CN102757094A - 一种稳态a相二氧化钒纳米棒的制备方法 - Google Patents

一种稳态a相二氧化钒纳米棒的制备方法 Download PDF

Info

Publication number
CN102757094A
CN102757094A CN2011101083811A CN201110108381A CN102757094A CN 102757094 A CN102757094 A CN 102757094A CN 2011101083811 A CN2011101083811 A CN 2011101083811A CN 201110108381 A CN201110108381 A CN 201110108381A CN 102757094 A CN102757094 A CN 102757094A
Authority
CN
China
Prior art keywords
preparation
hypovanadic oxide
vanadium
aqueous solution
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101083811A
Other languages
English (en)
Other versions
CN102757094B (zh
Inventor
高彦峰
曹传祥
戴雷
陈长
罗宏杰
金平实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201110108381.1A priority Critical patent/CN102757094B/zh
Priority to PCT/CN2012/070026 priority patent/WO2012097688A1/zh
Publication of CN102757094A publication Critical patent/CN102757094A/zh
Application granted granted Critical
Publication of CN102757094B publication Critical patent/CN102757094B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种稳态A相二氧化钒纳米棒的制备方法,所述制备方法包括:将含四价钒离子的水溶液直接加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为50~90%;升温并控制水热反应温度为180~220℃,水热反应保温时间为0~720小时;将水热反应合成物冷却、离心、洗涤、干燥制得长径比为1:1~1000:1的稳态A相二氧化钒纳米棒。本发明的方法无需特殊设备,操作简便、收率高。

Description

一种稳态A相二氧化钒纳米棒的制备方法
技术领域
本发明涉及化工领域及材料领域中的二氧化钒粉体制备,特别涉及稳定的A相二氧化钒粉体的制备。
背景技术
钒的氧化物是多价态、多晶相的复杂体系,其晶体结构多达10余种,主要包括B相、A相、M相和R相等。目前,研究最多的是具有热致变色性能的M/R相二氧化钒,其可以广泛应用于智能窗户涂层、光电开关、热敏电阻和光信息存储等领域。B相二氧化钒由于可以作为电池的负极材料,因此也受到了很大的关注。而A相二氧化钒由于在制备方面有难度,一直以来没有引起本领域技术人员的足够关注和重视。
A相的二氧化钒最初是由 Théobald (F. Théobald, J. Less-Common Met., 1977.)以 V2O3-V2O5-H2O体系来水热合成二氧化钒时发现的,其中A相二氧化钒是作为B相二氧化钒向R相二氧化钒转的化过程中出现的中间相。20年后,Y. Oka(Y. Oka, J. Solid State Chem., 1998.)首次发现了A相二氧化钒也具有相变性质,并第一次解析了相变前后的晶体结构变化。然而,由于长期研究表明A相二氧化钒作为中间相出现,而中间相往往不稳定,对其相变前后晶体结构的变化研究就持续了20年之久。可见关于A相二氧化钒的研究是缓慢的,而且制备A相二氧化钒本身是一个技术难点。
关于二氧化钒粉体的报道多集中于B相、M相和R相二氧化钒粉体,目前还没有报道A相二氧化钒粉体。已有的M/R相二氧化钒粉体多采用高温烧结法,中国专利CN 10164900A公开一种掺杂钨二氧化钒的制备方法:先制备B相二氧化钒粉体,然后经350~800℃高温热处理得到R相二氧化钒粉体。现有M/R相二氧化钒粉体还有喷雾热分解法(美国专利 US5427763)、热分解法(中国专利 CN 1321067C)、溶胶凝胶法(美国专利 US6682596)和反微乳液法(WO 2008/011198 A2)等。本申请人之前的中国专利申请CN 101391814A还公开一种一步水热法制备R相二氧化钒粉体的方法。
A.M. Kannan 最近报道了A相二氧化钒具有类似于B相二氧化钒的层状结构,因此推测其也可以如B相二氧化钒一样用于电池的电极材料的制备(Solid State Ionics, 2003.;L.Q. Mai , Nano Lett., 2010.)。最近,Jin等人利用水热法在270℃合成出了A相二氧化钒,并研究了掺杂对其可逆相变的影响,但A相为不稳定相,合成难度较大,现有水热方法存在合成温度比较高,填充比小(20%左右)产率低等问题(Journal of the Ceramic Society of Japan 118 [10] 867-871 2010)。CN101880060A公开了一种快速制备单斜相VO2的方法,其中公开的A相二氧化钒也是作为亚稳态二氧化钒中间体用于制备斜相VO2
发明内容
本发明人认识到开发A相二氧化钒将有广阔的应用前景,同时提供一种简便的制备A相二氧化钒粉体的方法也是非常有意义的。
本发明人在此提供一种稳态A相二氧化钒纳米棒的制备方法,包括:将含四价钒离子的水溶液直接加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为50~90%;升温并控制水热反应温度为180~220℃,水热反应保温时间为0~720小时;将水热反应合成物冷却、离心、洗涤、干燥制得长径比为1:1~1000:1的稳态A相二氧化钒纳米棒。本发明的方法制得的A相二氧化钒纳米棒能够稳定存在;且该方法将四价钒离子水溶液直接加入水热釜中进行水热反应,即、无需对钒离子水溶液进行碱处理形成悬浊液的前驱体处理步骤,制备方法简单,而收率高达100%。
本发明采用的含四价钒离子的水溶液为酸性的水溶液,优选为pH1~3。
本发明的制备方法采用较高的填充比(50~90%),反应效率高,可一次大量合成粉体,优选的填充比可为60~80%。本发明提供的方法可以在较低温度(180~220℃)下进行水热反应,更优选的温度为190~210℃。
在本发明中,水热反应保温时间优选12~240小时,更优选12~50小时。
本发明的制备方法可以得到晶粒尺寸小、粒径均一,且晶型稳定、延展性好的A相二氧化钒纳米棒。本发明制备得到的A相二氧化钒纳米棒的的直径可为45nm~1μm,长度可为1~50μm,适合作为制备电池的电极材料的新型材料。此外,本发明制备得到的A相二氧化钒纳米棒的长径比可为单晶状态。
本发明所用的含四价钒离子的水溶液中四价钒离子浓度为0.005~0.2mol/L,通常可以选择0.01mol/L,本发明的制备方法还包括从钒原料制备所述含四价钒离子的水溶液,所述钒源包括可溶性钒盐、金属钒或钒氧化物。常用可溶性钒原料可以是三价、四价或五价钒盐和/或其水合物,优选为四价可溶性钒盐及其水合物,例如硫酸氧钒(VOSO4)、二氯氧钒(VOCl2)和草酸氧钒无水合物(VOC2O4.5H2O)。应理解,在采用三价或五价钒盐和/或其水合物作为钒原料时,可以先经氧化或还原等预处理形成四价钒盐再溶于水,或者先将三价或五价钒盐和/或其水合物溶于水后再经氧化或还原制得四价钒离子水溶液,例如采用偏钒酸钠等五价钒盐,采用铌酸铵等还原剂还原得到四价钒离子水溶液。还可采用不可溶性钒原料来制备四价钒离子水溶液,即、不可溶性钒原料经氧化、还原或溶解等预处理使其可溶化。不可溶性钒原料可以是金属钒、钒氧化物或其组合。
本发明的制备方法操作简便、成本低、容易控制,产物结晶性好、收率高,适合规模生产而且制得的述A相二氧化钒纳米棒,晶型稳定,具有良好的延展性、机械性能和可加工性,可广泛用于电池、催化、储氢等领域。
附图说明
图1 为实施例1所对应的A相二氧化钒纳米棒的X射线衍射图;
图2 实施例1所对应的A相二氧化钒纳米棒的高倍透射电镜图;
图3 实施例为实施例4所对应的A相二氧化钒纳米棒的高倍透射电镜图;
图4 实施例为实施例5所对应的A相二氧化钒纳米棒的高倍透射电镜图;
图5实施例为实施例2所对应的A相二氧化钒纳米棒的DSC升温曲线。
具体实施方式
以下,参照附图,并结合下述实施方式进一步说明本发明。
首先,本发明以含四价钒离子的水溶液作为直接原料通过水热反应制备A相二氧化钒纳米棒。
含四价钒离子的水溶液的配置可以采用本领域常用的方法来制备:将四价可溶性钒原料溶于适量水,优选为去离子水,合适的浓度可以为0.005~0.2mol/ L。四价可溶性钒盐可以采用廉价易得的常用钒盐,例如硫酸氧钒(VOSO4)、二氯氧钒(VOCl2)和草酸氧钒(VOC2O4.5H2O)。四价钒离子溶液的配置通常在常温下进行,但也可理解,可稍微加热助溶或采用超声等方法助溶。
作为四价钒离子水溶液的钒原料还可以包括其他可溶性或不溶性的钒原料,例如可采用在三价或五价钒化合物,经氧化或还原、溶解形成四价钒离子水溶液,例如采用偏钒酸盐(例如偏钒酸纳、偏钒酸铵等)或五氧化二钒为原料,采用还原剂将其还原制得含四价钒离子的水溶液。应理解,若氧化还原过程中有不溶物析出时,可以再加适量水使其溶解,也可稍加热使其溶解。
当采用不可溶性钒原料来制备四价钒离子水溶液时,可将不可溶性钒原料,例如金属钒、钒氧化物或其组合进行氧化、还原或溶解等预处理使其可溶化,然后再溶于水制得所需的四价钒离子水溶液。
应理解,形成的含四价钒离子的水溶液为酸性是有利的,优选pH1~3。在一个实施例中,可将草酸加至四价钒离子水溶液溶于中;在另外一个实施例中,可将四价钒盐溶于草酸水溶液中;在又一个实施例中,可将草酸加至偏钒酸钠等水溶液溶于中;在再一个实施例中,可将五氧化二钒等溶于草酸水溶液中。形成的含四价钒离子的草酸水溶液中,草酸的含量优选为0.05~2mol/L。
将制得的含四价钒离子的水溶液转移水热釜中,升温后保温,进行水热反应。水热反应的填充比为50%~90%,优选为60~80%;水热反应温度为180~220℃,优选为190~210℃;水热反应保温时间为0~720小时,可以随着反应温度进行调整,优选为12~240小时,更优选12~50小时。
水热反应结束后,将反应物从水热釜中移出,缓慢冷却至室温。冷却后的产物经离心分离,洗涤、干燥得到二氧化钒纳米棒。
本发明制得的二氧化钒纳米棒,经X射线衍射(XRD)确定其晶型主要为二氧化钒A相结构;XRD实验条件为:型号 D/max 2550V,日本Rigaku公司,采用Cu Kα射线, λ= 0.15406 nm  4度/min。通过透射电镜(TEM)观测本实施方式制备所得掺杂二氧化钒粉体的形状和粒径,本实施方式制备的A相二氧化钒粉体为棒状,通过改变钒离子化合物及其浓度,并控制反应温度及时间、填充比等条件得到结晶性好的A相二氧化钒纳米棒。制备的二氧化钒粉体晶粒尺寸小、粒径均一,且晶型稳定、延展性好,适合作为制备电池的电极材料的新型材料。TEM采用日本Tokyo公司制造的型号 JEM2010 JEOL。
参见图1,其示出了本发明的二氧化钒纳米棒的一个实施例的X射线衍射图(横坐标为角度2θ,纵坐标表示衍射峰强度),其为A相VO2。又参见图2-4(本发明的A相二氧化钒纳米棒的透射电镜图),可以看到,该二氧化钒粉体为棒状,每个二氧化钒长棒均为单晶,直径为45nm≤Φ≤1μm,长度为45nm≤Φ≤1μm,长径比为1:1~1000:1。本发明制备的二氧化钒粉体晶粒尺寸小,粒径均一,且晶型稳定。图5示出了本发明制备的A相二氧化钒纳米棒的一个示例的升温过程的差式扫描量热曲线(50~200℃,10℃/min),其表明本发明制备的A相二氧化钒纳米棒具有相变性质。
应理解,本发明详述的上述实施方式,及以下实施例仅用于说明本发明而不用于限制本发明的范围。采用的原料、试剂可以通过购买市售原料或传统化学转化方式合成制得。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如是《贝尔斯坦有机化学手册》(化学工业出版社,1996年)中的条件,或按照制造厂商所建议的条件。比例和百分比基于摩尔质量,除非特别说明。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。此外任何与所记载内容相似或等同的方法及材料皆可应用于本发明方法中。本发明的其他方面由于本文的公开内容,对本领域的技术人员而言是容易理解的。
以下,通过实施例对本发明进行更加详细的说明。
实施例1
将3.64g五氧化二钒粉体分散于200g浓度为0.1M的草酸水溶液中,剧烈搅拌10分钟,得到摩尔浓度为0.2mol/L的钒离子水溶液,pH为2.1。将上述溶液加入250ml水热釜中,填充比为80%,升温至200℃,保温24小时,经水热反应合成,缓慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒2.97g,收率99%。如图1 XRD谱图所示其晶相为纯A相,如图2 TEM照片所示,制得的二氧化钒粉体为棒状,每个二氧化钒棒均为单晶,并具有一定长度和粗度,经检测,所得的A相二氧化钒纳米棒的直径为100nm,长度为1~4μm。长径比为:10:1~40:1。
实施例2
将4.5 g草酸(2M)加入125ml浓度为0.005mol/L的二氯氧钒水溶液中,剧烈搅拌10分钟,得到摩尔浓度为0.005mol/L的钒离子水溶液,pH为1.5。将上述溶液加入250ml水热釜中,填充比为50%,升温至219℃,保温0小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒0.8g,收率98%。经检测,所得的A相二氧化钒纳米棒的直径为500nm,长度为1~6μm。长径比为:1:1~12:1。
实施例3
配制150ml摩尔浓度为0.1mol/L的草酸氧钒水溶液,剧烈搅拌10分钟,pH为2.6。将上述溶液加入到250ml水热釜中,填充比为60%,升温至200℃,保温1小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒2.2g,收率98%。经检测,所得的A相二氧化钒纳米棒的直径为1μm,长度为30~50μm,长径比为:30:1~50:1。 
实施例4
将0.126g(0.005M)草酸加入到200ml摩尔浓度为0.05mol/L的偏钒酸钠水溶液中,剧烈搅拌10分钟,称取一定量的铌酸铵加入上述溶液,使得铌酸铵与钒离子的摩尔比为3:100,得到摩尔浓度为0.015mol/L的钒离子水溶液,pH为3。将上述溶液加入250ml水热釜中,填充比为80%,升温至210℃,保温20小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒4.45g,收率99%。参见图3,其示出该实施例所得的A相二氧化钒的透射电镜照片,其为棒形,并具有一定的长度和粗度;经检测,所得的A相二氧化钒纳米棒的直径为200nm,长为5~10μm长径比为:250:1~500:1。
实施例5
将0.8g草酸加入到150ml摩尔浓度为0.05mol/L的硫酸氧钒水溶液中,剧烈搅拌10分钟,得到摩尔浓度为0.03mol/L的钒离子水溶液,pH为2。将上述溶液加入250ml水热釜中,填充比为60%,升温至190℃,保温48小时,经水热反应合成,然后慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒2.38g,收率99%。参见图4,其示出该实施例所得的A相二氧化钒的透射电镜照片,其为棒形,并具有一定的长度和粗度;经检测,所得的A相二氧化钒纳米棒的直径为45nm,长为40~45μm长径比为:800:1~1000:1。
实施例6
将0.35g(0.2M)草酸加入到225ml摩尔浓度为0.015mol/L的硫酸氧钒水溶液中,剧烈搅拌10分钟,得到摩尔浓度为0.015mol/L的钒离子水溶液,pH为1.8。将上述溶液加入250ml水热釜中,填充比为90%,升温至180℃,保温30小时,经水热反应合成,然后将水热釜拿出,慢冷至室温后,离心分离,在烘箱内70℃干燥24小时,得到A相二氧化钒纳米棒5.2g,收率98%。经检测,所得的A相二氧化钒纳米棒的直径为400nm,长度为15~28μm,长径比为:40:1~70:1。
产业应用性本发明的方法制备所得A相二氧化钒纳米棒适合用作制备电极的一种新型材料,可应用于电池、催化和储氢等领域。本发明的制备方法,工艺简单、成本低、收率高,适合规模生产。

Claims (10)

1.一种稳态A相二氧化钒纳米棒的制备方法,所述制备方法包括:将含四价钒离子的水溶液直接加入水热釜中进行水热反应,水热反应过程中水热釜的填充比为50~90%;升温并控制水热反应温度为180~220℃,水热反应保温时间为0~720小时;将水热反应合成物冷却、离心、洗涤、干燥制得长径比为1:1~1000:1的稳态A相二氧化钒纳米棒。
2.根据权利要求1所述的制备方法,其特征在于,所述含四价钒离子的水溶液的pH值为1~3。
3.根据权利要求1所述的制备方法,其特征在于,所述水热反应温度为190~210℃。
4.根据权利要求1所述的制备方法,其特征在于,所述填充比为60~80%。
5.根据权利要求1所述的制备方法,其特征在于,所述水热反应保温时间为12~240小时。
6.根据权利要求5所述的制备方法,其特征在于,所述水热反应保温时间为12~50小时。
7.根据权利要求1所述的制备方法,其特征在于,所述含四价钒离子的水溶液中四价钒离子浓度为0.005~0.2mol/L,所述制备方法还包括从钒原料制备所述含四价钒离子的水溶液,所述钒源包括钒盐、金属钒或钒氧化物。
8.根据权利要求7所述的制备方法,其特征在于,所述钒源为硫酸氧钒、二氯氧钒、草酸氧钒、五氧化二钒或偏钒酸纳。
9.根据权利要求1所述的制备方法,其特征在于,所述A相二氧化钒纳米棒的直径为45nm~1μm,长度为1~50μm。
10.根据权利要求1所述的制备方法,其特征在于,所述A相二氧化钒纳米棒为单晶状态。
CN201110108381.1A 2011-01-21 2011-04-28 一种稳态a相二氧化钒纳米棒的制备方法 Expired - Fee Related CN102757094B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110108381.1A CN102757094B (zh) 2011-04-28 2011-04-28 一种稳态a相二氧化钒纳米棒的制备方法
PCT/CN2012/070026 WO2012097688A1 (zh) 2011-01-21 2012-01-04 一种二氧化钒粉体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110108381.1A CN102757094B (zh) 2011-04-28 2011-04-28 一种稳态a相二氧化钒纳米棒的制备方法

Publications (2)

Publication Number Publication Date
CN102757094A true CN102757094A (zh) 2012-10-31
CN102757094B CN102757094B (zh) 2015-02-04

Family

ID=47051784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110108381.1A Expired - Fee Related CN102757094B (zh) 2011-01-21 2011-04-28 一种稳态a相二氧化钒纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN102757094B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250022A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种混合价态氧化钒纳米材料及其制备方法
CN108217727A (zh) * 2018-04-12 2018-06-29 四川星明能源环保科技有限公司 A相二氧化钒及其制备方法
CN108288701A (zh) * 2018-01-25 2018-07-17 齐鲁工业大学 一种钠离子电池正极复相材料
CN108373171A (zh) * 2018-05-30 2018-08-07 武汉理工大学 水热法制备二氧化钒的方法
CN108515009A (zh) * 2018-04-12 2018-09-11 四川星明能源环保科技有限公司 A相二氧化钒薄膜及其制备方法
CN108531753A (zh) * 2018-05-30 2018-09-14 武汉理工大学 一种钒页岩无铵沉钒的方法
CN108642271A (zh) * 2018-05-30 2018-10-12 武汉理工大学 一种新型含钒页岩无铵沉钒生产二氧化钒的方法
US10479900B2 (en) 2014-08-26 2019-11-19 The Research Foundation For The State University Of New York VO2 and V2O5 nano- and micro-materials and processes of making and uses of same
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863511A (zh) * 2010-07-05 2010-10-20 中国科学技术大学 制备单斜相二氧化钒及其掺杂纳米粉的方法
CN101880060A (zh) * 2010-07-14 2010-11-10 中国科学技术大学 快速制备单斜相vo2的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863511A (zh) * 2010-07-05 2010-10-20 中国科学技术大学 制备单斜相二氧化钒及其掺杂纳米粉的方法
CN101880060A (zh) * 2010-07-14 2010-11-10 中国科学技术大学 快速制备单斜相vo2的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIDONG JI ET AL.: "Synthesis and phase transition behavior of w-doped VO2(A) nanorods", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN》 *
YOSHIO OKA ET AL.: "Powder X-Ray Crystal Structure of VO2(A)", 《JOURNAL OF SOLID STATE CHEMISTRY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250022A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种混合价态氧化钒纳米材料及其制备方法
CN104250022B (zh) * 2013-06-27 2016-06-15 中国科学院大连化学物理研究所 一种混合价态氧化钒纳米材料及其制备方法
US10479900B2 (en) 2014-08-26 2019-11-19 The Research Foundation For The State University Of New York VO2 and V2O5 nano- and micro-materials and processes of making and uses of same
CN108288701A (zh) * 2018-01-25 2018-07-17 齐鲁工业大学 一种钠离子电池正极复相材料
CN108288701B (zh) * 2018-01-25 2020-09-22 齐鲁工业大学 一种钠离子电池正极复相材料
CN108217727A (zh) * 2018-04-12 2018-06-29 四川星明能源环保科技有限公司 A相二氧化钒及其制备方法
CN108515009A (zh) * 2018-04-12 2018-09-11 四川星明能源环保科技有限公司 A相二氧化钒薄膜及其制备方法
CN108373171A (zh) * 2018-05-30 2018-08-07 武汉理工大学 水热法制备二氧化钒的方法
CN108531753A (zh) * 2018-05-30 2018-09-14 武汉理工大学 一种钒页岩无铵沉钒的方法
CN108642271A (zh) * 2018-05-30 2018-10-12 武汉理工大学 一种新型含钒页岩无铵沉钒生产二氧化钒的方法
CN112239229A (zh) * 2020-10-19 2021-01-19 成都先进金属材料产业技术研究院有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置
CN112239229B (zh) * 2020-10-19 2022-03-22 成都先进金属材料产业技术研究院股份有限公司 超声雾化法制备球形vo2纳米粉体的方法及装置

Also Published As

Publication number Publication date
CN102757094B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN102757094B (zh) 一种稳态a相二氧化钒纳米棒的制备方法
US10167223B2 (en) Preparation method of doped vanadium dioxide powder
CN102616849B (zh) 一种液相法直接合成m相二氧化钒纳米颗粒的方法
CN101888973B (zh) 纳米颗粒成分及其制备方法
CN101391814B (zh) 金红石相二氧化钒粉体的制备方法
CN102120615B (zh) 一种掺杂二氧化钒粉体、分散液及其制备方法和应用
CN102120614B (zh) 一种制备二氧化钒粉体的方法
Dong et al. Phase and morphology evolution of VO 2 nanoparticles using a novel hydrothermal system for thermochromic applications: the growth mechanism and effect of ammonium (NH 4+)
CN103880080A (zh) 水热辅助均匀沉淀法制备二氧化钒粉体的方法
CN110203972A (zh) M相二氧化钒纳米粉体的制备方法
CN102115167B (zh) 一种二氧化钒粉体及其制备方法和应用
CN105621480B (zh) 一种采用低温煅烧锆溶胶制备二氧化锆纳米粉体的方法
CN104477978B (zh) 一种制备钙钛矿纳米粉体的方法
Wang et al. Sol–gel synthesis and characterization of lead-free LNKN nanocrystalline powder
CN104528799A (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN104030356B (zh) 掺杂二氧化钒粉体和薄膜及其制备方法
CN109546126A (zh) 一种过渡金属元素掺杂的碳包覆钛酸锂、制备方法和应用
CN106268612B (zh) 一种多孔钛酸锶钡粉体的制备方法
CN102674442A (zh) 采用微波水热法制备钛酸锶纳米粉体的方法
CN106316386A (zh) 一种稀土掺杂铋系层状钙钛矿氧化物铁电上转换材料的制备方法
CN104030355B (zh) 掺杂二氧化钒粉体和薄膜及其制备方法
Ng et al. Properties of praseodymium-doped bismuth potassium titanate (Bi0. 5K0. 5TiO3) synthesised using the soft combustion technique
CN102969491B (zh) 一种锂电池用负极材料钛酸锂的制备方法
CN107915258A (zh) 一种近室温相变的氧化钒纳米材料及其制备方法
CN103774236A (zh) 一种隐钾锰型K2-xCoyNizMn8-y-zO16纳米线及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204