征在于,具有大于1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
5.如权利要求1所述的电子电路,其中,所述第二MOSFET功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
6.如权利要求1所述的电子电路,其中,所述第二MOSFET功率半导体器件被配置成在所述第一MOSFET功率半导体器件关断时导通。
7.如权利要求1所述的电子电路,其中,所述第一MOSFET功率半导体器件的特征在于,具有小于1.0的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
8.一种电子电路,包括:
高压侧MOSFET功率半导体开关,其被配置成耦接到高电压,并被配置成通过开关控制逻辑来控制;
低压侧MOSFET功率半导体开关,其被配置成耦接到低电压,并被配置成通过所述开关控制逻辑来控制,与所述高压侧MOSFET功率半导体开关串联耦接;
其中,所述低压侧MOSFET功率半导体开关包括:
第一低压侧MOSFET功率半导体器件,以及
第二低压侧MOSFET功率半导体器件,其被耦接到所述第一低压侧MOSFET功率半导体器件;
其中,所述第二低压侧MOSFET功率半导体器件被配置成对抗在所述第一低压侧MOSFET功率半导体器件的漏极节点处的振铃;
其中,所述第二低压侧MOSFET功率半导体器件被配置成:在所述第一低压侧MOSFET功率半导体器件处于导通状态时,所述第二低压侧MOSFET功率半导体器件处于关断状态;并且
其中,所述第一和第二低压侧MOSFET功率半导体器件的栅极通过在所述第一低压侧MOSFET功率半导体器件的栅极接地时足以使所述第二低压侧MOSFET功率半导体能够导通的电阻被隔离。
9.如权利要求8所述的电子电路,其中,所述第一和第二低压侧MOSFET功率半导体器件在它们各自的源极和漏极处并联耦接。
10.如权利要求8所述的电子电路,其中,所述第二低压侧MOSFET功率半导体器件包括比所述第一低压侧MOSFET功率半导体器件的沟道面积小10至100倍的沟道面积。
11.如权利要求8所述的电子电路,其中,所述第二低压侧MOSFET功率半导体器件的特征在于,具有大于1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
12.如权利要求8所述的电子电路,其中,所述第二低压侧MOSFET功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
13.如权利要求8所述的电子电路,其中,所述第二低压侧MOSFET功率半导体器件被配置成在所述第一低压侧MOSFET功率半导体器件关断时导通。
14.一种MOSFET半导体器件,包括:
在单个晶片上的:
第一MOSFET功率半导体器件;以及
第二MOSFET功率半导体器件,其被耦接到所述第一MOSFET功率半导体器件;
其中,所述第二MOSFET功率半导体器件被配置成对抗所述第一MOSFET功率半导体器件的漏极节点处的振铃;
其中,所述第二MOSFET功率半导体器件被配置成:在所述第一MOSFET功率半导体器件处于导通状态时,所述第二MOSFET功率半导体器件处于关断状态;并且
其中,所述第一和第二MOSFET功率半导体器件的栅极通过在所述第一MOSFET功率半导体器件的栅极接地时足以使所述第二MOSFET功率半导体能够导通的阻抗被隔离。
15.如权利要求14所述的半导体器件,其中,所述MOSFET半导体器件被配置成经由一个栅极节点、一个源极节点和一个漏极节点被耦接到其它电路。
16.如权利要求14所述的半导体器件,其中所述第二MOSFET功率半导体器件包括比所述第一MOSFET功率半导体器件的沟道面积小10至100倍的沟道面积。
17.如权利要求14所述的半导体器件,其中,所述第二MOSFET功率半导体器件的特征在于,具有大于1.5的栅-漏极与栅-源极电荷比(Qgd/Qgs)。
18.如权利要求14所述的半导体器件,其中,所述第二MOSFET功率半导体器件被配置成响应于其漏极处较高的dV/dt上升时间而导通。
19.如权利要求14所述的半导体器件,其中,所述第二MOSFET功率半导体器件被配置成在所述第一MOSFET功率半导体器件关断时导通。
CN201180009537.9A 2010-02-18 2011-02-16 具有有源缓冲器的功率开关 Active CN102763164B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30585710P 2010-02-18 2010-02-18
US61/305,857 2010-02-18
US12/829,247 2010-07-01
US12/829,247 US8735992B2 (en) 2010-02-18 2010-07-01 Power switch with active snubber
PCT/US2011/025110 WO2011103205A2 (en) 2010-02-18 2011-02-16 Power switch with active snubber

Publications (2)

Publication Number Publication Date
CN102763164A CN102763164A (zh) 2012-10-31
CN102763164B true CN102763164B (zh) 2016-02-10

Family

ID=44369055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180009537.9A Active CN102763164B (zh) 2010-02-18 2011-02-16 具有有源缓冲器的功率开关

Country Status (6)

Country Link
US (1) US8735992B2 (zh)
EP (1) EP2537155A4 (zh)
JP (1) JP5739914B2 (zh)
KR (1) KR101721506B1 (zh)
CN (1) CN102763164B (zh)
WO (1) WO2011103205A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981748B2 (en) * 2011-08-08 2015-03-17 Semiconductor Components Industries, Llc Method of forming a semiconductor power switching device, structure therefor, and power converter
JP6910115B2 (ja) * 2016-07-28 2021-07-28 Fdk株式会社 アクティブスナバ回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
DE10119572A1 (de) * 2001-04-21 2002-10-31 Infineon Technologies Ag Verfahren zur Ansteuerung eines Halbleiterschaltelements

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758786B2 (ja) * 1987-03-11 1995-06-21 三菱電機株式会社 半導体装置
JPH03203379A (ja) * 1989-12-29 1991-09-05 Nec Corp 電界効果トランジスタ
US5461302A (en) * 1993-11-30 1995-10-24 At&T Corp. Modulated snubber driver for active snubber network
US5945868A (en) * 1998-01-08 1999-08-31 Motorola, Inc. Power semiconductor device and method for increasing turn-on time of the power semiconductor device
JP2000012780A (ja) * 1998-06-26 2000-01-14 Toshiba Corp 半導体スナバ装置及び半導体装置
US6545514B2 (en) * 1999-04-26 2003-04-08 Stmicroelectronics N.V. Drive circuit for inductive loads
JP3740008B2 (ja) * 2000-10-11 2006-01-25 株式会社日立製作所 車載イグナイタ、絶縁ゲート半導体装置及びエンジンシステム
US6849898B2 (en) * 2001-08-10 2005-02-01 Siliconix Incorporated Trench MIS device with active trench corners and thick bottom oxide
US6930893B2 (en) * 2002-01-31 2005-08-16 Vlt, Inc. Factorized power architecture with point of load sine amplitude converters
DE10301693B4 (de) * 2003-01-17 2006-08-24 Infineon Technologies Ag MOSFET-Schaltung mit reduzierten Ausgangsspannungs-Schwingungen bei einem Abschaltvorgang
US7190564B2 (en) * 2004-09-30 2007-03-13 The Bergquist Torrington Company Snubber circuit
DE102007044047B4 (de) * 2007-09-14 2017-08-03 Infineon Technologies Ag Schaltungsanordnung mit einem elektronischen Bauelement und einer ESD-Schutzanordnung
JP2009100602A (ja) * 2007-10-18 2009-05-07 Yamaha Corp Dc−dcコンバータ
JP5612268B2 (ja) * 2008-03-28 2014-10-22 株式会社東芝 半導体装置及びdc−dcコンバータ
US8000112B2 (en) * 2008-04-11 2011-08-16 Flextronics Ap, Llc Active snubber for transition mode power converter
JP5223497B2 (ja) * 2008-06-27 2013-06-26 富士通セミコンダクター株式会社 ピークホールド回路
US7982253B2 (en) * 2008-08-01 2011-07-19 Infineon Technologies Austria Ag Semiconductor device with a dynamic gate-drain capacitance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
DE10119572A1 (de) * 2001-04-21 2002-10-31 Infineon Technologies Ag Verfahren zur Ansteuerung eines Halbleiterschaltelements

Also Published As

Publication number Publication date
US8735992B2 (en) 2014-05-27
KR20120132630A (ko) 2012-12-06
EP2537155A2 (en) 2012-12-26
WO2011103205A2 (en) 2011-08-25
CN102763164A (zh) 2012-10-31
US20110198704A1 (en) 2011-08-18
WO2011103205A3 (en) 2012-01-19
JP5739914B2 (ja) 2015-06-24
KR101721506B1 (ko) 2017-03-30
EP2537155A4 (en) 2014-06-11
JP2013520796A (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
CN111066153B (zh) 鳍式场效晶体管技术中的半导体布局
JP4262933B2 (ja) 高周波回路素子
CN109004820B (zh) 适用于GaN功率器件高速栅驱动的开关自举充电电路
TWI727349B (zh) 降壓轉換器電路以及降壓轉換方法
US9165891B2 (en) ESD protection circuit
JP2006261427A (ja) 半導体集積回路装置
US7098717B2 (en) Gate triggered ESD clamp
US9048101B2 (en) ESD protection circuit
US20150085406A1 (en) Electrostatic Discharge Clamp Circuit For Ultra-Low Power Applications
US20120075757A1 (en) Circuit with esd protection for a switching regulator
CN104134978A (zh) 具有高的有效维持电压的静电放电(esd)钳位电路
CN101174622B (zh) 接垫的静电放电保护装置与其方法及结构
WO2017056018A2 (en) Power converter with low threshold voltage transistor
CN109449156B (zh) 一种端口静电释放保护电路
CN102763164B (zh) 具有有源缓冲器的功率开关
CN101777905A (zh) 一种逻辑电平转换电路
CN100536334C (zh) 用于输入/输出驱动器的加电控制的系统与方法
CN212627663U (zh) 功率电路和包括半桥驱动器的电路
EP2504910B1 (en) Switching mode power supply comprising asynchronous limiter circuit
CN1963896A (zh) 驱动ic和显示装置
TW201507333A (zh) 靜電放電防護電路
KR20190030256A (ko) 디커플링 커패시터 회로
US20140145763A1 (en) Gate driving circuit
JP2008172216A (ja) ウェル電位トリガによるesd保護
CN110379856B (zh) Mos_d晶体管及其构成的esd保护电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant