CN102732149A - 一种防污减反射纳米涂料及其制备方法和应用 - Google Patents

一种防污减反射纳米涂料及其制备方法和应用 Download PDF

Info

Publication number
CN102732149A
CN102732149A CN2011100816410A CN201110081641A CN102732149A CN 102732149 A CN102732149 A CN 102732149A CN 2011100816410 A CN2011100816410 A CN 2011100816410A CN 201110081641 A CN201110081641 A CN 201110081641A CN 102732149 A CN102732149 A CN 102732149A
Authority
CN
China
Prior art keywords
mixing solutions
iron glass
coating
low iron
antifouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100816410A
Other languages
English (en)
Inventor
李彪
张大军
陈二林
杨海洲
李国富
林春平
杨正雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HENAN SUCCEED PHOTOVOLTAIC MATERIALS Corp
Original Assignee
HENAN SUCCEED PHOTOVOLTAIC MATERIALS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HENAN SUCCEED PHOTOVOLTAIC MATERIALS Corp filed Critical HENAN SUCCEED PHOTOVOLTAIC MATERIALS Corp
Priority to CN2011100816410A priority Critical patent/CN102732149A/zh
Publication of CN102732149A publication Critical patent/CN102732149A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

一种防污减反射纳米涂料,由下述组分制备而成:长链烷基三烷氧基硅氧烷0.5-2重量份,硅醇盐5-20重量份,溶剂70-90重量份,碱性催化剂0.5-2重量份,添加剂0.01-1重量份。采用本发明对低铁玻璃表面进行处理,其固化伴随低铁玻璃的强化过程来完成,形成的纳米涂层附着牢固,耐老化,疏水防污,可提高低铁玻璃的光线透过率5%以上,水的接触角为110度以上。

Description

一种防污减反射纳米涂料及其制备方法和应用
技术领域
本发明涉及一种防污减反射纳米涂料及其制备方法和应用,该涂料可以在低铁玻璃表面形成具有附着牢固、耐老化、防污的减反射纳米涂层,该涂层可以提高低铁玻璃的光线透过率的同时,具有很好的疏水性能,可以起到防止污染的作用。
背景技术
目前太阳能电池组件普遍采用低铁玻璃(玻璃铁含量0.1%以下),当太阳光直射于低铁玻璃表面时,会产生4%的反射光损失。这一损失降低了太阳能电池组件转换效率。因此,减少反射,即增加低铁玻璃的太阳光透过率可以有效的提高太阳能电池组件的转换效率。
目前减少低铁玻璃太阳光反射的方法有以下几种:
1.利用真空镀膜或溅射方法,将两层或多层高低折射率材料按照设定的膜层厚度在玻璃表面镀膜,形成减反射膜系(如美国专利US5582859)。该方法仅适用于可见光范围的光线减反射。在红外线光谱范围的光线反射甚至大于未涂层的低铁玻璃,不适用于太阳能电池组件用。而且多层膜系制备过程中影响因素多,工艺复杂,制作成本高。
2.在玻璃表面用化学蚀刻制备折射率渐变的纳米多孔结构(如美国专利US4019884)。该方法的蚀刻浓度、蚀刻时间、温度及试剂的使用都难以控制,不利于大面积生产。
3.利用溶胶凝胶法制备单层含氧化硅纳米涂层,如专利申请号02140488.7的专利中,描述了以正硅酸乙酯为前驱体制备碱性溶胶,在玻璃表面涂敷获得宽谱带减反膜的方法,但该专利所得的涂层不具有适合太阳能电池组件用的涂层耐磨性。
4.专利申请号200810156953的专利中,描述了以硅醇盐的水解聚缩反应和玻璃钢化过程,制备一种具备良好耐磨性和耐老化的含氧化硅减反射纳米涂层。但太阳能电池组件长期在户外环境中工作,户外环境中的灰尘会沾污玻璃表面,为了维持玻璃高透光率,必须对其经常清洗。
发明内容
本发明的目的在于解决现有技术中存在的上述技术问题,提供一种防污减反射纳米涂料及其制备方法和应用,该涂料可以在低铁玻璃表面制备一种附着牢固,耐老化,防污的减反射纳米涂层,可以提高低铁玻璃的光线透过率的同时,具有很好的疏水性能,可以起到防止污染的作用。且制备的方法简单,成本低,适合于太阳能电池组件玻璃。
玻璃对水的接触角与疏水特性之间的关系为:当玻璃对水的接触角大于等于90度时,玻璃具有疏水特性即防污性(防止污渍附着的性能),并且疏水特性随玻璃对水的接触角的增大而提高。
为实现上述发明目的,本发明采用的技术方案如下:
本发明的防污减反射纳米涂料,由下述组分制备而成:
长链烷基三烷氧基硅氧烷 0.5-2重量份
硅醇盐 5-20重量份
溶剂 70-90重量份
碱性催化剂 0.5-2重量份
添加剂 0.01-1重量份。
所述的长链烷基三烷氧基硅氧烷选自十二烷基三乙氧基硅烷、十四烷基三乙氧基硅烷、十六烷基三乙氧基硅烷、十八烷基三乙氧基硅烷、十二烷基三甲氧基硅烷和十六烷基三甲氧基硅烷。
所述的硅醇盐选自硅的乙醇盐、甲醇盐、丙醇盐和丁醇盐,如正硅酸乙酯,正硅酸甲酯,四丙氧基硅烷,四丁氧基硅烷等,优选硅的乙醇盐,如正硅酸乙酯。
所述的溶剂选自甲醇、乙醇、异丙醇、丁醇、正己烷、丙酮和乙酸乙酯中。
所述的碱性催化剂选自氨水、氢氧化钠和氢氧化铵,优选氨水。
所述的添加剂选自聚乙烯醇、聚乙二醇、甲基丙烯酸甲酯和聚甲基丙烯酸。
本发明的防污减反射纳米涂料的制备方法包括如下步骤:
(1)将溶剂分为三份,取其中的一份与碱性催化剂混合搅拌2-4个小时,获得混合溶液A;
(2)取另一份溶剂与硅醇盐混合搅拌2-4小时,获得混合溶液B;
(3)将混合溶液A加入混合溶液B中,混合搅拌4-6小时,获得混合溶液C;
(4)将添加剂加入混合溶液C,混合搅拌2-4小时,获得混合溶液D;
(5)取第三份溶剂与长链烷基三烷氧基硅氧烷混合搅拌2-4小时,获得混合溶液E;
(6)将混合溶液E加入混合溶液D中,混合搅拌4-6小时,获得混合溶液F;
(7)将混合溶液F静置在稳定的环境下进行陈化,时间为3-5天;
(8)陈化后的混合溶液F放入加热回流反应釜中,加入分子筛,然后加热回流;
(9)以100%重量比回流前混合溶液F计,当混合溶液F减少至60-70%重量比时,停止加热,待自然冷却后,即得防污减反射纳米涂料。
步骤(7)中静置陈化的环境温度为20℃,相对湿度为20%。
步骤(8)中采用洁净的沸石分子筛,加热温度在80℃~85℃之间。
本发明的防污减反射纳米涂料对低铁玻璃表面进行处理的方法是:清洗后的低铁玻璃浸泡入含氧化硅纳米涂料中,将低铁玻璃从镀膜槽中匀速提拉出液面,将低铁玻璃放入钢化炉伴随玻璃强化过程来固化涂层,低铁玻璃的浸泡时间为0.5-2分钟;将低铁玻璃从镀膜槽中匀速提拉出液面的速度为70-1000mm/min,优选为100-400mm/min。
采用本发明所述纳米涂料对低铁玻璃表面进行处理的方法的有关处理过程的详细工艺步骤如下:
1、  涂敷低铁玻璃表面。
将涂层溶液涂敷到低铁玻璃表面的方法可以是浸涂法、喷涂法、旋涂法。优选为浸涂法。浸涂法的设备为常见的提拉镀膜机。具体步骤为:
1)  清洗玻璃:
清洁干净低铁玻璃表面,清洁方法优选酸洗、碱洗、纯水洗。清洁后,将干净的低铁玻璃放入提
拉镀膜机的夹具中。
2)  浸泡: 
将低铁玻璃浸泡入镀膜槽中。镀膜槽中为制备好的涂层溶液。浸泡时间为0.5-2分钟。
3)  提拉:
将低铁玻璃从镀膜槽中匀速提拉出液面。提拉速度为70-1000mm/min,优选提拉速度为100-400mm/min。
4)  预干燥:
刚涂敷好的低铁玻璃在室温下干燥30-240分钟。
2、  涂层的固化。
将预干燥后的低铁玻璃放入钢化炉中强化,使涂层致密化。强化处理过程与普通未涂层低铁玻璃一样。玻璃强化工艺为玻璃加工行业公知的标准钢化技术。最终获得涂层附着牢固、耐老化、防污的低铁玻璃。用分光光度计测量,该涂层可以在光谱范围380nm-2100nm提高低铁玻璃的光线透过率5%以上。使用接触角计测量水的接触角,可达110度以上,涂层具有良好的耐污性和防粘性。
本发明的优点:
1、本发明制备的在低铁玻璃表面的纳米涂层,具有良好的耐污性和防粘性,可以减少灰尘等空气污染物对太阳能电池组件电性能的影响。
2、本发明制备的在低铁玻璃表面的纳米涂层,可以在可见和近红外光谱范围内提高低铁玻璃的光线透过率5%以上。
3、本发明制备的在低铁玻璃表面的纳米涂层,不需要另外加热到500℃高温来固化。它的固化伴随低铁玻璃的强化过程来完成,节省了单独高温固化的时间和成本。
4、本发明制备的在低铁玻璃表面的纳米涂层,附着牢固,耐老化,防污染。使用寿命可达到25年以上不脱落。
具体实施方式   
实施例1
将0.3千克氨水与10升甲醇混合搅拌2小时,获得混合溶液A;将2千克分析纯正硅酸乙酯与10升甲醇混合搅拌2小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4小时,获得混合溶液C;将0.05千克聚乙二醇加入混合溶液C,混合搅拌2小时,获得混合溶液D;将0.4千克十六烷基三甲氧基硅烷与4升甲醇混合搅拌2小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌4小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为96小时;在陈化后的混合溶液D放入50升的加热回流反应釜中,加入0.1千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液F减少至20升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以100mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥30分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.6%,水的接触角为120度。
实施例2
将3千克氨水与80升乙醇混合搅拌2小时,获得混合溶液A;将21千克分析纯正硅酸乙酯与80升乙醇混合搅拌2小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4小时,获得混合溶液C;将1千克甲基丙烯酸甲酯加入混合溶液C,混合搅拌2小时,获得混合溶液D;将4千克的十二烷基三乙氧基硅烷与40升乙醇混合搅拌2小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌4小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为120小时;在陈化后的混合溶液F放入300升的加热回流反应釜中,加入1千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至160升,停止加热,待自然冷却后,最终获得涂层溶液。
将100升涂层溶液倒入镀膜槽中。将1片1574mm(长)*802mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以200mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥60分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.9%,水的接触角为120度。
实施例3
将15千克氨水与1150升乙醇混合搅拌2小时,获得混合溶液A;将200千克分析纯正硅酸乙酯与1150升乙醇混合搅拌2小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4小时,获得混合溶液C;将5千克聚乙烯醇加入混合溶液C,混合搅拌2小时,获得混合溶液D;将20千克十六烷基三乙氧基硅烷与200升乙醇混合搅拌2小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌4小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为72小时;在陈化后的混合溶液F放入3500升的加热回流反应釜中,加入10千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至2000升,停止加热,待自然冷却后,最终获得涂层溶液。
将2000升涂层溶液倒入镀膜槽中。将17片1574mm(长)*802mm(宽)*3.2mm(厚)清洗干净的低铁玻璃依次放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以400mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥30分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围80nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为96.0%,水的接触角为120度。
实施例4
将0.5千克氨水与10升乙醇混合搅拌2小时,获得混合溶液A;将5千克分析纯正硅酸乙酯与40升乙醇混合搅拌3小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌6小时,获得混合溶液C;将0.01千克甲基丙烯酸甲酯加入混合溶液C,混合搅拌3小时,获得混合溶液D;将0.5千克的十二烷基三乙氧基硅烷与20升乙醇混合搅拌4小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌6小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为3天;在陈化后的混合溶液F放入100升的加热回流反应釜中,加入0.1千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至45.5升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以200mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥60分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.6%,水的接触角为119度。
实施例5
将10千克氢氧化钠与20升正己烷混合搅拌2.5小时,获得混合溶液A;将10千克分析纯正硅酸乙酯与30升正己烷混合搅拌2.5小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌5小时,获得混合溶液C;将0.5千克聚甲基丙烯酸加入混合溶液C,混合搅拌2小时,获得混合溶液D;将1千克的十六烷基三乙氧基硅烷与20升正己烷混合搅拌2小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌5小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为4天;在陈化后的混合溶液F放入100升的加热回流反应釜中,加入0.15千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至48升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以200mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥60分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.6%,水的接触角为120度。
实施例6
将1千克氢氧化铵与20升丙酮混合搅拌3小时,获得混合溶液A;将20千克分析纯正硅酸乙酯与30升丙酮混合搅拌2小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4小时,获得混合溶液C;将1千克聚乙烯醇加入混合溶液C,混合搅拌4小时,获得混合溶液D;将2千克的十二烷基三甲氧基硅烷与40升丙酮混合搅拌3小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌4小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为5天;在陈化后的混合溶液F放入100升的加热回流反应釜中,加入0.1千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至63升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以200mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥60分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.3%,水的接触角为118度。
实施例7
将1.5千克氨水与20升乙酸乙酯混合搅拌4小时,获得混合溶液A;将15千克分析纯正硅酸乙酯与30升乙酸乙酯混合搅拌4小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4.5小时,获得混合溶液C;将1千克聚乙二醇加入混合溶液C,混合搅拌3小时,获得混合溶液D;将1.5千克的十六烷基三甲氧基硅烷与25升乙酸乙酯混合搅拌3.5小时,获得混合溶液E;将混合溶液E加入混合溶液D中,混合搅拌4小时,获得混合溶液F;将混合溶液F静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为5天;在陈化后的混合溶液F放入100升的加热回流反应釜中,加入0.2千克洁净的分子筛,然后加热回流。加热温度在80℃~85℃之间。观察反应釜的液位计,当混合溶液D减少至61.2升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3.2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以200mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥60分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3.2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.7%,水的接触角为117度。
比较例
将0.3千克氨水与12升甲醇混合搅拌2小时,获得混合溶液A;将2千克分析纯正硅酸乙酯与12升甲醇混合搅拌2小时,获得混合溶液B;将混合溶液A加入混合溶液B中,混合搅拌4小时,获得混合溶液C;将0.05千克聚乙二醇加入混合溶液C,混合搅拌2小时,获得混合溶液D;将混合溶液D静置在稳定的环境下(20℃,相对湿度20%)进行陈化,时间为96小时;在陈化后的混合溶液D放入50升的加热回流反应釜中,加入0.1千克洁净的分子筛,然后加热回流。加热温度在80℃-85℃之间。观察反应釜的液位计,当混合溶液D减少至20升,停止加热,待自然冷却后,最终获得涂层溶液。
将10升涂层溶液倒入镀膜槽中。将1片300mm(长)*200mm(宽)*3. 2mm(厚)清洗干净的低铁玻璃放入提拉镀膜机的夹具中。将低铁玻璃浸泡入镀膜槽中,浸泡2分钟。以100mm/min的速度将低铁玻璃从镀膜槽中匀速提拉出液面。刚涂敷好的低铁玻璃在室温下干燥30分钟。
预干燥后的低铁玻璃,放入钢化炉中强化,强化处理过程与普通未涂层低铁玻璃一样。最终获得涂层附着牢固、耐老化的低铁玻璃。用分光光度计测量,在光谱范围380nm-2100nm内,3. 2mm厚未涂层普通低铁玻璃的光线透过率为90.5%,水的接触角为60度;3.2mm涂层后低铁玻璃的光线透过率为95.5%,水的接触角为60度.
分别用实施例1和比较例的方法,各制备40片300mm(长)*200mm(宽)*3.2mm(厚)的涂层低铁玻璃,用分光光度计测量两种涂层低铁玻璃的光线透过率平均值,在光谱范围380nm-2100nm内,实施例1的40片涂层低铁玻璃光线透过率平均值为95.6%;比较例的40片涂层低铁玻璃光线透过率平均值为95.5%。将80片玻璃置于自然环境下,经过2个月时间后,直接测试其光线透过率,实施例1的40片涂层低铁玻璃光线透过率平均值为95%;比较例的40片涂层低铁玻璃光线透过率平均值为92.5%。然后对其进行清洁,并再次测试其光线透过率,实施例1的40片涂层低铁玻璃光线透过率平均值为95.6%,清洁前后的光线透过率差值为0.6%;比较例的40片涂层低铁玻璃光线透过率平均值为95.4%,清洁前后的光线透过率差值为2.9%。经防污性实验,我们可以看出实施例1的玻璃清洁前后的光线透过率差值要小于比较例的玻璃清洁前后的光线透过率差值,即灰尘等空气污染物对实施例1的涂层低铁玻璃的影响要小于对比较例的涂层低铁玻璃的影响。

Claims (10)

1.一种防污减反射纳米涂料,其特征在于由下述组分制备而成:
长链烷基三烷氧基硅氧烷 0.5-2重量份
硅醇盐 5-20重量份
溶剂 70-90重量份
碱性催化剂 0.5-2重量份
添加剂 0.01-1重量份。
2.根据权利要求1所述防污减反射纳米涂料,其特征在于:所述的长链烷基三烷氧基硅氧烷选自十二烷基三乙氧基硅烷、十四烷基三乙氧基硅烷、十六烷基三乙氧基硅烷、十八烷基三乙氧基硅烷、十二烷基三甲氧基硅烷和十六烷基三甲氧基硅烷。
3.根据权利要求1所述防污减反射纳米涂料,其特征在于:所述的硅醇盐选自硅的乙醇盐、甲醇盐、丙醇盐和丁醇盐。
4.根据权利要求1所述防污减反射纳米涂料,其特征在于:所述的溶剂选自甲醇、乙醇、异丙醇、丁醇、正己烷、丙酮和乙酸乙酯。
5.根据权利要求1所述防污减反射纳米涂料,其特征在于:所述的碱性催化剂选自氨水、氢氧化钠和氢氧化铵。
6.如权利要求1所述防污减反射纳米涂料,其特征在于:所述的添加剂选自聚乙烯醇、聚乙二醇、甲基丙烯酸甲酯和聚甲基丙烯酸。
7.权利要求1至6任意一项所述的防污减反射纳米涂料的制备方法,其特征在于包括如下步骤:
(1)将溶剂分为三份,取其中的一份与碱性催化剂混合搅拌2-4个小时,获得混合溶液A;
(2)取另一份溶剂与硅醇盐混合搅拌2-4小时,获得混合溶液B;
(3)将混合溶液A加入混合溶液B中,混合搅拌4-6小时,获得混合溶液C;
(4)将添加剂加入混合溶液C,混合搅拌2-4小时,获得混合溶液D;
(5)取第三份溶剂与长链烷基三烷氧基硅氧烷混合搅拌2-4小时,获得混合溶液E;
(6)将混合溶液E加入混合溶液D中,混合搅拌4-6小时,获得混合溶液F;
(7)将混合溶液F静置在稳定的环境下进行陈化,时间为3-5天;
(8)陈化后的混合溶液F放入加热回流反应釜中,加入分子筛,然后加热回流;
(9)以100%重量比回流前混合溶液F计,当混合溶液F减少至60-70%重量比时,停止加热,待自然冷却后,即得防污减反射纳米涂料。
8.根据权利要求7所述防污减反射纳米涂料的制备方法,其特征在于:步骤(7)中静置陈化的环境温度为20℃,相对湿度为20%。
9.根据权利要求7所述防污减反射纳米涂料的制备方法,其特征在于:步骤(8)中采用洁净的沸石分子筛,加热温度在80℃~85℃之间。
10.权利要求1至6任意一项所述防污减反射纳米涂料的应用,其特征在于:清洗后的低铁玻璃浸泡入含氧化硅纳米涂料中,将低铁玻璃从镀膜槽中匀速提拉出液面,将低铁玻璃放入钢化炉伴随玻璃强化过程来固化涂层,低铁玻璃的浸泡时间为0.5-2分钟;将低铁玻璃从镀膜槽中匀速提拉出液面的速度为70-1000mm/min。
CN2011100816410A 2011-04-01 2011-04-01 一种防污减反射纳米涂料及其制备方法和应用 Pending CN102732149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100816410A CN102732149A (zh) 2011-04-01 2011-04-01 一种防污减反射纳米涂料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100816410A CN102732149A (zh) 2011-04-01 2011-04-01 一种防污减反射纳米涂料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN102732149A true CN102732149A (zh) 2012-10-17

Family

ID=46988472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100816410A Pending CN102732149A (zh) 2011-04-01 2011-04-01 一种防污减反射纳米涂料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102732149A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059617A (zh) * 2013-01-05 2013-04-24 江西安源光伏玻璃有限责任公司 一种纳米增透自洁镀膜液的制备方法
CN103756395A (zh) * 2014-01-22 2014-04-30 上海赛肯森材料科技有限公司 用于减反射涂料组合物的纳米杂化粒子及其制备方法和用途
CN104086089A (zh) * 2014-06-16 2014-10-08 北京市建筑工程研究院有限责任公司 玻化微珠疏水剂及制备方法、改性玻化微珠及制备方法
CN106206759A (zh) * 2016-08-31 2016-12-07 天津蓝天太阳科技有限公司 一种太阳电池高透过率减反射膜的制备方法
WO2018086174A1 (zh) * 2016-11-08 2018-05-17 苏州蓝锐纳米科技有限公司 一种纳米二氧化硅增透液及其制备方法
CN109071817A (zh) * 2016-04-28 2018-12-21 住友化学株式会社 组合物
CN110128857A (zh) * 2019-05-20 2019-08-16 蒙阴新兴玻璃制品有限公司 一种低铁压花玻璃的镀膜涂料及其制备方法和应用
CN112724767A (zh) * 2020-12-24 2021-04-30 上大新材料(泰州)研究院有限公司 一种增强减反增透疏水涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148325A (zh) * 2007-09-06 2008-03-26 北京首创纳米科技有限公司 一种用于玻璃的纳米防护液及其制备方法
CN101280155A (zh) * 2007-04-02 2008-10-08 中国科学院化学研究所 一种自清洁薄膜及其制备方法
CN101358046A (zh) * 2008-09-12 2009-02-04 刘军 一种含氧化硅纳米涂料及其制备方法和应用
CN101492544A (zh) * 2008-01-25 2009-07-29 中国科学院化学研究所 一种透明自清洁薄膜及其制备方法与应用
CN101601940A (zh) * 2009-07-09 2009-12-16 华南理工大学 用于油液过滤脱水的疏水与亲油微纳米涂层及制备方法
CN101880478A (zh) * 2010-06-17 2010-11-10 华南理工大学 一种粒径可控的疏水性纳米二氧化硅的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280155A (zh) * 2007-04-02 2008-10-08 中国科学院化学研究所 一种自清洁薄膜及其制备方法
CN101148325A (zh) * 2007-09-06 2008-03-26 北京首创纳米科技有限公司 一种用于玻璃的纳米防护液及其制备方法
CN101492544A (zh) * 2008-01-25 2009-07-29 中国科学院化学研究所 一种透明自清洁薄膜及其制备方法与应用
CN101358046A (zh) * 2008-09-12 2009-02-04 刘军 一种含氧化硅纳米涂料及其制备方法和应用
CN101601940A (zh) * 2009-07-09 2009-12-16 华南理工大学 用于油液过滤脱水的疏水与亲油微纳米涂层及制备方法
CN101880478A (zh) * 2010-06-17 2010-11-10 华南理工大学 一种粒径可控的疏水性纳米二氧化硅的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059617A (zh) * 2013-01-05 2013-04-24 江西安源光伏玻璃有限责任公司 一种纳米增透自洁镀膜液的制备方法
CN103059617B (zh) * 2013-01-05 2015-07-22 江西安源光伏玻璃有限责任公司 一种纳米增透自洁镀膜液的制备方法
CN103756395A (zh) * 2014-01-22 2014-04-30 上海赛肯森材料科技有限公司 用于减反射涂料组合物的纳米杂化粒子及其制备方法和用途
CN104086089A (zh) * 2014-06-16 2014-10-08 北京市建筑工程研究院有限责任公司 玻化微珠疏水剂及制备方法、改性玻化微珠及制备方法
CN109071817A (zh) * 2016-04-28 2018-12-21 住友化学株式会社 组合物
CN109071817B (zh) * 2016-04-28 2021-11-09 住友化学株式会社 组合物
CN106206759A (zh) * 2016-08-31 2016-12-07 天津蓝天太阳科技有限公司 一种太阳电池高透过率减反射膜的制备方法
WO2018086174A1 (zh) * 2016-11-08 2018-05-17 苏州蓝锐纳米科技有限公司 一种纳米二氧化硅增透液及其制备方法
CN110128857A (zh) * 2019-05-20 2019-08-16 蒙阴新兴玻璃制品有限公司 一种低铁压花玻璃的镀膜涂料及其制备方法和应用
CN112724767A (zh) * 2020-12-24 2021-04-30 上大新材料(泰州)研究院有限公司 一种增强减反增透疏水涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN102732149A (zh) 一种防污减反射纳米涂料及其制备方法和应用
CN101885586B (zh) 光伏玻璃表面减反射膜的制备方法
CN105439457B (zh) 链状或网状硅溶胶及超亲水自清洁增透镀膜液及制备应用
CN101805135B (zh) 镀有双层减反射膜的光伏玻璃及其制备方法
CN103770404B (zh) 一种耐候性太阳能玻璃表面减反膜及其制备方法
TWI476166B (zh) Method for manufacturing anti - reflective tempered glass
CN103771727A (zh) 减反射玻璃基板及其制法和用途
US10851015B2 (en) Coated glass sheet
JP7149962B2 (ja) 被覆基板
CN104230178A (zh) 一种改性多孔性二氧化硅减反膜的制备方法
CN103508678A (zh) 耐磨的含有介孔的增透涂层的制备方法及耐磨的含有介孔的增透涂层
JPWO2016051750A1 (ja) 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置
CN101308878A (zh) 均匀大面积光线增透镀膜太阳能电池封装玻璃及制作方法
CN107325598A (zh) 一种高硬度减反射膜镀膜液的制备方法、一种玻璃高硬度减反射膜的镀膜方法及其应用
CN101358046B (zh) 一种含氧化硅纳米涂料及其制备方法和应用
CN110078383A (zh) 一种疏水型减反射溶液、疏水型减反射玻璃
CN109052981B (zh) 一种高硬度超耐磨的疏水性自清洁减反膜制备方法
CN114644461B (zh) 一种基于溶胶-凝胶法的多功能ato疏水涂层制备技术
CN106655995B (zh) 自洁式光电转换太阳能瓦
CN102206434A (zh) 一种高效光电转换用玻璃镀膜液及其制备方法和应用
CN107935406A (zh) 二氧化硅增透膜的制备方法
KR20210102795A (ko) 태양광 모듈용 컬러 유리
CN112147722A (zh) 一种光伏玻璃用的增透膜及其制备方法和应用
WO2018054299A1 (en) A coating liquid, coating composition and the substrate coated with the same
CN108545753A (zh) 一种网络状SiO2镀膜溶胶及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121017